1
|
Su HL, Lai SJ, Tsai KC, Fung KM, Lung TL, Hsu HM, Wu YC, Liu CH, Lai HX, Lin JH, Tseng TS. Structure-guided identification and characterization of potent inhibitors targeting PhoP and MtrA to combat mycobacteria. Comput Struct Biotechnol J 2024; 23:1477-1488. [PMID: 38623562 PMCID: PMC11016868 DOI: 10.1016/j.csbj.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP-DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 μM) and ST132 (KD = 14.5 ± 0.1 μM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal β-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria.
Collapse
Affiliation(s)
- Han-Li Su
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kit-Man Fung
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 11529, Taiwan
| | - Tse-Lin Lung
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Hsing-Mien Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Yi-Chen Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Ching-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Hui-Xiang Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan
- Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| |
Collapse
|
2
|
Hsu YC, Liu CH, Wu YC, Lai SJ, Lin CJ, Tseng TS. Combatting Antibiotic-Resistant Staphylococcus aureus: Discovery of TST1N-224, a Potent Inhibitor Targeting Response Regulator VraRC, through Pharmacophore-Based Screening and Molecular Characterizations. J Chem Inf Model 2024; 64:6132-6146. [PMID: 39078379 PMCID: PMC11323011 DOI: 10.1021/acs.jcim.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major global health concern, causing various infections and presenting challenges due to antibiotic resistance. In particular, methicillin-resistant S. aureus, vancomycin-intermediate S. aureus (VISA), and vancomycin-resistant S. aureus pose significant obstacles in treating S. aureus infections. Therefore, the critical need for novel drugs to counter these resistant forms is pressing. Two-component systems (TCSs), integral to bacterial regulation, offer promising targets for disruption. In this study, a comprehensive approach, involving pharmacophore-based inhibitor screening, along with biochemical and biophysical analyses were conducted to identify, characterize, and validate potential inhibitors targeting the response regulator VraRC of S. aureus. The constructed pharmacophore model, Phar-VRPR-N3, demonstrated effectiveness in identifying a potent inhibitor, TST1N-224 (IC50 = 60.2 ± 4.0 μM), against the formation of the VraRC-DNA complex. Notably, TST1N-224 exhibited strong binding to VraRC (KD = 23.4 ± 1.2 μM) using a fast-on-fast-off binding mechanism. Additionally, NMR-based molecular modeling revealed that TST1N-224 predominantly interacts with the α9- and α10-helixes of the DNA-binding domain of VraR, where the interactive and functionally essential residues (N165, K180, S184, and R195) act as hotspots for structure-based inhibitor optimization. Furthermore, TST1N-224 evidently enhanced the susceptibility of VISA to both vancomycin and methicillin. Importantly, TST1N-224 distinguished by 1,2,5,6-tetrathiocane with the 3 and 8 positions modified with ethanesulfonates holds significant potential as a lead compound for the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Ying-Chu Hsu
- Division
of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation ChiaYi Christian Hospital, Chiayi 600566, Taiwan
| | - Ching-Hui Liu
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Yi-Chen Wu
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Shu-Jung Lai
- Graduate
Institute of Biomedical Sciences, China
Medical University, Taichung 404333, Taiwan
- Research
Center for Cancer Biology, China Medical
University, Taichung 404333, Taiwan
| | - Chi-Jan Lin
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Tien-Sheng Tseng
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| |
Collapse
|
3
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
4
|
Ma P, Phillips-Jones MK. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery. Molecules 2021; 26:molecules26165110. [PMID: 34443697 PMCID: PMC8399564 DOI: 10.3390/molecules26165110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled “Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents” edited by Mary K. Phillips-Jones.
Collapse
Affiliation(s)
- Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Correspondence:
| |
Collapse
|
5
|
Shahbaaz M, Nkaule A, Christoffels A. Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Sci Rep 2019; 9:4405. [PMID: 30867456 PMCID: PMC6416319 DOI: 10.1038/s41598-019-40621-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
Rv2984 is one of the polyphosphate kinases present in Mycobacterium tuberculosis involved in the catalytic synthesis of inorganic polyphosphate, which plays an essential role in bacterial virulence and drug resistance. Consequently, the structure of Rv2984 was investigated and an 18 membered compound library was designed by altering the scaffolds of computationally identified inhibitors. The virtual screening of these altered inhibitors was performed against Rv2984 and the top three scoring inhibitors were selected, exhibiting the free energy of binding between 8.2–9 kcal mol−1 and inhibition constants in the range of 255–866 nM. These selected molecules showed relatively higher binding affinities against Rv2984 compared to the first line drugs Isoniazid and Rifampicin. Furthermore, the docked complexes were further analyzed in explicit water conditions using 100 ns Molecular Dynamics simulations. Through the assessment of obtained trajectories, the interactions between the protein and selected inhibitors including first line drugs were evaluated using MM/PBSA technique. The results validated the higher efficiency of the designed molecules compared to 1st line drugs with total interaction energies observed between −100 kJ mol−1 and −1000 kJ mol−1. This study will facilitate the process of drug designing against M. tuberculosis and can be used in the development of potential therapeutics against drug-resistant strains of bacteria.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Anati Nkaule
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
6
|
Schaenzer AJ, Wlodarchak N, Drewry DH, Zuercher WJ, Rose WE, Ferrer CA, Sauer JD, Striker R. GW779439X and Its Pyrazolopyridazine Derivatives Inhibit the Serine/Threonine Kinase Stk1 and Act As Antibiotic Adjuvants against β-Lactam-Resistant Staphylococcus aureus. ACS Infect Dis 2018; 4:1508-1518. [PMID: 30059625 PMCID: PMC6779124 DOI: 10.1021/acsinfecdis.8b00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As antibiotic resistance rises, there is a need for strategies such as antibiotic adjuvants to conserve already-established antibiotics. A family of bacterial kinases known as the penicillin-binding-protein and serine/threonine kinase-associated (PASTA) kinases has attracted attention as targets for antibiotic adjuvants for β-lactams. Here, we report that the pyrazolopyridazine GW779439X sensitizes methicillin-resistant Staphylococcus aureus (MRSA) to various β-lactams through inhibition of the PASTA kinase Stk1. GW779439X potentiates β-lactam activity against multiple MRSA and MSSA isolates, including the sensitization of a ceftaroline-resistant isolate to ceftaroline. In silico modeling was used to guide the synthesis of GW779439X derivatives. The presence and orientation of GW779439X's methylpiperazine moiety was crucial for robust biochemical and microbiologic activity. Taken together, our data provide a proof of concept for developing the pyrazolopyridazines as selective Stk1 inhibitors which act across S. aureus isolates.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Nathan Wlodarchak
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
| | - David H. Drewry
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Warren E. Rose
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Carla A. Ferrer
- UNC Eshelman School of Pharmacy, SGC Center for Chemical Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Rob Striker
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Department of Medicine, University of Wisconsin–Madison, 1685 Highland Avenue, Madison, Wisconsin 53706, United States
- Department of Medicine, W. S. Middleton Memorial Veteran’s Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States
| |
Collapse
|
7
|
Abstract
Inhibitors of bacterial histidine kinases that globally deactivate bacterial signaling may offer a new offensive against antibiotic resistance.
Collapse
Affiliation(s)
- Kaelyn E Wilke
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|