1
|
Iqbal A, Ashraf M, Ashok AK, Kaouche FC, Bashir B, Qadir A, Riaz N. Exploration of 4-tolyl-5-(p-tolyloxymethyl)-4H-1,2,4-triazole thioethers as potent 15-LOX inhibitors supported by in vitro, in silico, MD simulation and DNA binding studies. J Mol Struct 2025; 1321:139963. [DOI: 10.1016/j.molstruc.2024.139963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Lavrentaki V, Kousaxidis A, Theodosis-Nobelos P, Papagiouvannis G, Koutsopoulos K, Nicolaou I. Design, synthesis, and pharmacological evaluation of indazole carboxamides of N-substituted pyrrole derivatives as soybean lipoxygenase inhibitors. Mol Divers 2024; 28:3757-3782. [PMID: 38145424 DOI: 10.1007/s11030-023-10775-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
In this paper, we attempted to develop a novel class of compounds against lipoxygenase, a key enzyme in the biosynthesis of leukotrienes implicated in a series of inflammatory diseases. Given the absence of appropriate human 5-lipoxygenase crystallographic data, solved soybean lipoxygenase-1 and -3 structures were used as a template to generate an accurate pharmacophore model which was further used for virtual screening purposes. Eight compounds (1-8) have been derived from the in-house library consisting of N-substituted pyrroles conjugated with 5- or 6-indazole moieties through a carboxamide linker. This study led to the discovery of hit molecule 8 bearing a naphthyl group with the IC50 value of 22 μM according to soybean lipoxygenase in vitro assay. Isosteric replacement of naphthyl ring with quinoline moieties and reduction of carbonyl carboxamide group resulted in compounds 9-12 and 13, respectively. Compound 12 demonstrated the most promising enzyme inhibition. In addition, compounds 8 and 12 were found to reduce the carrageenan-induced paw edema in vivo by 52.6 and 49.8%, respectively. In view of the encouraging outcomes concerning their notable in vitro and in vivo anti-inflammatory activities, compounds 8 and 12 could be further optimized for the discovery of novel 5-lipoxygenase inhibitors in future.
Collapse
Affiliation(s)
- Vasiliki Lavrentaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonios Kousaxidis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036, Nicosia, Cyprus
| | | | - Ioannis Nicolaou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
3
|
Citarella A, Vittorio S, Dank C, Ielo L. Syntheses, reactivity, and biological applications of coumarins. Front Chem 2024; 12:1362992. [PMID: 38440776 PMCID: PMC10909861 DOI: 10.3389/fchem.2024.1362992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).
Collapse
Affiliation(s)
- Andrea Citarella
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Aliabadi A, Khanniri E, Mahboubi-Rabbani M, Bayanati M. Dual COX-2/15-LOX inhibitors: A new avenue in the prevention of cancer. Eur J Med Chem 2023; 261:115866. [PMID: 37862815 DOI: 10.1016/j.ejmech.2023.115866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Dual cyclooxygenase 2/15-lipoxygenase inhibitors constitute a valuable alternative to classical non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 (cyclooxygenase-2) inhibitors for the treatment of inflammatory diseases, as well as preventing the cancer. Indeed, these latter present diverse side effects, which are reduced or absent in dual-acting agents. In this review, COX-2 and 15-LOX (15-lipoxygenase) pathways are first described in order to highlight the therapeutic interest of designing such compounds. Various structural families of dual inhibitors are illustrated. This study discloses various structural families of dual 15-LOX/COX-2 inhibitors, thus pave the way to design potentially-active anticancer agents with balanced dual inhibition of these enzymes.
Collapse
Affiliation(s)
- Ali Aliabadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Khanniri
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Bayanati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Bashir B, Riaz N, Abida Ejaz S, Saleem M, Ashraf M, Iqbal A, Muzaffar S, Ejaz S, Aziz-Ur-Rehman, Mohammad Kashif Mahmood H, Bhattarai K. Assessing p-tolyloxy-1,3,4-oxadiazole acetamides as lipoxygenase inhibitors assisted by in vitro and in silico studies. Bioorg Chem 2022; 129:106144. [PMID: 36116325 DOI: 10.1016/j.bioorg.2022.106144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
The underlying correlation between the inflammation, innate immunity and cancer is extensively familiar and linked through a process mediated by three enzymes; cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP450). The ever increase in the reported side effects of the antiinflammatory drugs against the targeted enzymes and the resistance developed afterwards compels the researchers to synthesize new effective molecules with safer profile. On the basis of these facts, our ongoing research on 1,3,4-oxadiazole derivatives deals with the synthesis of a new series of N-alkyl/aralky/aryl derivatives of 5-((p-tolyloxymethyl)-4H-1,3,4-oxadiazole-2-ylthio)acetamide (6a-o) which were developed by the sequential conversion of p-tolyloxyacetic acid (a) into ester (1) hydrazide (2) and 5-(p-tolyloxymethyl)-4H-1,3,4-oxadiazole-2-thiol (3). The designed compounds (6a-o) were acquired by the reaction of 1,3,4-oxadiazole (3) with numerous electrophiles (5a-o) in KOH. The synthesized analogues (6a-o) were characterized by FTIR, 1H-, 13C NMR spectroscopy, EI-MS and HR-EI-MS spectrometry, and were further assessed for their inhibitory potential against the soybean 15-LOX enzyme. The results showed excellent inhibitory potential of the compounds against the said enzyme, specifically 6o, 6b, 6n and 6e with inhibitory values (IC50 ± SEM) of 21.5 ± 0.76, 24.3 ± 0.45, 29.1 ± 0.65 and 31.3 ± 0.78 µM, respectively. These compounds displayed < 55 % blood mononuclear cells (MNCs) cellular viability as measured by MTT assay at 0.25 mM concentration. Other compounds demonstrated moderate inhibitory activities with IC50 values in the range of 33.2 ± 0.78 to 96.3 ± 0.73 µM and exhibited little cellular viability against MNCs except 6i, 6j, 6 m and 6 k that showed 61-79 % cellular viability. It was observed that most of the compounds (6o, 6b, 6n, 6e) were found more toxic towards MNCs at studied concentration of 0.25 mM. SAR studies revealed that the positions and nature of substituents accompanying phenyl ring have great influence on 15-LOX inhibitory activity. In the most active compound 6o, the amino acids Asp768 and Val126 were involved in hydrogen bonding, Thr529 was linked with π-anion interaction and π-sulphur interaction was displayed with Tyr525 and two π-alkyl interactions were formed with the benzene ring and amino acid residues Pro530 and Arg533. The in silico pharmacokinetics profiles and density functional theory calculations of the compounds further supported the in vitro findings. Further work on the synthesis of more oxadiazole derivatives is in progress in search for potential 'leads' for the drug discovery as LOX inhibitors.
Collapse
Affiliation(s)
- Bushra Bashir
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ambar Iqbal
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Saima Muzaffar
- Department of Chemistry, Division of Sceience and Technology, University of Education, 54770, Lahore, Vehari Campus, Pakistan.
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Aziz-Ur-Rehman
- Department of Chemistry, Government College University Lahore, Lahore 54000, Pakistan
| | - Hafiz Mohammad Kashif Mahmood
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Auf der Morgenstelle 8, 72076, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Katopodi A, Tsotsou E, Iliou T, Deligiannidou GE, Pontiki E, Kontogiorgis C, Tsopelas F, Detsi A. Synthesis, Bioactivity, Pharmacokinetic and Biomimetic Properties of Multi-Substituted Coumarin Derivatives. Molecules 2021; 26:5999. [PMID: 34641543 PMCID: PMC8512853 DOI: 10.3390/molecules26195999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
A series of novel multi-substituted coumarin derivatives were synthesized, spectroscopically characterized, and evaluated for their antioxidant activity, soybean lipoxygenase (LOX) inhibitory ability, their influence on cell viability in immortalized human keratinocytes (HaCaT), and cytotoxicity in adenocarcinomic human alveolar basal epithelial cells (A549) and human melanoma (A375) cells, in vitro. Coumarin analogues 4a-4f, bearing a hydroxyl group at position 5 of the coumarin scaffold and halogen substituents at the 3-phenyl ring, were the most promising ABTS•+ scavengers. 6,8-Dibromo-3-(4-hydroxyphenyl)-4-methyl-chromen-2-one (4k) and 6-bromo-3-(4,5-diacetyloxyphenyl)-4-methyl-chromen-2-one (3m) exhibited significant lipid peroxidation inhibitory activity (IC50 36.9 and 37.1 μM). In the DCF-DA assay, the 4'-fluoro-substituted compound 3f (100%), and the 6-bromo substituted compounds 3i (80.9%) and 4i (100%) presented the highest activity. The 3'-fluoro-substituted coumarins 3e and 4e, along with 3-(4-acetyloxyphenyl)-6,8-dibromo-4-methyl-chromen-2-one (3k), were the most potent lipoxygenase (LOX) inhibitors (IC50 11.4, 4.1, and 8.7 μM, respectively) while displaying remarkable hydroxyl radical scavenging ability, 85.2%, 100%, and 92.9%, respectively. In silico docking studies of compounds 4e and 3k, revealed that they present allosteric interactions with the enzyme. The majority of the analogues (100 μΜ) did not affect the cell viability of HaCaT cells, though several compounds presented over 60% cytotoxicity in A549 or A375 cells. Finally, the human oral absorption (%HOA) and plasma protein binding (%PPB) properties of the synthesized coumarins were also estimated using biomimetic chromatography, and all compounds presented high %HOA (>99%) and %PPB (60-97%) values.
Collapse
Affiliation(s)
- Annita Katopodi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.K.); (E.T.)
| | - Evangelia Tsotsou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.K.); (E.T.)
- Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece;
| | - Triantafylia Iliou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (T.I.); (G.-E.D.); (C.K.)
| | - Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (T.I.); (G.-E.D.); (C.K.)
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (T.I.); (G.-E.D.); (C.K.)
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece;
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (A.K.); (E.T.)
| |
Collapse
|
8
|
Fiorito S, Epifano F, Marchetti L, Genovese S. Semisynthesis of Selenoauraptene. Molecules 2021; 26:molecules26092798. [PMID: 34068532 PMCID: PMC8126015 DOI: 10.3390/molecules26092798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Selenium-containing compounds are gaining more and more interest due to their valuable and promising pharmacological properties, mainly as anticancer and antioxidant agents. Ebselen, the up to now only approved drugs, is well known to possess very good glutathione peroxidase mimicking effects. To date, the most of efforts have been directed to build pure synthetic Se containing molecules, while less attention have been devoted to Se-based semisynthetic products resembling natural compounds like terpenes, polyphenols, and alkaloids. The aim of this short communication is to report the synthesis of the first example of a Se-phenylpropanoids, namely selenoauraptene, containing a selenogeranyl side chain in position 7 of the umbelliferone core. The key step was the Newman-Kwart rearrangement to obtain a selenocarbamate in which the Se atom was directly attached to umbelliferone (replacing its 7-OH function) followed by hydrolysis to get diumbelliferyl diselenide, which was finally easily converted to the desired Se-geranyl derivative in quite a good overall yield (28.5%). The synthesized adduct displayed a greater antioxidant and a radical scavenger in vitro activity than parent auraptene. The procedure we describe herein, to the best of our knowledge for the first time in the literature, represents an easy-to-handle method for the synthesis of a wide array of seleno analogues of naturally occurring biologically active oxyprenylated secondary metabolites.
Collapse
|