1
|
Al-Karmalawy AA, Elmaaty AA, Magdy G, Radwan AS, Alnajjar R, Shaldam MA, Al Khatib AO, Almujri SS, Abdullah Alzahrani AY, Tawfik HO. Targeted synthesis of a trimethoxyphenyltetrahydropyrimidine analogue designed as a DNA intercalator: in silico, multi-spectroscopic, thermodynamic, and in vitro approaches. RSC Adv 2025; 15:14946-14965. [PMID: 40343313 PMCID: PMC12061050 DOI: 10.1039/d5ra02179k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Based on the rational design of DNA intercalators and Topo-II inhibitors and taking into consideration the main pharmacophoric features of doxorubicin (Dox) as a reference standard, we theoretically designed novel substituted tetrahydropyrimidine analogues (T1-35). The designed analogues (T1-35) were investigated for their inhibitory potential towards the hybrid DNA and Topo-II target receptor using molecular docking. Interestingly, the theoretically designed analogue T30 with a 3,4,5-trimethoxy phenyl side chain was found to be the superior candidate, achieving a binding score of -7.06 kcal mol-1, compared with two reference standards, doxorubicin (Dox) and a co-crystal ligand (EVP). Moreover, the docked candidates (T30, Dox, and EVP) were further subjected to molecular dynamics simulations for 500 ns. Furthermore, MM-GBSA calculations showed that the target candidate (T30) achieved superior ΔG binding energy (-33.86 kcal mol-1) compared with Dox and EVP. Moreover, T30 was found to be the most promising candidate that could be conveniently synthesized based on its order in the chemical synthesis scheme. In addition, to evaluate the antiproliferative activity and scope of compound T30, we requested the National Cancer Institute (NCI) to test it against nine cancer cell types. Interestingly, compound T30 exhibited very strong antiproliferative activity with a mean GI% of 122% and a mean GI50 of 4.10 μM. It exhibited the highest anticancer activity towards all 59 cell lines. Moreover, the in vitro binding interaction of compound T30 with calf thymus DNA (ctDNA) was examined using various techniques, such as spectrofluorimetry, UV-vis spectrophotometry, viscosity measurements, ionic strength measurements, and thermodynamics to confirm its mechanism of action. Investigating the intermolecular binding interaction between small compounds and DNA can provide valuable insights for designing drugs with enhanced effectiveness and improved targeted activities.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, East Port Said National University Port Said 42526 Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33511 Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University Gamasa 7731168 Egypt
| | - Aya Saad Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi 16063 Libya
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Arwa Omar Al Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University Amman Jordan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University Asir-Abha 61421 Saudi Arabia
| | | | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| |
Collapse
|
2
|
Salem MA, Abdel-Sattar E, Mandour AA, El-Shiekh RA. Machine learning tools for the characterization of bioactive metabolites derived from different parts of Ochrosia elliptica Labill. for the management of Alzheimer's disease. RSC Adv 2025; 15:10671-10690. [PMID: 40196831 PMCID: PMC11973551 DOI: 10.1039/d5ra00021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Currently, natural products are one of the most valuable resources for discovering novel chemical medicinal entities. A total of 41 compounds were tentatively identified from the stems, barks, roots, and fruits of Ochrosia elliptica Labill. using UPLC-MS/MS analysis. The binding affinities of these biomarkers for the active sites of acetyl- and butyryl-cholinesterase enzymes were further validated using molecular docking studies, which showed good results with (-)C-Docker interaction energy ranges of 30.17-86.73 and 26.81-72.42 (kcal mol-1), respectively. The most active predicted compound was a quercetin derivative [quercetin-3-O-rhamnosyl-(1-3)-rhamnosyl-(1-6)-hexoside, E = -86.73, -72.42 kcal mol-1], which was subjected to dynamic simulation studies against the two enzymes to investigate the stability of the docked conformation. Root-mean-square fluctuations (RMSFs) showed values of 0.25-4.0 and 0.50-4.75 compared to free-state protein RMSF values of 0.25-4.5 and 0.5-7.5, revealing stable fluctuations over time after docking of this compound to AChE and BChE active pockets, respectively. AI in pharmacology can significantly improve patient outcomes and advance healthcare. Ligand binding or catalytic sites for AzrBmH21, AzrBmH22/3, and AzrBmH24/5 were predicted using a machine learning algorithm based on the Prank Web and DeepSite chemoinformatics tools. These findings will establish a scientific foundation for further investigations into the Ochrosia genus, particularly in relation to Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Gamal Abd El Nasr St Shibin Elkom 32511 Menoufia Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University Kasr El Aini St, P. B. 11562 Cairo Egypt
| | - Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE) Cairo 11835 Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University Kasr El Aini St, P. B. 11562 Cairo Egypt
| |
Collapse
|
3
|
Shaaban S, Alabdali AYM, Mousa MHA, Ba-Ghazal H, Al-Faiyz YS, Elghamry I, Althikrallah HA, Khatib AOA, Alaasar M, Al-Karmalawy AA. Innovative Multitarget Organoselenium Hybrids With Apoptotic and Anti-Inflammatory Properties Acting as JAK1/STAT3 Suppressors. Drug Dev Res 2025; 86:e70075. [PMID: 40103327 DOI: 10.1002/ddr.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Herein, we report the design, synthesis, and characterization of novel organoselenium (OSe) hybrids (5-19) via modifications of the lead, N-(4-selaneylphenyl)-2-selaneylacetamide. The OSe-based thiazol 9 showed the highest growth inhibition % (GI%) of 64.72% relative to the positive reference doxorubicin (DOX), with a GI% of 79.5%. Furthermore, the novel OSe derivatives showed low GI% values compared to the normal cell lines employed, demonstrating their selectivity. The OSe tethered N-chloroacetamide 5 and Schiff base 19 showed a cytotoxic effect with an IC50 of (25.07 and 11.61 µM), respectively, against the A549 tumor cell line and IC50 of (34.22 and 20.12 µM), respectively, against the HELA cancer cell line. Enzyme-linked immunosorbent assay to study the JAK1 and the STAT3 inhibitory potentials of OSe compounds 5 and 19 in the A549 cancer cells both showed promising inhibitory activities with IC50 values of 25.07 and 11.61 µM, respectively. Protein expression analysis on the A549 cancer cell line on OSe compounds 5 and 19 showed upregulation of P53, BAX, and Caspases 3, 6, 8, and 9 as apoptotic proteins. However, both candidates expressed downregulation of the antiapoptotic proteins (BCL2, MMP2, and MMP9). Moreover, OSe compounds 5 and 19 described the downregulation of the examined inflammatory proteins: COX2, IL-6, and IL-1β. In addition, OSe compound 19 showed potential cell cycle arrest at the G0, S, and G2-M layers, with an increase in cellular levels. Finally, molecular docking studies of OSe compound 19 showed the most promising inhibitory potential toward the JAK1 and STAT3 target receptors, with binding scores and interactions exceeding that of the cocrystallized inhibitor of JAK1.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Hussein Ba-Ghazal
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Yasair S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Elghamry
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Arwa Omar Al Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed Alaasar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Natural, Science II, Institute of Chemistry, Martin-Luther University, Halle Saale, Germany
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, Iraq
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
4
|
Huang J, Lai L, Su Y, Chen J, Li P, Du B. Probiotic-fermented ginger-processed Gastrodia elata BI. Ameliorates AlCl 3-induced cognitive dysfunction in an Alzheimer's disease rat model by regulating the gut microbiota and CREB/BDNF pathway. Food Res Int 2025; 207:116087. [PMID: 40086974 DOI: 10.1016/j.foodres.2025.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Gastrodia elata BI., which is an edible plant, has been reported in previous studies to possess a strong capacity for alleviating the symptoms of Alzheimer's disease (AD). This study focuses on ginger-processed and fermented Gastrodia elata BI. (FGGE) to investigate its effects on behaviour, brain neuroregulation, and the gut microbiota in an AlCl3-induced AD rat model, and to explore the underlying mechanisms. Results indicate that FGGE significantly improved novel object recognition and the correct alternation rate in the Y-maze test for AD rats. In addition, FGGE alleviated brain oxidative stress and restored the anti-inflammatory response, cholinergic function, and tissue morphology in the hippocampus. Furthermore, FGGE activated the cAMP response element-binding protein/brain-derived neurotrophic factor signalling pathway, reversing neural network abnormalities and enhancing neural regulation. FGGE also promoted the proliferation of bacteria negatively associated with AD, such as Methanosphaera and Lactobacillus, thereby restoring gut microbiota balance. The mechanisms by which FGGE alleviates AD may involve the modulation of the gut-brain axis, ultimately mitigating AD symptoms. FGGE represents an innovative functional food with significant therapeutic potential and promising application prospects.
Collapse
Affiliation(s)
- Junyuan Huang
- College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Lanyu Lai
- College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Yilin Su
- College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pan Li
- College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
5
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
6
|
Zingiridis M, Papachristodoulou D, Menegaki D, Froudas KG, Neochoritis CG. Heteroannulations of cyanoacetamide-based MCR scaffolds utilizing formamide. Beilstein J Org Chem 2025; 21:217-225. [PMID: 39877861 PMCID: PMC11773184 DOI: 10.3762/bjoc.21.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
C1 chemistry has a central role in the efficient utilization of single-carbon molecules, contributing significantly to sustainability, innovation and economic growth across various sectors. In this study, we present an efficient and rapid method for synthesizing a variety of heteroannulated pyrimidones using cyanoacetamide-based multicomponent reaction (MCR) chemistry. By utilizing specific MCR-based scaffolds as precursors and employing the abundant and inexpensive formamide as a C1 feedstock under neat conditions, we were able to efficiently access substituted thieno-, quinolino- and indolopyrimidones without the need of column chromatography. Further, a single-crystal X-ray structure was obtained, revealing certain geometrical features.
Collapse
Affiliation(s)
- Marios Zingiridis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | - Despoina Menegaki
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | | |
Collapse
|
7
|
Zakaria MY, Elmaaty AA, El-Shesheny R, Alnajjar R, Kutkat O, Ben Moussa S, Abdullah Alzahrani AY, El-Zahaby SA, Al-Karmalawy AA. Biological and computational assessments of thiazole derivative-reinforced bile salt enriched nano carriers: a new gate in targeting SARS-CoV-2 spike protein. RSC Adv 2024; 14:38778-38795. [PMID: 39654925 PMCID: PMC11627215 DOI: 10.1039/d4ra07316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
There is merit in investigating novel therapeutic molecules that hit vital targets during the viral infection cycle i.e. disrupting the interaction between SARS-CoV-2's spike glycoprotein and the host's angiotensin converting enzyme 2 (ACE2) receptor, potentially offering new avenues for treatment. Accordingly, lipid-based vesicular systems like liposomes or niosomes are frequently utilized to overcome these hurdles. Thus, chemically synthesized compounds were encapsulated within PEGylated bilosomes (PBs) to improve their solubility and intestinal permeability, thereby enhancing their anti-SARS-CoV-2 effectiveness. The formulae were prepared according to 23 full factorial design which was also used to explore the impact of the change in predetermined formulation variables on the properties of the prepared vesicles (entrapment efficiency EE%, particle size PS, and zeta potential ZP). Additionally, the optimized formula (F4) which is composed of 3% bile salt (BS), 40 mg 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE) and sodium deoxycholate (SDC) as a bile salt, was selected as an optimum formula with desirability value 0.674 using Design Expert® software. Both the in vitro release and ex vivo experiments results confirmed the significant superiority of the F4 over the drug dispersion. Both cytotoxicity and anti-SARS-CoV-2 activity of all examined compound-loaded PBs (PB3a-PB3g) were assessed in Vero E6 cells via MTT assay. Both compounds PB3c and PB3g displayed the highest IC50 values (0.71 and 1.25 μg mL-1, respectively) ensuring their superior antiviral potential. Moreover, it was revealed that PB3c demonstrated more than 80% virucidal activity and over 80% inhibition of viral adsorption with little effect on the viral replication ∼(5-10%). Moreover, molecular docking and dynamic studies were conducted to pursue the binding affinities of the investigated compounds towards the ACE2 target of the SARS-CoV-2 spike protein, assuring their feasible inhibitory potential. Collectively, the investigated compound-loaded PBs can be treated as promising lead drug delivery panels for COVID-19 management.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University Ras Sudr 46612 South Sinai Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, East Port Said National University Port Said 42526 Egypt
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Institute, National Research Centre Dokki-Giza 12622 Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi 16063 Libya
- Department of Chemistry, Faculty of Science, University of Benghazi Benghazi 16063 Libya
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environmental Research Institute, National Research Centre Dokki-Giza 12622 Egypt
| | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-Just) Alexandria Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
8
|
Shaaban S, Althikrallah HA, Negm A, Abo Elmaaty A, Al-Karmalawy AA. Repurposed organoselenium tethered amidic acids as apoptosis inducers in melanoma cancer via P53, BAX, caspases-3, 6, 8, 9, BCL-2, MMP2, and MMP9 modulations. RSC Adv 2024; 14:18576-18587. [PMID: 38860260 PMCID: PMC11164031 DOI: 10.1039/d4ra02944e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Organoselenium (OSe) agents hold promise for preventing cancer due to their potential ability to fight cancer development and protect cells from oxidative damage. Herein, OSe-based maleanilic and succinanilic acids were tested to estimate their antitumor activities against fifteen cancer cell lines. Besides, their potential safety and selectivity were further investigated against two normal cell lines, namely, human skin fibroblasts (HSF) and olfactory ensheathing cell line (OEC) using the growth inhibition percentage (GI%) assay. Moreover, the apoptotic potential of the superior anticancer candidates (8, 9, 10, and 11) was evaluated against P53, BAX, Caspase-3, Caspase-6, Caspase-8, Caspase-9, BCL-2, MMP2, and MMP9 apoptotic markers. Additionally, to enhance our understanding and predict the inhibitory potential of the examined compounds as potential anticancer agents, a thorough structure-activity relationship (SAR) analysis was conducted. On the other hand, molecular docking and ADMET studies were performed for the examined candidates as well. Overall, our findings point to significant anticancer activities of the organoselenium tethered amidic acids, suggesting their promising cytotoxic potential as effective anticancer drugs.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| |
Collapse
|
9
|
Elsakka EGE, Elshafei A, Elkady MA, Yehia AM, Abulsoud AI, Shahin RK, Abdelmaksoud NM, Elkhawaga SY, Ismail A, Mokhtar MM, Elrebehy MA, Hegazy M, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, El-Mahdy HA, Doghish AS. From diagnosis to resistance: a symphony of miRNAs in pheochromocytoma progression and treatment response. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1957-1969. [PMID: 37801146 DOI: 10.1007/s00210-023-02759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Pheochromocytoma (PCC) is a neuroendocrine tumor that produces and secretes catecholamine from either the adrenal medulla or extra-adrenal locations. MicroRNAs (miRNAs, miR) can be used as biomarkers to detect cancer or the return of a previously treated disease. Blood-borne miRNAs might be envisioned as noninvasive markers of malignancy or prognosis, and new studies demonstrate that microRNAs are released in body fluids as well as tissues. MiRNAs have the potential to be therapeutic targets, which would greatly increase the restricted therapy options for adrenal tumors. This article aims to consolidate and synthesize the most recent studies on miRNAs in PCC, discussing their potential clinical utility as diagnostic and prognostic biomarkers while also addressing their limitations.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
10
|
Kassab AE, Gedawy EM, Sayed AS. Fused thiophene as a privileged scaffold: A review on anti-Alzheimer's disease potentials via targeting cholinesterases, monoamine oxidases, glycogen synthase kinase-3, and Aβ aggregation. Int J Biol Macromol 2024; 265:131018. [PMID: 38518928 DOI: 10.1016/j.ijbiomac.2024.131018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aβ) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3β (GSK3-β) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aβ aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| | - Alaa S Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
11
|
Elmongy EI, Alanazi WS, Aldawsari AI, Alfaouri AA, Binsuwaidan R. Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure. Pharmaceuticals (Basel) 2024; 17:188. [PMID: 38399403 PMCID: PMC10892651 DOI: 10.3390/ph17020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
This work describes the design and synthesis of three series of hybrids of thienopyrimidines and sulfonamides. Dihydrofolate reductase enzyme was selected as a target for the in-silico screening of the synthesized thienopyrimidine-sulfonamide hybrid as an antibacterial, while squalene epoxidase was selected as an antifungal target protein. All screened compounds showed promising binding affinity ranges, with perfect fitting not exceeding 1.9 Å. The synthesized compounds were tested for their antimicrobial activity using agar well diffusion and minimum inhibitory concentration tests against six bacterial strains in addition to two Candida strains. Compounds 8iii and 12ii showed varying degrees of inhibition against Staphylococcus aureus and Escherichia coli bacterial strains, whereas the best antifungal activity against Candida was displayed by compound 8iii. Compound 12ii, the cyclohexathienopyrimidine coupled with sulfadiazine at position 3, has the best antibacterial activity, which is consistent with molecular docking results at the active site of the oxidoreductase protein. Interestingly, compound 12ii also has the highest docking binding energy at the antifungal squalene epoxidase active site. Investigating the physicochemical properties of the synthesized hybrids revealed their high tolerability with cell membranes, and moderate to poor oral bioavailability, and that all are drug-like candidates, among which 4i, the cyclohexathieno[2,3-d] pyrimidine core with sulphaguanidine incorporated at position 4, recorded the best score (1.58).
Collapse
Affiliation(s)
- Elshaymaa I. Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo P.O. Box 11795, Egypt;
| | - Wejdan S. Alanazi
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Alhanouf I. Aldawsari
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Asma A. Alfaouri
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
12
|
Elkhawaga SY, Elshafei A, Elkady MA, Yehia AM, Abulsoud AI, Abdelmaksoud NM, Elsakka EGE, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Shahin RK, Zaki MB, Doghish AS. Possible role of miRNAs in pheochromocytoma pathology - Signaling pathways interaction. Pathol Res Pract 2023; 251:154856. [PMID: 37806171 DOI: 10.1016/j.prp.2023.154856] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Pheochromocytoma (PCC) is a type of neuroendocrine tumor that originates from adrenal medulla or extra-adrenal chromaffin cells and results in the production of catecholamine. Paroxysmal hypertension and cardiovascular crises were among the clinical signs experienced by people with PCC. Five-year survival of advanced-stage PCC is just around 40% despite the identification of various molecular-level fundamentals implicated in these pathogenic pathways. MicroRNAs (miRNAs, miRs) are a type of short, non-coding RNA (ncRNA) that attach to the 3'-UTR of a target mRNA, causing translational inhibition or mRNA degradation. Evidence is mounting that miRNA dysregulation plays a role in the development, progression, and treatment of cancers like PCC. Hence, this study employs a comprehensive and expedited survey to elucidate the potential role of miRNAs in the development of PCC, surpassing their association with survival rates and treatment options in this particular malignancy.
Collapse
Affiliation(s)
- Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt.
| |
Collapse
|
13
|
Mohammed OA. From strings to signals: Unraveling the impact of miRNAs on diagnosis, and progression of colorectal cancer. Pathol Res Pract 2023; 251:154857. [PMID: 37804545 DOI: 10.1016/j.prp.2023.154857] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Colorectal cancer (CRC) stands as the third most prevalent ailment globally and represents the primary cause of mortality associated with cancer. Significant advancements have been made in the clinical management of patients with CRC, encompassing the development of more streamlined methodologies and a diverse array of biomarkers utilized for prognostic, diagnostic, and predictive objectives. MicroRNAs (miRNAs, miRs) play a key role in the development of CRC by modulating the expression of their target genes, which govern a number of metabolic and cellular processes. They are related to malignant traits such as enhanced invasive and proliferative capacity, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis through dysregulation in their function. This review's objectives were to examine miRNA biogenesis, provide an updated list of oncogenic and tumor suppressor miRNAs, and discuss the likely causes of miRNA dysregulation in CRC. Additionally, we discuss the diagnostic and predictive functions of miRNAs in CRC and summarize their biological significance and clinical potential.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
14
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|