1
|
Chen Y, Li Y, Xu Y, Lv Q, Ye Y, Gu J. Revealing the role of natural killer cells in ankylosing spondylitis: identifying diagnostic biomarkers and therapeutic targets. Ann Med 2025; 57:2457523. [PMID: 39853176 PMCID: PMC11770870 DOI: 10.1080/07853890.2025.2457523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic autoimmune disease that primarily affects the axial joints. Immune cells play a key role in the pathogenesis of AS. This study integrated bioinformatics methods with experimental validation to explore the role of natural killer (NK) cells in AS. METHODS Two microarray datasets, GSE25101 and GSE73754, were selected, and the scRNA-seq data were obtained from GSE194315 and Liu's research. Differentially expressed genes (DEGs) and functional enrichment analysis were performed respectively. Weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules of co-expressed genes and genes involved in NK cell function. The diagnostic value of the identified key genes was evaluated using ROC curves, logistic regression analysis, and a nomogram. Real-time PCR (RT-PCR) was used to quantified the expression of genes. Statistical analysis was conducted using the R software package, and a p-value of less than 0.05 was considered statistically significant. RESULTS Pathways enrichment analysis revealed the involvement of NK cell-mediated immune pathways and regulation of the innate immune response, indicating the crucial role of innate immunity, especially NK cells, in AS pathogenesis. The construction of a co-expression network revealed that the MElightyellow module was most relevant to the NK cell-mediated immune pathway. IL2RB, CD247, PLEKHF1, EOMES, S1PR5, FGFBP2 from the MElightyellow module were identified as key genes involved in NK cell-mediated immune response and served as potential diagnostic biomarkers for AS, with moderate to high diagnostic values based on AUC values. Further analysis using scRNA-seq profiling revealed the higher expression level of IL2RB, CD247, PLEKHF1, S1PR5, FGFBP2 in NK cells compared to that in other cell types. CD247, PLEKHF1, EOMES, S1PR5, and FGFBP2 were reduced expressed in AS patients as compare to control group verified by scRNA-seq data, CD247, EOMES, FGFBP2, IL2RB and S1PR5 were reduced expressed verified by RT-PCR, and PLEKHF1, S1PR5, and FGFBP2 was upregulated after TNF-α blocker therapy. CONCLUSION The study revealed the potential role of NK cells and identified IL2RB, CD247, PLEKHF1, EOMES, S1PR5, and FGFBP2 as key genes associated with NK cells in the pathogenesis of AS.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yan Li
- Department of Scientific Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yuan Xu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Qing Lv
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yuanchun Ye
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong ProvincePeople’s Republic of China
| |
Collapse
|
2
|
Gestal-Mato U, Herhaus L. Autophagy-dependent regulation of MHC-I molecule presentation. J Cell Biochem 2024; 125:e30416. [PMID: 37126231 DOI: 10.1002/jcb.30416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
The major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8+ T lymphocytes to elicit an effective immune response. The conventional antigen-processing pathway for MHC-I presentation depends on proteasome-mediated peptide generation and peptide loading in the endoplasmic reticulum by members of the peptide loading complex. Recent discoveries in this field highlight the role of alternative MHC-I peptide loading and presentation pathways, one of them being autophagy. Autophagy is a cell-intrinsic degradative pathway that ensures cellular homoeostasis and plays critical roles in cellular immunity. In this review article, we discuss the role of autophagy in MHC class I-restricted antigen presentation, elucidating new findings on the crosstalk of autophagy and ER-mediated MHC-I peptide presentation, dendritic cell-mediated cross-presentation and also mechanisms governing immune evasion. A detailed molecular understanding of the key drivers of autophagy-mediated MHC-I modulation holds promising targets to devise effective measures to improve T cell immunotherapies.
Collapse
Affiliation(s)
- Uxia Gestal-Mato
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Lina Herhaus
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Schütz C, Baraliakos X. What do we know about co-stimulatory and co-inhibitory immune checkpoint signals in ankylosing spondylitis? Clin Exp Immunol 2023; 213:288-300. [PMID: 36883249 PMCID: PMC10570999 DOI: 10.1093/cei/uxad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
Ankylosing spondylitis is the main entity of a family of inflammatory diseases affecting many musculoskeletal (sacroiliac joints, spine, and peripheral joints) and extra-musculoskeletal sites, termed spondyloarthritis. While it is debated whether disease onset is primarily driven by autoimmune or autoinflammatory processes, what is certain is that both innate and adaptive immune responses orchestrate local and systemic inflammation, which leads to chronic pain and immobility. Immune checkpoint signals are one key player in keeping the immune system in check and in balance, but their role in disease pathogenesis is still rather elusive. Therefore, we ran a MEDLINE search utilizing the PubMed platform for a variety of immune checkpoint signals in regard to ankylosing spondylitis. In this review, we summarize the experimental and genetic data available and evaluate the relevance of immune checkpoint signalling in the pathogenesis of ankylosing spondylitis. Markers such as PD-1 and CTLA-4 have been extensively studied and facilitate the concept of an impaired negative immune regulation in ankylosing spondylitis. Other markers are either neglected completely or insufficiently examined, and the data is conflicting. Still, some of those markers remain interesting targets to decipher the pathogenesis of ankylosing spondylitis and to develop new treatment strategies.
Collapse
Affiliation(s)
- Christian Schütz
- Rheumazentrum Ruhrgebiet Herne, Ruhr-University Bochum, Herne, Germany
| | | |
Collapse
|
4
|
Hojjatipour T, Aslani S, Salimifard S, Mikaeili H, Hemmatzadeh M, Gholizadeh Navashenaq J, Ahangar Parvin E, Jadidi-Niaragh F, Mohammadi H. NK cells - Dr. Jekyll and Mr. Hyde in autoimmune rheumatic diseases. Int Immunopharmacol 2022; 107:108682. [DOI: 10.1016/j.intimp.2022.108682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
5
|
Thakur AK, Luthra-Guptasarma M. Differences in Cellular Clearing Mechanisms of Aggregates of Two Subtypes of HLA-B27. Front Immunol 2022; 12:795053. [PMID: 35082784 PMCID: PMC8785436 DOI: 10.3389/fimmu.2021.795053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Ankylosing spondylitis (AS) belongs to a group of diseases, called spondyloarthropathies (SpA), that are strongly associated with the genetic marker HLA-B27. AS is characterized by inflammation of joints and primarily affects the spine. Over 160 subtypes of HLA-B27 are known, owing to high polymorphism. Some are strongly associated with disease (e.g., B*2704), whereas others are not (e.g., B*2709). Misfolding of HLA-B27 molecules [as dimers, or as high-molecular-weight (HMW) oligomers] is one of several hypotheses proposed to explain the link between HLA-B27 and AS. Our group has previously established the existence of HMW species of HLA-B27 in AS patients. Still, very little is known about the mechanisms underlying differences in pathogenic outcomes of different HLA-B27 subtypes. We conducted a proteomics-based evaluation of the differential disease association of HLA B*2704 and B*2709, using stable transfectants of genes encoding the two proteins. A clear difference was observed in protein clearance mechanisms: whereas unfolded protein response (UPR), autophagy, and aggresomes were involved in the degradation of B*2704, the endosome–lysosome machinery was primarily involved in B*2709 degradation. These differences offer insights into the differential disease association of B*2704 and B*2709.
Collapse
Affiliation(s)
- Amit Kumar Thakur
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
6
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Liu YX, Guo N, Xu MH, Ren GF. Association of Killer Cell Immunoglobulin-like Receptor and Human Leukocyte antigen-C Genotype with HLA-B27 Associated Acute Anterior Uveitis and Idiopathic Acute Anterior Uveitis in a Chinese Han Population. Ocul Immunol Inflamm 2020; 30:451-456. [PMID: 32946319 DOI: 10.1080/09273948.2020.1808228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose whether killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigens C (HLA-C) are associated with HLA-B27 associated acute anterior uveitis (B27AAU) and idiopathic AAU (IAAU) remains unclear.Methods PCR with sequence-specific primers was used to analyze KIR genes and HLA-C alleles in a Chinese Han population of 196AAU patients and 210 control subjects.Results The higher frequencies of HLA-C2 and KIR2DL1/HLA-C2 (p = .009 and p = .044, respectively) and the lower frequencies of HLA-C1C1 and HLA-C1 (p = .034 and p = .009, respectively) were observed in B27AAU than control group. The higher frequencies of KIR2DL2 and KIR2DL2/HLA-C1 (p = .009 and p = .044, respectively) and the lower frequencies of KIR2DL3 and KIR2DL3/HLA-C1 (p = .000 and p = .001, respectively) were observed in IAAU than control group.Conclusions HLA-C2 and KIR2DL1/HLA-C2, KIR2DL2, and KIR2DL2/HLA-C1 might be susceptible for B27AAU and IAAU, respectively. HLA-C1C1 and HLA-C1, KIR2DL3 and KIR2DL3/HLA-C1 might protect from B27AAU and IAAU, respectively.
Collapse
Affiliation(s)
- Yun-Xia Liu
- Department of Ophthalmology, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China
| | - Nan Guo
- Quality Control and Laboratory Department, Yantai Central Blood Station, Yantai, Shandong Province, P. R. China
| | - Ming-Hua Xu
- Quality Control and Laboratory Department, Yantai Central Blood Station, Yantai, Shandong Province, P. R. China
| | - Gui-Fang Ren
- Department of Ophthalmology, The 4th People's Hospital of Jinan, Jinan, Shandong Province, P. R. China
| |
Collapse
|
8
|
Cardoso EM, Esgalhado AJ, Patrão L, Santos M, Neves VP, Martinez J, Patto MAV, Silva H, Arosa FA. Distinctive CD8 + T cell and MHC class I signatures in polycythemia vera patients. Ann Hematol 2018; 97:1563-1575. [PMID: 29789880 DOI: 10.1007/s00277-018-3332-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative neoplasm characterized by overproduction of red blood cells. We have performed a comprehensive characterization of blood immune cells for expression of naïve and memory receptors as well as β2m-associated and β2m-free MHC class I heavy chains, also known as closed and open conformers, respectively, in PV patients and age-matched controls (CTR). We show that the peripheral CD3+CD8+ T cell pool in PV patients is clearly divided into two discrete populations, a more granular CD3+CD8high T cell population enriched in effector-memory CD45RA+ T cells (CD8+ TEMRA) when compared to CTR (P < 0.001), and a less granular CD3+CD8int T cell population that is completely absent in the CTR group (78 vs. 0%, P < 0.001) and is a mixture of naïve (CD8+ TN) and CD8+ TEMRA cells expressing intermediate levels of CD28, i.e., CD3+CD8intCD28int. While the percentage of CD3+CD8int TN cells correlated positively with the number of erythrocytes, the percentage of CD3+CD8int TEMRA correlated negatively with the number of platelets. Finally, we report that PV patients' lymphocytes and monocytes display lower levels of closed (W6/32+) MHC-I conformers at the cell surface while exhibiting increased amounts of open (HC-10+) MHC-I conformers. The implications of this distinctive immune signature are discussed.
Collapse
Affiliation(s)
- Elsa M Cardoso
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,IPG-Instituto Politécnico da Guarda, Guarda, Portugal
| | - André J Esgalhado
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Luís Patrão
- FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Mónica Santos
- CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | | | - Jorge Martinez
- FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CHCB-Centro Hospitalar Cova da Beira, Covilhã, Portugal
| | - Maria Assunção Vaz Patto
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,ULSG-Unidade Local de Saúde, Guarda, Portugal
| | - Helena Silva
- CHTV-Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Fernando A Arosa
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal. .,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Di Bona D, Accardi G, Aiello A, Bilancia M, Candore G, Colomba C, Caruso C, Duro G, Gambino CM, Macchia L, Pandey JP. Association between γ marker, human leucocyte antigens and killer immunoglobulin-like receptors and the natural course of human cytomegalovirus infection: a pilot study performed in a Sicilian population. Immunology 2017; 153:523-531. [PMID: 29067686 DOI: 10.1111/imm.12855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/07/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells provide a major defence against human cytomegalovirus (HCMV) infection through the interaction of their surface receptors, including the activating and inhibitory killer immunoglobulin-like receptors (KIRs), and human leucocyte antigen (HLA) class I molecules. Also γ marker (GM) allotypes, able to influence the NK antibody-dependent cell-mediated cytotoxicity, appear to be involved in the immunological control of virus infections, including HCMV. In some cases, their contribution requires epistatic interaction with other genes of the immune system, such as HLA. In the present report, with the aim of gaining insight into the immune mechanisms controlling HCMV, we have studied the possible associations among humoral and NK responses, and HCMV infections. In a previous study we assessed whether the KIR and HLA repertoire might influence the risk of developing symptomatic (n = 60) or asymptomatic (n = 60) disease after primary HCMV infection in the immunocompetent host. In the present study, the immunocompetent patients with primary symptomatic HCMV infection were genotyped for GM3/17 and GM23 allotypes, along with the 60 participants with a previous asymptomatic infection as controls. Notwithstanding the presence of missing data record, advanced missing data recovery techniques were able to show that individuals carrying the GM23 allotypes, both homozygous and heterozygous, GM17/17, HLA-C2 and Bw4T KIR-ligand groups are associated with the risk of developing symptomatic infection. Our findings on the role of both cellular and humoral immunity in the control of HCMV infection should be of value in guiding efforts to reduce HCMV-associated health complications in the elderly, including immunosenescence, and in transplantation.
Collapse
Affiliation(s)
- Danilo Di Bona
- Dipartimento dell'Emergenza e dei Trapianti d'Organo, Università di Bari Aldo Moro, Bari, Italy
| | - Giulia Accardi
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Massimo Bilancia
- Dipartmento Jonico in Sistemi Giuridici ed Economici del Mediterraneo: società, ambiente, culture, Università di Bari Aldo Moro, Bari, Italy
| | - Giuseppina Candore
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Claudia Colomba
- Dipartimento di Scienze per la Promozione della Salute e Materno-Infantile "G. D'Alessandro", Università di Palermo, Palermo, Italy
| | - Calogero Caruso
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Giovanni Duro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Caterina M Gambino
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università di Palermo, Palermo, Italy
| | - Luigi Macchia
- Dipartimento dell'Emergenza e dei Trapianti d'Organo, Università di Bari Aldo Moro, Bari, Italy
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
10
|
Erken E, Goruroglu Ozturk O, Kudas O, Arslan Tas D, Demirtas A, Kibar F, Dinkci S, Erken E. Killer Cell Immunoglobulin-Like Receptor (KIR) Genotype Distribution in Familial Mediterranean Fever (FMF) Patients. Med Sci Monit 2015; 21:3547-54. [PMID: 26574972 PMCID: PMC4655612 DOI: 10.12659/msm.895211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disease predominantly affecting Mediterranean populations. The gene associated with FMF is the MEFV gene, which encodes for a protein called pyrin. Mutations of pyrin lead to uncontrolled attacks of inflammation, and subclinical inflammation continues during attack-free intervals. Killer cell immunoglobulin-like receptor (KIR) genes encode HLA class I receptors expressed by NK cells. The aim this study was to look for immunogenetic determinants in the pathogenesis of FMF and find out if KIR are related to susceptibility to disease or complications like renal amyloidosis. MATERIAL AND METHODS One hundred and five patients with FMF and 100 healthy individuals were involved in the study. Isolated DNA from peripheral blood was amplified by sequence specific PCR probes and analyzed by Luminex for KIR genotypes. Fisher Exact test was used to evaluate the variation of KIR gene distribution. RESULTS All patients and healthy controls expressed the framework genes. An activator KIR gene, KIR2DS2, was significantly more frequent in FMF patients (p=0.036). Renal amyloidosis and presence of arthritis were not associated with KIR genes and genotype. KIR3DL1 gene was more common in patients with high serum CRP (p=0.016). CONCLUSIONS According to our findings, we suggest that presence of KIR2DS2, which is an activator gene for NK cell functions, might be related to the autoinflammation in FMF. The potential effect of KIR genes on amyloidosis and other clinical features requires studies with larger sample sizes.
Collapse
Affiliation(s)
- Ertugrul Erken
- Department of Nephrology, Gaziosmanpasa University, Faculty of Medicine, Tokat, Turkey
| | - Ozlem Goruroglu Ozturk
- Central Laboratory, Cukurova University, Faculty of Medicine, Balcali Hospital, Adana, Turkey
| | - Ozlem Kudas
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Didem Arslan Tas
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Ahmet Demirtas
- Department of Internal Medicine, Gaziosmanpasa University, Faculty of Medicine, Tokat, Turkey
| | - Filiz Kibar
- Central Laboratory, Cukurova University, Faculty of Medicine, Balcali Hospital, Adana, Turkey
| | - Suzan Dinkci
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Eren Erken
- Department of Rheumatology/Immunology, Cukurova University, Faculty of Medicine, Adana, Turkey
| |
Collapse
|