1
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Shang XY, Chen JJ, Song XY, Wang W, Chen Y, Yao GD, Song SJ. Daphnegiravone D from Daphne giraldii Nitsche induces p38-dependent apoptosis via oxidative and nitrosative stress in hepatocellular carcinoma cells. Biomed Pharmacother 2018; 107:1426-1433. [PMID: 30257359 DOI: 10.1016/j.biopha.2018.08.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 01/27/2023] Open
Abstract
Daphnegiravone D (DGD), a prenylated flavonoid from Daphne giraldii Nitsche, significantly inhibited cell growth of several cancer cell lines without cytotoxicity on human normal cells. Our previous study showed that DGD could induce apoptosis in hepatocellular carcinoma Hep3B and HepG2 cells, but the detailed mechanism was still unclear. The present study provides that DGD-induced oxidative and nitrosative stress contribute to apoptotic cell death in Hep3B and HepG2 cells. Furthermore, there is a positive loop between oxidative stress and p38 activation, similar result is observed between nitrosative stress and p38. N-Acetylcysteine (NAC), a reactive oxygen species scavenger, could relieve DGD-induced oxidative stress, but exerts little effect on nitrosative stress. In addition, carboxy-PTIO (PTIO, a well-known scavenger of reactive nitrogen species) down-regulates the induction of nitrosative stress without obvious effect on oxidative stress in DGD-treated cells. In conclusion, the induction of oxidative and nitrosative stress could enhance p38-mediated apoptosis in DGD-treated Hep3B and HepG2 cells. Moreover, we speculated that OS and NS could not ultimately affect each other in DGD-treated HCC cells. This study gives a new insight on the mechanism of DGD-induced apoptotic cell death via oxidative and nitrosative stress in HCC cells.
Collapse
Affiliation(s)
- Xin-Yue Shang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Jie Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Yu Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yao Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
3
|
Jordan BC, Mock CD, Thilagavathi R, Selvam C. Molecular mechanisms of curcumin and its semisynthetic analogues in prostate cancer prevention and treatment. Life Sci 2016; 152:135-44. [PMID: 27018446 DOI: 10.1016/j.lfs.2016.03.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023]
Abstract
Primary prostate cancer, also known as prostate adenocarcinoma (PCa), is a devastating cancer in men worldwide. Europe and developing countries of Asia have fewer reported cases of prostate cancer compared to increasing cases in the United States with higher incidence in Black men. Risk factors associated with prostate cancer are aging, genetics, lifestyle, high body mass index as well as carcinogenic exposure to carbon-containing fuels, tobacco, and charbroiled meats. Hormone therapy and radical prostatectomy are commonly implemented treatments. The >20.000 prostate cancer deaths of 2013 suggest that there exists a need for enhanced chemopreventive and therapeutic agents for prostate cancer treatment. Fruits, vegetables, and red wines contain high levels of polyphenolic levels. Consumption of these products may provide chemoprevetion of PCa. Curcumin, the major compound from the turmeric rhizome Curcuma longa has long been used for medicinal purposes as an antiseptic and wound healing. This review focuses on curcumin's therapeutic effectiveness in vitro and in vivo in prostate cancer models. The review will highlight the mechanisms of actions of curcumin in the signaling pathways of prostate cancer.
Collapse
Affiliation(s)
- Brian C Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Charlotta D Mock
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
4
|
ZHENG RUINIAN, YOU ZHIJIAN, JIA JUN, LIN SHUNHUAN, HAN SHUAI, LIU AIXUE, LONG HUIDONG, WANG SENMING. Curcumin enhances the antitumor effect of ABT-737 via activation of the ROS-ASK1-JNK pathway in hepatocellular carcinoma cells. Mol Med Rep 2016; 13:1570-1576. [PMID: 26707143 PMCID: PMC4732838 DOI: 10.3892/mmr.2015.4715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023] Open
Abstract
At present, the therapeutic treatment strategies for patients with hepatocellular carcinoma (HCC) remain unsatisfactory, and novel methods are urgently required to treat this disease. Members of the B cell lymphoma (Bcl)-2 family are anti‑apoptotic proteins, which are commonly expressed at high levels in certain HCC tissues and positively correlate with the treatment resistance of patients with HCC. ABT-737, an inhibitor of Bcl-2 anti-apoptotic proteins, has been demonstrated to exhibit potent antitumor effects in several types of tumor, including HCC. However, treatment with ABT-737 alone also activates certain pro-survival signaling pathways, which attenuate the antitumor validity of ABT-737. Curcumin, which is obtained from Curcuma longa, is also an antitumor potentiator in multiple types of cancer. In the present study, the synergistic effect of curcumin and ABT-737 on HCC cells was investigated for the first time, to the best of our knowledge. It was found that curcumin markedly enhanced the antitumor effects of ABT-737 on HepG2 cells, which was partially dependent on the induction of apoptosis, according to western blot analysis and flow cytometric apoptosis analysis. In addition, the sustained activation of the ROS-ASK1-c-Jun N-terminal kinase pathway may be an important mediator of the synergistic effect of curcumin and ABT-737. Collectively, these results indicated that the combination of curcumin and ABT-737 can efficaciously induce the death of HCC cells, and may offer a potential treatment strategy for patients with HCC.
Collapse
Affiliation(s)
- RUINIAN ZHENG
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
- Department of Oncology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - ZHIJIAN YOU
- Department of Oncology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - JUN JIA
- Department of Oncology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - SHUNHUAN LIN
- Department of Oncology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - SHUAI HAN
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - AIXUE LIU
- Department of Oncology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - HUIDONG LONG
- Department of Internal Medicine, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - SENMING WANG
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
5
|
Tsai CF, Hsieh TH, Lee JN, Hsu CY, Wang YC, Kuo KK, Wu HL, Chiu CC, Tsai EM, Kuo PL. Curcumin Suppresses Phthalate-Induced Metastasis and the Proportion of Cancer Stem Cell (CSC)-like Cells via the Inhibition of AhR/ERK/SK1 Signaling in Hepatocellular Carcinoma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10388-10398. [PMID: 26585812 DOI: 10.1021/acs.jafc.5b04415] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent evidence indicating that phthalates promote cancer development, including cell proliferation, migration, and invasion, has raised public health concerns. Here, we show that bis(2-ethylhexyl) phthalate promotes the migration, invasion, and epithelial-mesenchymal transition of hepatocellular carcinoma cells. In addition, bis(2-ethylhexyl) phthalate increased the proportion of cancer stem cell (CSC)-like cells and stemness maintenance in vitro as well as tumor growth and metastasis in vivo. The various activities of curcumin, including anticancer, anti-inflammation, antioxidation, and immunomodulation, have been investigated extensively. Curcumin suppressed phthalate-induced cell migration, invasion, and epithelial-mesenchymal transition, decreased the proportion of CSC-like cells in hepatocellular carcinoma cell lines in vitro, and inhibited tumor growth and metastasis in vivo. We also reveal that curcumin suppressed phthalate-induced migration, invasion, and CSC-like cell maintenance through inhibition of the aryl hydrocarbon receptor/ERK/SK1/S1P3 signaling pathway. Our results suggest that curcumin may be a potential antidote for phthalate-induced cancer progression.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Tsung-Hua Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Jau-Nan Lee
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Chia-Yi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Yu-Chih Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Kung-Kai Kuo
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University , Tainan 701, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| |
Collapse
|