1
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
2
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
3
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Assalem N, Abd-Allah H, Ragaie MH, Ahmed SS, Elmowafy E. Therapeutic potential of limonene-based syringic acid nanoemulsion: Enhanced ex-vivo cutaneous deposition and clinical anti-psoriatic efficacy. Int J Pharm 2024; 660:124376. [PMID: 38914355 DOI: 10.1016/j.ijpharm.2024.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Nanoemulsions have carved their position in topical delivery owing to their peculiar features of forming a uniform film on the skin and conquering stratum corneum barrier and hence fostering dermal penetration and retention. The present work developed syringic acid nanoemulsion (SA-NE) by spontaneous emulsification as an anti-psoriatic remedy via the dermal route. SA-NE were prepared with either lauroglycol90, limonene or their combination (oil phase) and tween80 (surfactant) with variable concentrations. The physicochemical characteristics of SA-NE were assessed together with Ex-vivo skin deposition and dermal toxicity. The effectiveness of optimal formula in psoriatic animal model and psoriatic patients was investigated using PASI scoring and dermoscope examination. Results showed that, SA-NE containing mixture of lauroglycol 90, limonene and 10 % tween80 (F5), was selected as the optimal formula presenting stable nanoemulsion for 2-month period, showing droplet size of 177.6 ± 13.23 nm, polydispersity index of 0.16 ± 0.06, zeta potential of -21.23 ± 0.41 mV. High SA% in different skin strata and no dermal irritation was noticed with limonene-based SA-NE also it showed high in-vitro anti- inflammatory potential compared to the blank and control formulations. A preclinical study demonstrated that limonene-based SA-NE is effective in alleviating psoriasis-like skin lesions against imiquimod-induced psoriasis in rats. Clinically, promising anti-psoriatic potential was asserted as all patients receiving F5 experienced better clinical improvement and response to therapy, achieving ≥ 50 % reduction in PASI scores versus only 35 % responders in the Dermovate® cream group. Collectively, the practical feasibility of limonene-based SA-NE topical delivery can boost curative functionality in the treatment of psoriatic lesions.
Collapse
Affiliation(s)
- Noor Assalem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566.
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minya University, Al-Minya, Egypt
| | - Shimaa S Ahmed
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minya University, Al-Minya, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| |
Collapse
|
5
|
Lu Y, Han X. Therapeutic Implications of Phenolic Acids for Ameliorating Inflammatory Bowel Disease. Nutrients 2024; 16:1347. [PMID: 38732594 PMCID: PMC11085699 DOI: 10.3390/nu16091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder, and its complex etiology makes prevention and treatment challenging. Research on new drugs and treatment strategies is currently a focal point. Phenolic acids are widely present in plant-based diets and have demonstrated the potential to alleviate colitis due to their powerful antioxidant and anti-inflammatory properties. In this review, we provide an overview of the structures and main dietary sources of phenolic acids, encompassing benzoic acid and cinnamic acid. Additionally, we explore the potential of phenolic acids as a nutritional therapy for preventing and treating IBD. In animal and cell experiments, phenolic acids effectively alleviate IBD induced by drug exposure or genetic defects. The mechanisms include improving intestinal mucosal barrier function, reducing oxidative stress, inhibiting excessive activation of the immune response, and regulating the balance of the intestinal microbiota. Our observation points towards the need for additional basic and clinical investigations on phenolic acids and their derivatives as potential novel therapeutic agents for IBD.
Collapse
Affiliation(s)
- Yanan Lu
- School of Biomedicine, Beijing City University, Huanghoudian Village, Yongfeng Town, Haidian District, Beijing 100094, China;
| | - Xue Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Ghasemi-Dehnoo M, Amini-Khoei H, Lorigooini Z, AnjomShoa M, Bijad E, Rafieian-Kopaei M. Inhibition of TLR4, NF-κB, and INOS pathways mediates ameliorative effect of syringic acid in experimental ulcerative colitis in rats. Inflammopharmacology 2024; 32:795-808. [PMID: 38095803 DOI: 10.1007/s10787-023-01387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Numerous therapeutics and pharmacological properties have been reported in syringic acid (SA). In this study, we aimed to evaluate effect of SA in ulcerative colitis (UC) in rats considering effect on TLR4, NF-κB, and INOS pathways. MATERIALS AND METHODS 48 Wistar rats were randomly designated into six groups (n = 8). UC was induced via intra-rectal administration of 7% acetic acid (0.8 ml). SA at doses of 10, 25, 50 mg/kg was administrated through gavage, and dexamethasone (2 mg/kg) administrated intra-peritoneally for 5 consecutive days. The macroscopic and histopathological damages as well as expression of inflammatory and apoptotic genes along with superoxide dismutase (SOD) and catalase (CAT) activities, total antioxidant capacity (TAC), nitric oxide (NO), and malondialdehyde (MDA) levels in the colon tissue were assessed. RESULTS UC led to an increase in the apoptotic and inflammatory genes, NO and MDA levels as well as decrease in TAC level, and SOD and CAT activities (p < 0.05). UC also caused severe damage, edema, inflammation, and necrosis in the colon. SA significantly reduced gene expressions of INOS, TLR4, IL-6, IL-1β, NF-κB, Caspase-3, Caspase-8, and Bax. SA ameliorated negative macroscopic and histopathologic effects of UC. SA significantly reduced MDA and NO levels, and increased TAC level and CAT activity in the colon tissue in comparison to the UC rats without treatment (p < 0.05). CONCLUSION SA via attenuation of the TLR4-NF-κB, NF-κB-INOS-NO pathways, oxidative stress, inflammation, and apoptosis of UC in rats.
Collapse
Affiliation(s)
- Maryam Ghasemi-Dehnoo
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam AnjomShoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Pan L, Ma M, Wang Y, Dai W, Fu T, Wang L, Shang Q, Yu G. Polyguluronate alleviates ulcerative colitis by targeting the gut commensal Lactobacillus murinus and its anti-inflammatory metabolites. Int J Biol Macromol 2024; 257:128592. [PMID: 38056745 DOI: 10.1016/j.ijbiomac.2023.128592] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Polyguluronate (PG) is a fermentable polysaccharide from edible algae. The present study was designed to investigate the therapeutic effect of PG on ulcerative colitis (UC) and its underlying mechanisms. Our results suggest that oral intake of PG attenuates UC and improves gut microbiota dysbiosis by promoting the growth of Lactobacillus spp. in dextran sulfate sodium-fed mice. Five different species of Lactobacillus were isolated from the feces of PG-treated mice and L. murinus was identified to have the best anti-colitis effect, suggesting a critical role for L. murinus in mediating the therapeutic effect of PG. Furthermore, PG was degraded potentially by the beta-glucuronidase from L. murinus and adding PG to the culture medium of L. murinus remarkably increased its production of anti-inflammatory metabolites, including itaconic acid, cis-11,14-eicosadienoic acid, and 3-amino-3-(2-chlorophenyl)-propionic acid. Additionally, L. salivarius, a human intestine-derived PG-utilizing species that is closely related to L. murinus, was also demonstrated to have potent anti-colitis effects, suggesting that it is a candidate target of PG in the human gut. Altogether, our study illustrates an unprecedented application of PG in the treatment of UC and establishes the basis for understanding its therapeutic effect from the perspective of L. murinus and its metabolites.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Yamin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Wei Dai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Tianyu Fu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Lihao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China; Qingdao Marine Biomedical Research Institute, Qingdao 266071, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China; Qingdao Marine Biomedical Research Institute, Qingdao 266071, China.
| |
Collapse
|
8
|
Van der Auwera A, Peeters L, Foubert K, Piazza S, Vanden Berghe W, Hermans N, Pieters L. In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria. Pharmaceutics 2023; 15:pharmaceutics15041291. [PMID: 37111776 PMCID: PMC10146082 DOI: 10.3390/pharmaceutics15041291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Filipendula ulmaria (L.) Maxim. (Rosaceae) (meadowsweet) is widely used in phytotherapy against inflammatory diseases. However, its active constituents are not exactly known. Moreover, it contains many constituents, such as flavonoid glycosides, which are not absorbed, but metabolized in the colon by gut microbiota, producing potentially active metabolites that can be absorbed. The aim of this study was to characterize the active constituents or metabolites. (2) Methods: A F. ulmaria extract was processed in an in vitro gastrointestinal biotransformation model, and the metabolites were characterized using UHPLC-ESI-QTOF-MS analysis. In vitro anti-inflammatory activity was evaluated by testing the inhibition of NF-κB activation, COX-1 and COX-2 enzyme inhibition. (3) Results: The simulation of gastrointestinal biotransformation showed a decrease in the relative abundance of glycosylated flavonoids such as rutin, spiraeoside and isoquercitrin in the colon compartment, and an increase in aglycons such as quercetin, apigenin, naringenin and kaempferol. The genuine as well as the metabolized extract showed a better inhibition of the COX-1 enzyme as compared to COX-2. A mix of aglycons present after biotransformation showed a significant inhibition of COX-1. (4) Conclusions: The anti-inflammatory activity of F. ulmaria may be explained by an additive or synergistic effect of genuine constituents and metabolites.
Collapse
Affiliation(s)
- Anastasia Van der Auwera
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Stefano Piazza
- Laboratory of Pharmacognosy, Department of Pharmacological and Biomolecular Sciences, University of Milan, 20134 Milan, Italy
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
9
|
De S, Paul S, Manna A, Majumder C, Pal K, Casarcia N, Mondal A, Banerjee S, Nelson VK, Ghosh S, Hazra J, Bhattacharjee A, Mandal SC, Pal M, Bishayee A. Phenolic Phytochemicals for Prevention and Treatment of Colorectal Cancer: A Critical Evaluation of In Vivo Studies. Cancers (Basel) 2023; 15:993. [PMID: 36765950 PMCID: PMC9913554 DOI: 10.3390/cancers15030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samhita De
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Sourav Paul
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | - Anirban Manna
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | | | - Koustav Pal
- Jawaharlal Institute Post Graduate Medical Education and Research, Puducherry 605 006, India
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Vinod Kumar Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Anantapur 515 721, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology, Chennai 600 036, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
10
|
Han X, Li M, Sun L, Liu X, Yin Y, Hao J, Zhang W. p-Hydroxybenzoic Acid Ameliorates Colitis by Improving the Mucosal Barrier in a Gut Microbiota-Dependent Manner. Nutrients 2022; 14:nu14245383. [PMID: 36558542 PMCID: PMC9784546 DOI: 10.3390/nu14245383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by intestinal inflammatory cell infiltration and intestinal mucosal damage. The mechanism by which diet contributes to the pathogenesis of IBD remains largely unknown. In this study, we explored the therapeutic effect of p-hydroxybenzoic acid (HA), a phenolic acid mainly derived from dietary polyphenols in the gut, on DSS-induced colitis. HA intervention effectively relieved the dextran sulfate sodium salt (DSS)-induced colitis, reduced inflammation, and enhanced mucosal barrier function, as evidenced by an increment of goblet cell numbers and MUC2. These effects were largely dependent on the gut microbiota (GM), as antibiotics treatment substantially attenuated the improvement of colitis by HA. On the other hand, transplantation of GM from colitis mice treated with HA significantly reduced the colitis induced by DSS. Our study demonstrates that HA ameliorates DSS-induced colitis by improving the mucosal barrier in a GM-dependent manner. This study provides new dietary choices for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xue Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Miaomiao Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (J.H.); (W.Z.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (J.H.); (W.Z.)
| |
Collapse
|
11
|
Napoli E, Ruberto G, Carrubba A, Sarno M, Muscarà C, Speciale A, Cristani M, Cimino F, Saija A. Phenolic Profiles, Antioxidant and Anti-Inflammatory Activities of Hydrodistillation Wastewaters from Five Lamiaceae Species. Molecules 2022; 27:molecules27217427. [PMID: 36364258 PMCID: PMC9656622 DOI: 10.3390/molecules27217427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Distillation is the most widely used method to obtain an essential oil from plant material. The biomass used in the process is returned as a solid residue together with variable amounts of water rich in water-soluble compounds, which currently are not addressed to any further application. The scope of this work was to evaluate the phytochemical composition of wastewaters coming from hydrodistillation (DWWs) of five aromatic plants belonging to the Lamiaceae family, and to assess their in vitro antioxidant and anti-inflammatory activities. The phenolic profiles of the DWWs were determined by HPLC-DAD and HPLC-ESI/MS. Free radical scavenging ability, oxygen radical antioxidant capacity and superoxide dismutase mimetic activity of the samples under study were measured. Moreover, to investigate the anti-inflammatory activity of the DWWs, an in vitro experimental model of intestinal inflammation was used. The DWW samples’ phytochemical analysis allowed the identification of 37 phenolic compounds, all exhibiting good antioxidant and anti-inflammatory activity. Our study contributes to the knowledge on the polyphenolic composition of the DWWs of five aromatic plants of the Lamiaceae family. The results highlight the presence of compounds with proven biological activity, and therefore of great interest in the pharmaceutical and nutraceutical fields.
Collapse
Affiliation(s)
- Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
- Correspondence: (E.N.); (F.C.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Alessandra Carrubba
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Build 4, Entr. L, 90128 Palermo, Italy
| | - Mauro Sarno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Build 4, Entr. L, 90128 Palermo, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.N.); (F.C.)
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
12
|
Vingrys K, Mathai M, Ashton JF, Stojanovska L, Vasiljevic T, McAinch AJ, Donkor ON. The effect of malting on phenolic compounds and radical scavenging activity in grains and breakfast cereals. J Food Sci 2022; 87:4188-4202. [PMID: 35998111 DOI: 10.1111/1750-3841.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Breakfast cereals are popular grain foods and sources of polyphenols. Malting alters polyphenol content and activity; however, effects are varied. The total polyphenol content (TPC), radical scavenging activity (RSA), and polyphenol profile were analyzed in unmalted and malted grains (wheat, barley, and sorghum) and breakfast cereals (wheat, barley) by Folin Ciocalteu Reagent (FCR), % inhibition of the free radical 2,2-diphenyl-1-picryl-hydrazyl, and high performance liquid chromatography. Higher TPC was observed in all malted grains and breakfast cereals compared with unmalted samples (p < 0.05). Higher RSA was also observed in all malted samples compared to unmalted samples (p < 0.05) except for wheat grain to malted wheat grain. In this study, malting induced additional polyphenols and antioxidant activity in grains and cereal products. Malted grain breakfast cereals may be practical sources of polyphenol antioxidants. PRACTICAL APPLICATION: This study utilized malting in a unique way to investigate potential health benefits of polyphenols and antioxidant activity in grains (wheat, barley, and sorghum) and ready-to-eat breakfast cereals (wheat and barley). This study found that grains and breakfast cereals are important sources of antioxidant polyphenols, and these were significantly increased in malted varieties. Understanding this is important as grains and breakfast cereals are widely consumed staple foods. Consuming healthier grain products may be a practical strategy in reducing the risk of noncommunicable diseases such as colorectal cancer and type-2 diabetes, where wholegrain consumption may be important in prevention.
Collapse
Affiliation(s)
- Kristina Vingrys
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,First Year College, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - John F Ashton
- Sanitarium Development and Innovation, Cooranbong, NSW, Australia
| | - Lily Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Todor Vasiljevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Osaana N Donkor
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Kreuzer K, Reiter A, Birkl-Töglhofer AM, Dalkner N, Mörkl S, Mairinger M, Fleischmann E, Fellendorf F, Platzer M, Lenger M, Färber T, Seidl M, Birner A, Queissner R, Mendel LMS, Maget A, Kohlhammer-Dohr A, Häussl A, Wagner-Skacel J, Schöggl H, Amberger-Otti D, Painold A, Lahousen-Luxenberger T, Leitner-Afschar B, Haybaeck J, Habisch H, Madl T, Reininghaus E, Bengesser S. The PROVIT Study-Effects of Multispecies Probiotic Add-on Treatment on Metabolomics in Major Depressive Disorder-A Randomized, Placebo-Controlled Trial. Metabolites 2022; 12:770. [PMID: 36005642 PMCID: PMC9414726 DOI: 10.3390/metabo12080770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
The gut-brain axis plays a role in major depressive disorder (MDD). Gut-bacterial metabolites are suspected to reduce low-grade inflammation and influence brain function. Nevertheless, randomized, placebo-controlled probiotic intervention studies investigating metabolomic changes in patients with MDD are scarce. The PROVIT study (registered at clinicaltrials.com NCT03300440) aims to close this scientific gap. PROVIT was conducted as a randomized, single-center, double-blind, placebo-controlled multispecies probiotic intervention study in individuals with MDD (n = 57). In addition to clinical assessments, metabolomics analyses (1H Nuclear Magnetic Resonance Spectroscopy) of stool and serum, and microbiome analyses (16S rRNA sequencing) were performed. After 4 weeks of probiotic add-on therapy, no significant changes in serum samples were observed, whereas the probiotic groups' (n = 28) stool metabolome shifted towards significantly higher concentrations of butyrate, alanine, valine, isoleucine, sarcosine, methylamine, and lysine. Gallic acid was significantly decreased in the probiotic group. In contrast, and as expected, no significant changes resulted in the stool metabolome of the placebo group. Strong correlations between bacterial species and significantly altered stool metabolites were obtained. In summary, the treatment with multispecies probiotics affects the stool metabolomic profile in patients with MDD, which sets the foundation for further elucidation of the mechanistic impact of probiotics on depression.
Collapse
Affiliation(s)
- Kathrin Kreuzer
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexandra Reiter
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Anna Maria Birkl-Töglhofer
- Neuropathology and Molecular Pathology, Institute for Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Nina Dalkner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Sabrina Mörkl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Marco Mairinger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Eva Fleischmann
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Frederike Fellendorf
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Martina Platzer
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Melanie Lenger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Tanja Färber
- Institute for Psychology, Otto Friedrich University of Bamberg, 96047 Bamberg, Germany
| | - Matthias Seidl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Armin Birner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Robert Queissner
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Lilli-Marie Stefanie Mendel
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexander Maget
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Alfred Häussl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Jolana Wagner-Skacel
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Helmut Schöggl
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Daniela Amberger-Otti
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Annemarie Painold
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Theresa Lahousen-Luxenberger
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Brigitta Leitner-Afschar
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Johannes Haybaeck
- Neuropathology and Molecular Pathology, Institute for Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Division for Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Division for Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Eva Reininghaus
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| | - Susanne Bengesser
- Psychosomatics and Psychotherapy Clinical Department of Psychiatry and Psychotherapeutic Medicine, University Hospital for Psychiatry, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
14
|
Xiang Z, Chen Y, Qiu J. An integrated chemical analysis and network pharmacology approach to identify quality markers of Actinidia eriantha Benth radix on gastric cancer. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:851-868. [PMID: 35570754 DOI: 10.1002/pca.3134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Actinidia eriantha Benth radix (AEBR) is one of the most commonly used medicines by the She people in China, used primarily for the treatment of tumours of the digestive tract. There is currently limited to no data on the quality control of AEBR. OBJECTIVES The aim of this study was to identify quality markers of AEBR. MATERIAL AND METHODS An ultra-performance lquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method was used to identify and analyse the components of AEBR from water extracts. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was also established for the simultaneous determination of 13 active components in the water extracts. The network pharmacology method was used to screen for quality markers of AEBR in gastric cancer. RESULTS This study tentatively identified 199 chemical constituents and isomers, including 67 pentacyclic triterpenoids, 20 flavonoids, 39 phenolic acids, 18 coumarins, and other compounds. The 13 active components in the water extracts were successfully determined using a validated UPLC-MS/MS method. Based on the network pharmacology method, four compounds were selected as quality markers of AEBR. CONCLUSION This study provides an important reference for the quality control of AEBR. Chemical analysis combined with network pharmacology provides an effective strategy for the discovery of quality markers in traditional Chinese/herb medicine.
Collapse
Affiliation(s)
- Zheng Xiang
- Medical School, Zhejiang University City College, Hangzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jieying Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Liu Y, Li BG, Su YH, Zhao RX, Song P, Li H, Cui XH, Gao HM, Zhai RX, Fu XJ, Ren X. Potential activity of Traditional Chinese Medicine against Ulcerative colitis: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115084. [PMID: 35134488 DOI: 10.1016/j.jep.2022.115084] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 05/25/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Plant materials are used as complementary and alternative therapies all over the world for the treatment of various diseases. Ulcerative colitis (UC), a chronic nonspecific inflammatory bowel disease listed as one of the modern refractory diseases by the World Health Organization, has a long course, is challenging to cure, and is prone to cause cancer. Recent years have witnessed a growing trend of applying traditional Chinese medicine (TCM) to UC. AIM OF THIS REVIEW This review presents an overview of the pathogenesis of UC and reports the therapeutic effect of TCM on UC (including TCM prescriptions, single TCM, and treatments using TCM ingredients) to provide a theoretical basis for the use of TCM in treating UC. METHODS We performed a collection and collation of relevant scientific articles from different scientific databases regarding TCM and its usefulness in treating UC. In this paper, the therapeutic effect of TCM is summarized and analyzed according to the existing experimental and clinical research. RESULTS There are positive signs that TCM primarily regulates inflammatory cytokines, intestinal flora, and the immune system, and also protects the intestinal mucosa. Hence, it can play a role in treating UC. CONCLUSION TCM has a definite curative effect in the treatment of UC. It can alleviate and treat UC in a variety of ways. We should take syndrome differentiation and treatment differentiation as the basis. With the help of modern medicine, TCM's clinical curative effects can be enhanced for the treatment of UC.
Collapse
Affiliation(s)
- Yang Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bao-Guo Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yu-Hua Su
- Department of Immunology and Rheumatology, Affiliated Hospital of Weifang Medical College, Weifang, 261000, China
| | - Ruo-Xi Zhao
- TCM Specialty Class 4, 2018, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peng Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hui Li
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xin-Hai Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hong-Mei Gao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China
| | - Run-Xiang Zhai
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xia Ren
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
16
|
Ogut E, Armagan K, Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 2022; 37:859-880. [PMID: 35334041 DOI: 10.1007/s11011-022-00960-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
Hundreds of millions of people are influenced by neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), traumatic disorders of the nervous system, dementia, and various neurological disorders. Syringic acid (SA) is a natural phenolic compound that is found in medicinal herbs and dietary plants. The therapeutic potential of SA is due to its anti-oxidative, chemoprotective, anti-angiogenic, anti-glycating, anti-proliferative, anti-hyperglycaemic, anti-endotoxic, anti-microbial, anti-inflammatory, anti-diabetic and anti-depressant properties. However, in recent studies, its neuroprotective effect has drawn attention. The current review focuses on the neuroprotective bioactivities of SA and putative mechanisms of action. An electronic data search was performed using different search engines, and the relevant articles (with or without meta-analysis) with any language were selected. In the central and peripheral nervous system, SA has been shown a significant role in excitatory neurotransmitters and alleviate behavioral dysfunctions. The consensus of the literature search was that SA treatment may help neurological dysfunction or behavioral impairments management with antioxidant, anti-inflammatory properties. Furthermore, administration and proper dose of SA could be crucial factors for the effective treatment of neurological diseases.
Collapse
Affiliation(s)
- Eren Ogut
- Department of Anatomy, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Kutay Armagan
- Medical Faculty Student, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Zülfiye Gül
- Department of Pharmacology, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
17
|
Ogut E, Armagan K, Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 2022; 37:859-880. [DOI: https:/doi.org/10.1007/s11011-022-00960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 07/22/2023]
|
18
|
Wang N, Wu T, Du D, Mei J, Luo H, Liu Z, Saleemi MK, Zhang R, Chang C, Mehmood MA, Zhu H. Transcriptome and Gut Microbiota Profiling Revealed the Protective Effect of Tibetan Tea on Ulcerative Colitis in Mice. Front Microbiol 2022; 12:748594. [PMID: 35237238 PMCID: PMC8882814 DOI: 10.3389/fmicb.2021.748594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023] Open
Abstract
Traditionally, Ya’an Tibetan tea is routinely consumed by local people in the Tibet region. It is believed to possess promising anti-inflammatory benefits. This study was conducted to elucidate the protective impact of Tibetan tea extract (TTE) on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were split into four groups: control (C) group, Tibetan tea (T) group, DSS-induced model (CD) group, and Tibetan tea + DSS (TD) group. The intake of TTE significantly reduced the clinical symptoms of ulcerative colitis (UC) by alleviating the impact of cellular damage and reducing glandular hypertrophy and the infiltration of inflammatory cells. UC led to a prominent shift of the microbial communities in the gut. Interestingly, the beneficial microbes, such as Lactobacillus reuteri, Bifidobacterium choerinum, and Lactobacillus intestinalis, were significantly increased in TTE-treated mice when compared to any other experimental group. The transcriptome analysis revealed that the positive effect of TTE on UC could be attributed to changes in the G alpha (i) signaling pathway and the innate immune system. The genes related to inflammation and immune system pathways were differentially expressed in the TTE-treated group. Moreover, the relative expression of genes linked to the inflammatory TLR4/MyD88/NF-κB signaling pathway was significantly downregulated toward the level of normal control samples in the TD group. Overall, this study revealed the modulatory effect by which TTE reversed the development and severity of chronic colon damage.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Di Du
- Process Technology Department, ExxonMobil Research and Engineering, Annandale, NJ, United States
| | - Jie Mei
- Sichuan Jixiang Tea Co., Ltd., Ya’an, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Zishan Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | | | - Runhui Zhang
- Department of Veterinary Medicine, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Candace Chang
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Muhammad Aamer Mehmood
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Aamer Mehmood,
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
- Hui Zhu,
| |
Collapse
|
19
|
Ameliorative effects of standardized extract of Tamarix stricta Boiss. on acetic acid-induced colitis via modulating nitrergic pathways. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Xiang S, Xiao J. Protective effects of syringic acid on inflammation, apoptosis and intestinal barrier function in Caco-2 cells following oxygen-glucose deprivation/reoxygenation-induced injury. Exp Ther Med 2021; 23:66. [PMID: 34934437 PMCID: PMC8649867 DOI: 10.3892/etm.2021.10989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Syringic acid (SA) is an abundant phenolic acid compound that has been demonstrated to yield therapeutic benefits in myocardial and renal ischemia/reperfusion (I/R). However, the role of SA in intestinal I/R injury is unclear. Thus, the present study aimed to investigate the protective effect of SA against intestinal I/R injury. Caco-2 cells were incubated with different doses of SA before oxygen-glucose deprivation/reoxygenation (OGD/R) induction. The viability of Caco-2 cells, the activity of lactate dehydrogenase (LDH), the production of pro-inflammatory cytokines and the levels of reactive oxygen species, superoxide dismutase and malondialdehyde were measured. Apoptosis was evaluated using a TUNEL assay and western blotting. Transepithelial electrical resistance and western blotting were performed to evaluate intestinal barrier function in Caco-2 cells. The present study revealed that pretreatment with SA significantly increased cell viability and reduced LDH release in Caco-2 cells subjected to OGD/R treatment. In addition, SA suppressed OGD/R-induced inflammatory responses by reducing pro-inflammatory cytokine levels. Furthermore, the levels of oxidative stress and apoptosis were ameliorated by SA. SA also alleviated the intestinal barrier disruption exhibited by Caco-2 cells after OGD/R injury. Overall, the present study revealed that SA may potentially protect Caco-2 cells from OGD/R injury, and that this effect may be attributed to its anti-inflammatory and anti-apoptotic activities, as well as its ability to protect the function of the intestinal barrier.
Collapse
Affiliation(s)
- Sini Xiang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,General Practice, Xiacun Community Health Service Center, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| | - Jun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,General Practice, Liuxian Community Health Service Center, Shenzhen Nanshan Medical Group HQ, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
21
|
Zhang H, Ta N, Shen H, Wang H. Effects of Jian Pi Qing Chang Hua Shi decoction on mucosal injuries in a 2,4,6-trinitrobenzene sulphonic acid-induced inflammatory bowel disease rat model. PHARMACEUTICAL BIOLOGY 2021; 59:683-695. [PMID: 34110957 PMCID: PMC8204966 DOI: 10.1080/13880209.2021.1928240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Jian Pi Qing Chang Hua Shi decoction (JPQCHSD) has been considered as an effective remedy for the treatment of inflammatory bowel disease (IBD) in Chinese traditional medicine. OBJECTIVE We evaluated the efficacy of JPQCHSD on 2-4-6-trinitrobenzene sulphonic acid (TNBS)-induced IBD rats and the responsible mechanisms. MATERIALS AND METHODS Except the rats of the control group (50% ethanol), Sprague-Dawley rats (180 ± 20 g) induced by TNBS (150 mg/kg in 50% ethanol), received water extract of JPQCHSD daily at 0, 9.5, 19, or 38 g/kg for 12 days. The rats were sacrificed, and their colons were removed to evaluate the disease activity index. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), immunoglobulin A (IgA), tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and nuclear factor-κB were evaluated. RESULTS JPQCHSD extract significantly reduced the disease activity index of TNBS-induced colitis with a median effective dose (ED50) of 26.93 g/kg. MPO and MDA were significantly reduced in the 19 and 38 g/kg groups (ED50 values 37.38 and 53.2 g/kg, respectively). The ED50 values for the increased SOD and IgA were 48.98 and 56.3 g/kg. ED50 values for inhibition of TNF-α, IL-1β, and IL-6 were 32.66, 75.72, and 162.06 g/kg, respectively. DISCUSSION JPQCHSD promoted mucosal healing in IBD rats via its anti-inflammation, immune regulation, and antioxidation properties. CONCLUSIONS JPQCHSD has healing function on IBD. Further clinical trials are needed to demonstrate its efficacy and tolerance to IBD.
Collapse
Affiliation(s)
- Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Na Ta
- Center Hospital of Beijing Daxing District Caiyu Town, Beijing, China
| | - Hong Shen
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine Yanqing Hospital, Beijing, China
| |
Collapse
|
22
|
Güzelad Ö, Özkan A, Parlak H, Sinen O, Afşar E, Öğüt E, Yıldırım FB, Bülbül M, Ağar A, Aslan M. Protective mechanism of Syringic acid in an experimental model of Parkinson’s disease. Metab Brain Dis 2021; 36:1003-1014. [DOI: https:/doi.org/10.1007/s11011-021-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/23/2021] [Indexed: 07/22/2023]
|
23
|
Güzelad Ö, Özkan A, Parlak H, Sinen O, Afşar E, Öğüt E, Yıldırım FB, Bülbül M, Ağar A, Aslan M. Protective mechanism of Syringic acid in an experimental model of Parkinson's disease. Metab Brain Dis 2021; 36:1003-1014. [PMID: 33666819 DOI: 10.1007/s11011-021-00704-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a widely used chemical to model Parkinson's disease (PD) in rats. Syringic acid (SA) is a polyphenolic compound which has antioxidant and anti-inflammatory properties. The present study aimed to evaluate the neuroprotective role of SA in a rat model of 6-OHDA-induced PD. Parkinson's disease was created by injection of 6-OHDA into the medial forebrain bundle via stereotaxic surgery. Syringic acid was administered daily by oral gavage, before or after surgery. All groups were tested for locomotor activity, rotarod performance and catatony. Dopamine levels in SN were determined by an optimized multiple reaction monitoring method using ultra-fast liquid chromatography coupled with tandem mass spectrometry (MS/MS). The immunoreactivities for tyrosine hydroxylase (TH) and inducible nitric oxide synthase (iNOS) were detected by immunohistochemistry in frozen substantia nigra (SN) sections. Nitrite/nitrate levels, iNOS protein, total oxidant (TOS) and total antioxidant (TAS) status were assayed in SN tissue by standard kits. Motor dysfunction, impaired nigral dopamine release, increased iNOS expression and elevated nitrite/nitrate levels induced by 6-OHDA were significantly restored by SA treatment. Syringic acid significantly improved the loss of nigral TH-positive cells, while increasing TAS capacity and reducing TOS capacity in SN of PD rats. These data conclude that SA is a potential therapeutic agent for the treatment of 6-OHDA-induced rat model of PD. Syringic acid reduced the progression of PD via its neuroprotective, antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Özge Güzelad
- Department of Anatomy, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Ayşe Özkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Hande Parlak
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Ebru Afşar
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Eren Öğüt
- Department of Anatomy, School of Medicine, Bahçeşehir University, 34734, İstanbul, Turkey
| | - Fatoş Belgin Yıldırım
- Department of Anatomy, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Aysel Ağar
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Mutay Aslan
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey.
- Department of Medical Biochemistry, Akdeniz University Medical School, 07070, Antalya, Turkey.
| |
Collapse
|
24
|
Hossen I, Hua W, Mehmood A, Raka RN, Jingyi S, Jian-Ming J, Min X, Shakoor A, Yanping C, Wang C, Junsong X. Glochidion ellipticum Wight extracts ameliorate dextran sulfate sodium-induced colitis in mice by modulating nuclear factor kappa-light-chain-enhancer of activated B cells signalling pathway. J Pharm Pharmacol 2021; 73:410-423. [PMID: 33793884 DOI: 10.1093/jpp/rgaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Glochidion ellipticum Wight is a medicinal plant, rich in polyphenols, frequently used by the indigenous communities of Bangladesh and possess with multiple health benefits. It exerts anti-inflammatory and antidiarrheal properties, but the detailed chemical constituents are yet to be elucidated. METHODS Glochidion ellipticum extracts were analyzed using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry and then tested by both lipopolysaccharide (LPS) induced inflammation of Raw 264.7 macrophage cells and dextran sulfate sodium (DSS) induced acute colitis model. Blood serum was taken for fluorescein isothiocyanate-dextran (FITC-dextran) measurement and tissue samples were used to perform histology, RT-PCR and Western blotting. KEY FINDINGS The extracts could lower the levels of nitric oxide (NO), reactive oxygen species (ROS) and pro-inflammatory cytokines significantly in LPS induced macrophage cells. The extracts could also reduce disease activity index (DAI) score, restore antioxidants and pro-oxidants and improve macroscopic and microscopic features of colonic tissues in DSS induced mice. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in protein level was markedly diminished (up to 51.21% and 71.11%, respectively) in the treatment groups compared to the model group of colitic mice. CONCLUSIONS Our findings suggested that G. ellipticum extracts ameliorate DSS colitis via blocking nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, which make them to be potential candidates for further research against inflammation and colitis.
Collapse
Affiliation(s)
- Imam Hossen
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Wu Hua
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Arshad Mehmood
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Song Jingyi
- Beijing Technology and Business University, Beijing, China
| | - Jin Jian-Ming
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xu Min
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Ashbala Shakoor
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Cao Yanping
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Chengtao Wang
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Xiao Junsong
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| |
Collapse
|
25
|
Javed F, Jabeen Q. Salsola imbricata Forssk. ameliorates acetic acid-induced inflammatory bowel disease by modulating dysregulated antioxidant enzyme system and cytokine signaling pathways in mice. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.331268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Anti-Inflammatory Effects of Asian Fawn Lily ( Erythronium japonicum) Extract on Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Nutrients 2020; 12:nu12123809. [PMID: 33322645 PMCID: PMC7764803 DOI: 10.3390/nu12123809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is associated with an increased risk of depression. Lipopolysaccharide (LPS) treatment is known to induce pro-inflammatory cytokine secretion and a depressive-like phenotype in mice. Although Erythronium japonicum exhibits various health benefits, the role of E. japonicum extract (EJE) in inflammation-associated depression is unknown. This study aimed to explore the anti-inflammatory effect of EJE on LPS-induced depressive symptoms in mice using the open field test (OFT), passive avoidance test (PAT), tail suspension test (TST), and forced swim test (FST). LPS-treated mice had significantly increased immobility time in the TST and FST, decreased step-through latency time in the PAT, and decreased locomotor activity in the OFT. However, administration of 100 and 300 mg/kg of EJE significantly improved these depressive-like behaviors. EJE also prevented the increase in mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1), and the decrease in IL-10 levels by inhibiting nuclear factor-κB (NF-κB) subunit p65 phosphorylation. Additionally, LPS-treated mice showed markedly decreased brain-derived neurotrophic factor (BDNF) levels and phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt, while EJE treatment significantly increased these levels in the hippocampus. These results suggest that EJE ameliorated LPS-induced depressive-like behavior by reducing LPS-induced neuroinflammation and activating the BDNF-PI3K/Akt pathway.
Collapse
|
27
|
Aybeke M. Aspergillus alliaceus infection fatally shifts Orobanche hormones and phenolic metabolism. Braz J Microbiol 2020; 51:883-892. [PMID: 32363566 DOI: 10.1007/s42770-020-00283-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022] Open
Abstract
In this study, the physio pathological effects of Aspergillus alliaceus (Aa, fungi, biocontrol agent) on Orobanche (parasitic plant) were investigated by hormone and phenolic substance tests. In experimental group, Orobanches were treated with the fungi, considering control group was fungus-free. Based on the hormonal tests, in the experimental group, salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) levels significantly decreased, and only indole acetic acid (IAA) hormone levels were fairly higher than the control group. According to phenolic substance tests, it was found that only gallic acid, syringic acid and caffeic acid values significantly increased compared with control, and catechin and p-coumaric acid values were significantly lower. Consequently, it was determined that Aa pathogenesis (1) considerably reduces the effects of all defence hormones (JA, ABA, SA), (2) operates an inadequate defence based solely on the IAA hormone and several phenolic substances (gallic acid, syringic acid and caffeic acid), (3) and inevitably the fungi lead the Orobanche to a slow and continuous death. The results were evaluated in detail in the light of similar recent article and current literature in terms of biocontrol and pathology.
Collapse
Affiliation(s)
- Mehmet Aybeke
- Faculty of Science, Department of Biology, Balkan Campus, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
28
|
Lu PD, Zhao YH. Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chin Med 2020; 15:15. [PMID: 32063999 PMCID: PMC7011253 DOI: 10.1186/s13020-020-0296-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a kind of multi-functional nuclear transcription factor involved in regulating gene transcription to influence pathological evolution of inflammatory and immune diseases. Numerous literature evidence that NF-κB pathway plays an essential role in pathogenic development of ulcerative colitis (UC). UC is a chronic non-specific inflammatory bowel disease, and until now, therapeutic agents for UC including aminosalicylates, corticosteroids and immune inhibitors still cannot exert satisfied effects on patients. In recent years, Chinese medicines suggest the advantages of alleviating symptoms and signs, decreasing side-effects and recurrence, whose one of mechanisms is related to regulation of NF-κB pathway. In this review, we categorize Chinese medicines according to their traditional therapeutic functions, and summarize the characteristics of Chinese medicines targeting NF-κB pathway in UC treatment. It indicates that 85 kinds of Chinese medicines’ compounds and formulae can directly act on NF-κBp65; while 58 Chinese medicines’ ingredients and formulae indirectly suppress NF-κBp65 by regulation of its upstream or other related pathways. Moreover, by the analysis of Chinese medicines’ category based on their traditional functions, we conclude the category of dampness-drying and detoxificating medicine targeting NF-κB pathway accounts for primary status for amelioration of UC. Simultaneously, this review also contributes to the choices of Chinese medicine category and provides curative potential of Chinese medicines for clinical UC treatment.
Collapse
Affiliation(s)
- Peng-De Lu
- 1School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Hua Zhao
- 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao, Special Administrative Region of China
| |
Collapse
|
29
|
Maurer LH, Cazarin CBB, Quatrin A, Nichelle SM, Minuzzi NM, Teixeira CF, Manica da Cruz IB, Maróstica Júnior MR, Emanuelli T. Dietary fiber and fiber-bound polyphenols of grape peel powder promote GSH recycling and prevent apoptosis in the colon of rats with TNBS-induced colitis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|