1
|
Mentzinger J, Teixeira GF, Monnerat JADS, Velasco LL, Lucchetti BB, Martins MAC, Costa V, Andrade GPD, Magliano DC, Rocha HNM, da Nóbrega ACL, Medeiros RF, Rocha NG. Prenatal stress induces sex- and tissue-specific alterations in insulin pathway of Wistar rats offspring. Am J Physiol Heart Circ Physiol 2024; 327:H1055-H1066. [PMID: 39212771 DOI: 10.1152/ajpheart.00243.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Prenatal stress may lead to tissue and sex-specific cardiometabolic disorders in the offspring through imbalances in the insulin signaling pathway. Therefore, we aimed to determine the sex-specific adaptations of prenatal stress on the insulin signaling pathway of cardiac and hepatic tissue of adult offspring Wistar rats. METHODS Wistar pregnant rats were divided into control and stress groups. Unpredictable stress protocol was performed from the 14th to the 21st day of pregnancy. After lactation, the dams were euthanized and blood was collected for corticosterone measurement and the offspring were separated into four groups according to sex and intervention (n=8/group). At 90 days old, the offspring were submitted to an oral glucose tolerance test (OGTT) and an insulin tolerance test (ITT). After euthanasia blood collection was used for biochemical analysis and the left ventricle and liver were used for protein expression and histological analysis. RESULTS Stress increased maternal corticosterone levels, and in the offspring, decreased glucose concentration in both OGTT and ITT, reduced insulin receptor (Irβ) and insulin receptor substrate-1 (IRS1) activation and reduced insulin receptor inhibition (PTP1B) in the liver of male offspring at 90 days old, without repercussions in cardiac tissue. Moreover, female offspring submitted to prenatal stress exhibited reduced fatty acid uptake, with lower hepatic CD36 expression, reduced high density lipoprotein (cHDL) and increased Castelli risk indexes I and II. CONCLUSIONS Unpredictable prenatal stress evoked reduced insulin sensitivity and liver-specific impairment in insulin signaling activation in male while increasing markers of cardiovascular risk in females.
Collapse
Affiliation(s)
- Juliana Mentzinger
- Department of Physiology and Pharmacology, Universidade Federal Fluminense, Niteroi, Brazil
| | | | | | | | | | | | - Viviane Costa
- Department of Physiology and Pharmacology, Fluminense Federal University, Brazil
| | | | | | | | | | | | | |
Collapse
|
2
|
Chen CP, Chen PC, Pan YL, Hsu YC. Prenatal lipopolysaccharide exposure induces anxiety-like behaviour in male mouse offspring and aberrant glial differentiation of embryonic neural stem cells. Cell Mol Biol Lett 2023; 28:67. [PMID: 37592237 PMCID: PMC10436442 DOI: 10.1186/s11658-023-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Prenatal infection has been implicated in the development of neuropsychiatric disorders in children. We hypothesised that exposure to lipopolysaccharide during prenatal development could induce anxiety-like behaviour and sensorineural hearing loss in offspring, as well as disrupt neural differentiation during embryonic neural development. METHODS We simulated prenatal infection in FVB mice and mouse embryonic stem cell (ESC) lines, specifically 46C and E14Tg2a, through lipopolysaccharide treatment. Gene expression profiling analyses and behavioural tests were utilized to study the effects of lipopolysaccharide on the offspring and alterations in toll-like receptor (TLR) 2-positive and TLR4-positive cells during neural differentiation in the ESCs. RESULTS Exposure to lipopolysaccharide (25 µg/kg) on gestation day 9 resulted in anxiety-like behaviour specifically in male offspring, while no effects were detected in female offspring. We also found significant increases in the expression of GFAP and CNPase, as well as higher numbers of GFAP + astrocytes and O4+ oligodendrocytes in the prefrontal cortex of male offspring. Furthermore, increased scores for genes related to oligodendrocyte and lipid metabolism, particularly ApoE, were observed in the prefrontal cortex regions. Upon exposure to lipopolysaccharide during the ESC-to-neural stem cell (NSC) transition, Tuj1, Map2, Gfap, O4, and Oligo2 mRNA levels increased in the differentiated neural cells on day 14. In vitro experiments demonstrated that lipopolysaccharide exposure induced inflammatory responses, as evidenced by increased expression of IL1b and ApoB mRNA. CONCLUSIONS Our findings suggest that prenatal infection at different stages of neural differentiation may result in distinct disturbances in neural differentiation during ESC-NSC transitions. Furthermore, early prenatal challenges with lipopolysaccharide selectively induce anxiety-like behaviour in male offspring. This behaviour may be attributed to the abnormal differentiation of astrocytes and oligodendrocytes in the brain, potentially mediated by ApoB/E signalling pathways in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy, Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ling Pan
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Granja MG, Alves LP, Leardini-Tristão M, Saul ME, Bortoni LC, de Moraes FM, Ferreira EC, de Moraes BPT, da Silva VZ, Dos Santos AFR, Silva AR, Gonçalves-de-Albuquerque CF, Bambini-Junior V, Weyrich AS, Rondina MT, Zimmerman GA, de Castro-Faria-Neto HC. Inflammatory, synaptic, motor, and behavioral alterations induced by gestational sepsis on the offspring at different stages of life. J Neuroinflammation 2021; 18:60. [PMID: 33632243 PMCID: PMC7905683 DOI: 10.1186/s12974-021-02106-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. METHODS Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1β, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and β-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. RESULTS Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. CONCLUSION These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter.
Collapse
Affiliation(s)
- Marcelo Gomes Granja
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Rio de Janeiro, Brazil
| | - Letícia Pires Alves
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Rio de Janeiro, Brazil
| | - Marina Leardini-Tristão
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Michelle Edelman Saul
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá - UNESA, Rio de Janeiro, Brazil
| | - Letícia Coelho Bortoni
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Estácio de Sá - UNESA, Rio de Janeiro, Brazil
| | - Flávia Maciel de Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Erica Camila Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares de Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Neurociências, Universidade Federal Fluminense - UFF, Niterói, Rio de Janeiro, Brazil
| | - Victória Zerboni da Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | | | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2HE, Lancashire, Preston, England, UK
| | - Andrew S Weyrich
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2HE, Lancashire, Preston, England, UK
| | - Matthew T Rondina
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine and Pathology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine and GRECC, George E. Wahlen VAMC, Salt Lake City, UT, USA
| | - Guy A Zimmerman
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
4
|
Zeraati M, Najdi N, Mosaferi B, Salari AA. Environmental enrichment alters neurobehavioral development following maternal immune activation in mice offspring with epilepsy. Behav Brain Res 2020; 399:112998. [PMID: 33197458 DOI: 10.1016/j.bbr.2020.112998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Epilepsy is a chronic brain disease affecting millions of people worldwide. Anxiety-related disorders and cognitive deficits are common in patients with epilepsy. Previous studies have shown that maternal infection/immune activation renders children more vulnerable to neurological disorders later in life. Environmental enrichment has been suggested to improve seizures, anxiety, and cognitive impairment in animal models. The present study aimed to explore the effects of environmental enrichment on seizure scores, anxiety-like behavior, and cognitive deficits following maternal immune activation in offspring with epilepsy. Pregnant mice were treated with lipopolysaccharides-(LPS) or vehicle, and offspring were housed in normal or enriched environments during early adolescence to adulthood. To induce epilepsy, adult male and female offspring were treated with Pentylenetetrazol-(PTZ), and then anxiety-like behavior and cognitive functions were assessed. Tumor-necrosis-factor (TNF)-α and interleukin (IL) 10 were measured in the hippocampus of offspring. Maternal immune activation sex-dependently increased seizure scores in PTZ-treated offspring. Significant increases in anxiety-like behavior, cognitive impairment, and hippocampal TNF-α and IL-10 were also found following maternal immune activation in PTZ-treated offspring. However, there was no sex difference in these behavioral abnormalities in offspring. Environmental enrichment reversed the effects of maternal immune activation on behavioral and inflammatory parameters in PTZ-treated offspring. Overall, the present findings highlight the adverse effects of prenatal maternal immune activation on seizure susceptibility and psychiatric comorbidities in offspring. This study suggests that environmental enrichment may be used as a potential treatment approach for behavioral abnormalities following maternal immune activation in PTZ-treated offspring.
Collapse
Affiliation(s)
- Maryam Zeraati
- Physiology and Pharmacology Department, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Nazila Najdi
- Department of Obstetrics and Gynecology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
5
|
Prenatal exposure to lipopolysaccharide induces changes in the circadian clock in the SCN and AA-NAT activity in the pineal gland. Brain Res 2020; 1743:146952. [DOI: 10.1016/j.brainres.2020.146952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 11/20/2022]
|
6
|
Wang F, Zhang ZZ, Cao L, Yang QG, Lu QF, Chen GH. Lipopolysaccharide exposure during late embryogenesis triggers and drives Alzheimer-like behavioral and neuropathological changes in CD-1 mice. Brain Behav 2020; 10:e01546. [PMID: 31997558 PMCID: PMC7066339 DOI: 10.1002/brb3.1546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Infections could contribute to Alzheimer's disease (AD) neuropathology in human. However, experimental evidence for a causal relationship between infections during the prenatal phase and the onset of AD is lacking. METHODS CD-1 mothers were intraperitoneally received lipopolysaccharide (LPS) with two doses (25 and 50 μg/kg) or normal saline every day during gestational days 15-17. A battery of behavioral tasks was used to assess the species-typical behavior, sensorimotor capacity, anxiety, locomotor activity, recognition memory, and spatial learning and memory in 1-, 6-, 12-, 18-, and 22-month-old offspring mice. An immunohistochemical technology was performed to detect neuropathological indicators consisting of amyloid-β (Aβ), phosphorylated tau (p-tau), and glial fibrillary acidic protein (GFAP) in the hippocampus. RESULTS Compared to the same-aged controls, LPS-treated offspring had similar behavioral abilities and the levels of Aβ42, p-tau, and GFAP at 1 and 6 months old. From 12 months onward, LPS-treated offspring gradually showed decreased species-typical behavior, sensorimotor ability, locomotor activity, recognition memory, and spatial learning and memory, and increased anxieties and the levels of Aβ42, p-tau, and GFAP relative to the same-aged controls. Moreover, this damage effect (especially cognitive decline) persistently progressed onwards. The changes in these neuropathological indicators significantly correlated with impaired spatial learning and memory. CONCLUSIONS Prenatal exposure to low doses of LPS caused AD-related features including behavioral and neuropathological changes from midlife to senectitude.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Cao
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi-Gang Yang
- Department of Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qing-Fang Lu
- Department of Mental Psychology, the Taihe County Chinese Medicine Hospital, Fuyang, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Environmental influences on placental programming and offspring outcomes following maternal immune activation. Brain Behav Immun 2020; 83:44-55. [PMID: 31493445 PMCID: PMC6906258 DOI: 10.1016/j.bbi.2019.08.192] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Adverse experiences during pregnancy induce placental programming, affecting the fetus and its developmental trajectory. However, the influence of 'positive' maternal experiences on the placenta and fetus remain unclear. In animal models of early life stress, environmental enrichment (EE) has ameliorated and even prevented associated impairments in brain and behavior. Here, using a maternal immune activation (MIA) model in rats, we test whether EE attenuates maternal, placental and/or fetal responses to an inflammatory challenge, thereby offering a mechanism by which fetal programming may be prevented. Moreover, we evaluate life-long EE exposure on offspring development and examine a constellation of genes and epigenetic writers that may protect against MIA challenges. In our model, maternal plasma corticosterone and interleukin-1β were elevated 3 h after MIA, validating the maternal inflammatory response. Evidence for developmental programming was demonstrated by a simultaneous decrease in the placental enzymes Hsd11b2 and Hsd11b2/Hsd11b1, suggesting disturbances in glucocorticoid metabolism. Reductions of Hsd11b2 in response to challenge is thought to result in excess glucocorticoid exposure to the fetus and altered glucocorticoid receptor expression, increasing susceptibility to behavioral impairments later in life. The placental, but not maternal, glucocorticoid implications of MIA were attenuated by EE. There were also sustained changes in epigenetic writers in both placenta and fetal brain as a consequence of environmental experience and sex. Following MIA, both male and female juvenile animals were impaired in social discrimination ability. Life-long EE mitigated these impairments, in addition to the sex specific MIA associated disruptions in central Fkbp5 and Oprm1. These data provide the first evidence that EE protects placental functioning during stressor exposure, underscoring the importance of addressing maternal health and well-being throughout pregnancy. Future work must evaluate critical periods of EE use to determine if postnatal EE experience is necessary, or if prenatal exposure alone is sufficient to confer protection.
Collapse
|
8
|
Ignatiuk VM, Izvolskaya MS, Sharova VS, Voronova SN, Zakharova LA. Disruptions in the reproductive system of female rats after prenatal lipopolysaccharide-induced immunological stress: role of sex steroids. Stress 2019; 22:133-141. [PMID: 30369279 DOI: 10.1080/10253890.2018.1508440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stress signals during fetal or early postnatal periods may disorganize reproductive axis development at different levels. This study was aimed to test the hypothesis that prenatal immunological stress induced by bacterial endotoxin, lipopolysaccharide (LPS), has impact on structure and function of the reproductive system in female offspring. Adult female Wistar rats were divided into two groups, a control group (n = 5) and a LPS group (n = 12). Rats were injected with LPS 50 μg/kg body or 0.9% saline intraperitoneally on the 12th day of pregnancy. After birth the female pups (n = 20 in each group) were divided into four groups: (group 1) 0.9% saline prenatally, sesame oil (vehicle) postnatally; (group 2) LPS prenatally, sesame oil postnatally; (group 3) LPS prenatally, fulvestrant postnatally; (group 4) LPS prenatally, flutamide postnatally. Pups were injected subcutaneously into the neck with fulvestrant (estrogen receptor antagonist), 1.5 mg/kg in sesame oil, from postnatal day (PND) 5 to PND14; or flutamide (androgen receptor antagonist), 20 mg/kg in sesame oil, from PND14 to PND30. Rats of the control group were injected with sesame oil during the same time period. Parameters were evaluated by ELISA (serum estradiol and testosterone) and ovarian histology. The main findings were: (1) prenatal stress during the critical period resulted in delayed vaginal opening, decreased body weight and serum concentrations of sex steroids, and significant disorders in ovarian development; (2) postnatal estradiol and testosterone antagonist treatments decreased follicular atresia through increasing the number of healthy follicles and restored endogenous steroid production. Lay summaryImmunological stress, caused by simulating infection through exposure to a bacterial toxin (LPS), during a critical period of fetal development in laboratory rats results in delayed reproductive maturity, decreased body weight and decreased secretion of sex steroids in female offspring, and abnormalities in the ovaries like those in polycystic ovarian syndrome. These prenatally toxin-induced sexual disorders in females could be corrected by estradiol/testosterone antagonists during the postnatal period.
Collapse
Affiliation(s)
- V M Ignatiuk
- a Moscow State University GSP-1 , Moscow , Russia
| | - M S Izvolskaya
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - V S Sharova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - S N Voronova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - L A Zakharova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
9
|
Izvolskaia MS, Sharova VS, Ignatiuk VM, Voronova SN, Zakharova LA. Abolition of prenatal lipopolysaccharide-induced reproductive disorders in rat male offspring by fulvestrant. Andrologia 2018; 51:e13204. [DOI: 10.1111/and.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Marina S. Izvolskaia
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | - Victoria S. Sharova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | | | - Svetlana N. Voronova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | - Liudmila A. Zakharova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
10
|
Simulated viral infection in early-life alters brain morphology, activity and behavior in zebra finches (Taeniopygia guttata). Physiol Behav 2018; 196:36-46. [PMID: 30134141 DOI: 10.1016/j.physbeh.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/24/2023]
Abstract
Early-life immune challenges (ELIC) have long-term effects on adult behavior and brain development. ELIC studies on birds are still few, but they are epidemiologically crucial since birds are important hosts of many mosquito-borne viruses. In this study, we administered a viral infection mimicking agent, Polyinosinic: polycytidylic acid (Poly I:C), to nestling zebra finches on post-hatch day 14. When birds became sexually mature, their general activity (i.e., hopping, feeding behavior) and mosquito defense behaviors (i.e., hops, head movements, pecks, wing movements, foot movements, and scratches) were measured. Following behavioral trials, brains of male birds were collected for anatomical and histochemical analyses. Poly I:C challenge had sex-dependent effects on general activity and mosquito defense behaviors. When compared to control females, Poly I:C challenged females hopped and fed less often in their general activities, but hopped more often in the presence of mosquitoes. Poly I:C challenged males did not differ from control males in any behaviors. Brain analysis revealed that the nucleus taeniae of the amygdala (TnA) of Poly I:C challenged males were smaller in volume yet had more neurons expressing immediate-early gene proteins compared with controls, suggesting a more active TnA. These results suggest that immune challenges early in the life could have long-term effects on behaviors and brains of zebra finches, which may influence disease spread and fitness of individual birds.
Collapse
|
11
|
Vojtechova I, Petrasek T, Maleninska K, Brozka H, Tejkalova H, Horacek J, Stuchlik A, Vales K. Neonatal immune activation by lipopolysaccharide causes inadequate emotional responses to novel situations but no changes in anxiety or cognitive behavior in Wistar rats. Behav Brain Res 2018; 349:42-53. [PMID: 29729302 DOI: 10.1016/j.bbr.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/28/2022]
Abstract
Infection during the prenatal or neonatal stages of life is considered one of the major risk factors for the development of mental diseases such as schizophrenia or autism. However, the impacts of such an immune challenge on adult behavior are still not clear. In our study, we used a model of early postnatal immune activation by the application of bacterial endotoxin lipopolysaccharide (LPS) to rat pups at a dose of 2 mg/kg from postnatal day (PD) 5 to PD 9. In adulthood, the rats were tested in a battery of tasks probing various aspects of behavior: spontaneous activity (open field test), social behavior (social interactions and female bedding exploration), anxiety (elevated plus maze), cognition (active place avoidance in Carousel) and emotional response (ultrasonic vocalization recording). Moreover, we tested sensitivity to acute challenge with MK-801, a psychotomimetic drug. Our results show that the application of LPS led to increased self-grooming in the female bedding exploration test and inadequate emotional reactions in Carousel maze displayed by ultrasonic vocalizations. However, it did not have serious consequences on exploration, locomotion, social behavior or cognition. Furthermore, exposition to MK-801 did not trigger social or cognitive deficits in the LPS-treated rats. We conclude that the emotional domain is the most sensitive to the changes induced by neonatal immune activation in rats, including a disrupted response to novel and stressful situations in early adulthood (similar to that observed in human patients suffering from schizophrenia or autism), while other aspects of tested behavior remain unaffected.
Collapse
Affiliation(s)
- Iveta Vojtechova
- First Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic; Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic.
| | - Tomas Petrasek
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic.
| | - Kristyna Maleninska
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| | - Hana Brozka
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| | - Hana Tejkalova
- National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic.
| | - Jiri Horacek
- National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic.
| | - Ales Stuchlik
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic.
| |
Collapse
|
12
|
Domínguez Rubio AP, Correa F, Aisemberg J, Dorfman D, Bariani MV, Rosenstein RE, Zorrilla Zubilete M, Franchi AM. Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J Pineal Res 2017; 63. [PMID: 28776755 DOI: 10.1111/jpi.12439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/31/2017] [Indexed: 01/02/2023]
Abstract
Preterm birth is a major contributor to early and delayed physical and cognitive impairment. Epidemiological and experimental data indicate that maternal infections are a significant and preventable cause of preterm birth. Recently, melatonin has been suggested to exert neuroprotective effects in several models of brain injury. Here, we sought to investigate whether the administration of melatonin is able to prevent lipopolysaccharide (LPS)-induced fetal brain damage in a model of LPS-induced preterm labor. For this purpose, 15-day pregnant BALB/c mice received intraperitoneally 2 doses of LPS or vehicle: the first one at 10:00 hours (0.26 mg/kg) and the second at 13:00 hours (0.52 mg/kg). On day 14 of pregnancy, a group of mice was subcutaneously implanted with a pellet of 25 mg melatonin. This experimental protocol resulted in 100% of preterm birth and pup death in the LPS group and a 50% of term birth and pup survival in the melatonin + LPS group. In the absence of melatonin, fetuses from LPS-treated mothers showed histological signs of brain damage, microglial/macrophage activation, and higher levels of IL-1β, inducible nitric oxide synthase (NOS), and neuronal NOS mRNAs as well as increased histone acetyltransferase activity and histone H3 hyperacetylation. In contrast, antenatal administration of melatonin prevented LPS-induced fetal brain damage. Moreover, when behavioral traits were analyzed in the offspring from control, melatonin, and melatonin + LPS, no significant differences were found, suggesting that melatonin prevented LPS-induced long-term neurodevelopmental impairments. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent fetal brain damage and its long-term consequences induced by maternal inflammation.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Bariani
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ruth Estela Rosenstein
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Zorrilla Zubilete
- Laboratorio de Neuropsicofarmacología del Estrés, Departamento de Farmacología, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Fortunato JJ, da Rosa N, Martins Laurentino AO, Goulart M, Michalak C, Borges LP, da Cruz Cittadin Soares E, Reis PA, de Castro Faria Neto HC, Petronilho F. Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition 2017; 35:119-127. [DOI: 10.1016/j.nut.2016.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
|
14
|
Li XW, Cao L, Wang F, Yang QG, Tong JJ, Li XY, Chen GH. Maternal inflammation linearly exacerbates offspring age-related changes of spatial learning and memory, and neurobiology until senectitude. Behav Brain Res 2016; 306:178-96. [PMID: 26992827 DOI: 10.1016/j.bbr.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/06/2023]
Abstract
Maternal inflammation during pregnancy can elevate the risk of neurodegenerative disorders in offspring. However, how it affects age-related impairments of spatial learning and memory and changes in the neurobiological indictors in the offspring in later adulthood is still elusive. In this study, the CD-1 mice with maternal gestational inflammation due to receiving lipopolysaccharide (LPS, i.p. 50 or 25μg/kg) were divided into 3-, 12-, 18-, and 22-month-old groups. The spatial learning and memory were evaluated using a six-radial arm water maze and the levels of presynaptic proteins (synaptotagmin-1 and syntaxin-1) and histone acetylation (H3K9ac and H4K8ac) in the dorsal hippocampus were detected using the immunohistochemical method. The results indicated that there were significant age-related impairments of spatial learning and memory, decreased levels of H4K8ac, H3K9ac, and syntaxin-1, and increased levels of synaptotagmin-1 in the offspring mice from 12 months old to 22 months old compared to the same-age controls. Maternal LPS treatment significantly exacerbated the offspring impairments of spatial learning and memory, the reduction of H3K9ac, H4K8ac, and syntaxin-1, and the increment of synaptotagmin-1 from 12 months old to 22 months old compared to the same-age control groups. The changes in the neurobiological indicators significantly correlated with the impairments of spatial learning and memory. Furthermore, this correlation, besides the age and LPS-treatment effects, also showed a dose-dependent effect. Our results suggest that maternal inflammation during pregnancy could exacerbate age-related impairments of spatial learning and memory, and neurobiochemical indicators in the offspring CD-1 mice from midlife to senectitude.
Collapse
Affiliation(s)
- Xue-Wei Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, PR China
| | - Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Qi-Gang Yang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Jing-Jing Tong
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Xue-Yan Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, and the Center of Anhui Province in Psychologic Medicine, Chaohu, Hefei 238000, Anhui Province, PR China
| | - Gui-Hai Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China; Department of Neurology, the Affiliated Chaohu Hospital of Anhui Medical University, and the Center of Anhui Province in Psychologic Medicine, Chaohu, Hefei 238000, Anhui Province, PR China; Department of Neurology, the First People's Hospital of Chenzhou, Chenzhou 423000, Hunan Province, PR China.
| |
Collapse
|
15
|
Al-Amin MM, Sultana R, Sultana S, Rahman MM, Reza HM. Astaxanthin ameliorates prenatal LPS-exposed behavioral deficits and oxidative stress in adult offspring. BMC Neurosci 2016; 17:11. [PMID: 26856812 PMCID: PMC4746928 DOI: 10.1186/s12868-016-0245-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prenatal maternal lipopolysaccharide (LPS) exposure leads to behavioral deficits such as depression, anxiety, and schizophrenia in the adult lives. LPS-exposure resulted in the production of cytokines and oxidative damage. On the contrary, astaxanthin is a carotenoid compound, showed neuroprotective properties via its antioxidant capacity. This study examines the effect of astaxanthin on the prenatal maternal LPS-induced postnatal behavioral deficit in mice. RESULTS We found that prenatal LPS-exposed mice showed extensive immobile phase in the tail suspension test, higher frequent head dipping in the hole-board test and greater hypolocomotion in the open field test. All these values were statistically significant (p < 0.05). In addition, a marked elevation of the level of lipid peroxidation, advanced protein oxidation product, nitric oxide, while a pronounced depletion of antioxidant enzymes (superoxide dismutase, catalase and glutathione) were observed in the adult offspring mice that were prenatally exposed to LPS. To the contrary, 6-weeks long treatment with astaxanthin significantly improved all behavioral deficits (p < 0.05) and diminished prenatal LPS-induced oxidative stress markers in the brain and liver. CONCLUSIONS Taken together, these results suggest that prenatal maternal LPS-exposure leads to behavioral deficits in the adults, while astaxanthin ameliorates the behavioral deficits presumably via its antioxidant property.
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Rabeya Sultana
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Sharmin Sultana
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
16
|
Vaughan OR, Fisher HM, Dionelis KN, Jeffreys EC, Higgins JS, Musial B, Sferruzzi-Perri AN, Fowden AL. Corticosterone alters materno-fetal glucose partitioning and insulin signalling in pregnant mice. J Physiol 2015; 593:1307-21. [PMID: 25625347 DOI: 10.1113/jphysiol.2014.287177] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/24/2014] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids affect glucose metabolism in adults and fetuses, although their effects on materno-fetal glucose partitioning remain unknown. The present study measured maternal hepatic glucose handling and placental glucose transport together with insulin signalling in these tissues in mice drinking corticosterone either from day (D) 11 to D16 or D14 to D19 of pregnancy (term = D21). On the final day of administration, corticosterone-treated mice were hyperinsulinaemic (P < 0.05) but normoglycaemic compared to untreated controls. In maternal liver, there was no change in glycogen content or glucose 6-phosphatase activity but increased Slc2a2 glucose transporter expression in corticosterone-treated mice, on D16 only (P < 0.05). On D19, but not D16, transplacental (3) H-methyl-d-glucose clearance was reduced by 33% in corticosterone-treated dams (P < 0.05). However, when corticosterone-treated animals were pair-fed to control intake, aiming to prevent the corticosterone-induced increase in food consumption, (3) H-methyl-d-glucose clearance was similar to the controls. Depending upon gestational age, corticosterone treatment increased phosphorylation of the insulin-signalling proteins, protein kinase B (Akt) and glycogen synthase-kinase 3β, in maternal liver (P < 0.05) but not placenta (P > 0.05). Insulin receptor and insulin-like growth factor type I receptor abundance did not differ with treatment in either tissue. Corticosterone upregulated the stress-inducible mechanistic target of rapamycin (mTOR) suppressor, Redd1, in liver (D16 and D19) and placenta (D19), in ad libitum fed animals (P < 0.05). Concomitantly, hepatic protein content and placental weight were reduced on D19 (P < 0.05), in association with altered abundance and/or phosphorylation of signalling proteins downstream of mTOR. Taken together, the data indicate that maternal glucocorticoid excess reduces fetal growth partially by altering placental glucose transport and mTOR signalling.
Collapse
Affiliation(s)
- O R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Atypical antipsychotic paliperidone prevents behavioral deficits in mice prenatally challenged with bacterial endotoxin lipopolysaccharide. Eur J Pharmacol 2015; 747:181-9. [DOI: 10.1016/j.ejphar.2014.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/25/2023]
|
18
|
Babri S, Doosti MH, Salari AA. Strain-dependent effects of prenatal maternal immune activation on anxiety- and depression-like behaviors in offspring. Brain Behav Immun 2014; 37:164-76. [PMID: 24326014 DOI: 10.1016/j.bbi.2013.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022] Open
Abstract
There is converging evidence that prenatal maternal infection can increase the risk of occurrence of neuropsychiatric disorders like schizophrenia, autism, anxiety and depression in later life. Experimental studies have shown conflicting effects of prenatal maternal immune activation on anxiety-like behavior and hypothalamic-pituitary-adrenal (HPA) axis development in offspring. We investigated the effects of maternal immune activation during pregnancy on anxiety- and depression-like behaviors in pregnant mice and their offspring to determine whether these effects are dependent on strain. NMRI and C57BL/6 pregnant mice were treated with either saline or lipopolysaccharide on gestational day 17 and then interleukin (IL)-6 and corticosterone (COR) levels; anxiety or depression in the pregnant mice and their offspring were evaluated. The results indicate that maternal inflammation increased the levels of COR and anxiety-like behavior in NMRI pregnant mice, but not in C57BL/6 dams. Our data also demonstrate that maternal inflammation elevated the levels of anxiety-and depression-like behaviors in NMRI offspring on the elevated plus-maze, elevated zero-maze, tail suspension test and forced swimming test respectively, but not in the open field and light-dark box. In addition, we did not find any significant change in anxiety- and depression-like behaviors of adult C57BL/6 offspring. Our findings suggest that prenatal maternal immune activation can alter the HPA axis activity, anxiety- and depression-like behaviors in a strain- and task-dependent manner in offspring and further comprehensive studies are needed to prove the causal relationship between the findings found here and to validate their relevance to neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Shirin Babri
- Laboratory of Physiology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Hossein Doosti
- Laboratory of Immunology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Akbar Salari
- Laboratory of Physiology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Laboratory of Immunology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Solati J, Asiaei M, Hoseini MHM. Using experimental autoimmune encephalomyelitis as a model to study the effect of prenatal stress on fetal programming. Neurol Res 2013; 34:478-83. [DOI: 10.1179/1743132812y.0000000032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jalal Solati
- Department of BiologyFaculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Masoud Asiaei
- Department of BiologyFaculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mostafa Haji Molla Hoseini
- Department of ImmunologyFaculty of Medicine, Shadid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Vaughan OR, Sferruzzi-Perri AN, Fowden AL. Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J Physiol 2012; 590:5529-40. [PMID: 22930269 DOI: 10.1113/jphysiol.2012.239426] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stresses during pregnancy that increase maternal glucocorticoids reduce birth weight in several species. However, the role of natural glucocorticoids in the mother in fetal acquisition of nutrients for growth remains unknown. This study aimed to determine whether fetal growth was reduced as a consequence of altered amino acid supply when mice were given corticosterone in their drinking water for 5 day periods in mid to late pregnancy (day, D, 11-16 or D14-19). Compared to controls drinking tap water, fetal weight was always reduced by corticosterone. At D16, corticosterone had no effect on materno-fetal transfer of [(14)C]methylaminoisobutyric acid (MeAIB), although placental MeAIB accumulation and expression of the Slc38a1 and Slc38a2 transporters were increased. However, at D19, 3 days after treatment ended, materno-fetal transfer of MeAIB was increased by 37% (P < 0.04). During treatment at D19, placental accumulation and materno-fetal transfer of MeAIB were reduced by 40% (P < 0.01), although expression of Slc38a1 was again elevated. Permanent reductions in placental vascularity occurred during the earlier but not the later period of treatment. Placental Hsd11b2 expression, which regulates feto-placental glucocorticoid bioavailability, was also affected by treatment at D19 only. Maternal corticosterone concentrations inversely correlated with materno-fetal MeAIB clearance and fetal weight at D19 but not D16. On D19, weight gain of the maternal carcass was normal during corticosterone treatment but reduced in those mice treated from D11 to D16, in which corticosterone levels were lowest. Maternal corticosterone is, therefore, a physiological regulator of the amino acid supply for fetal growth via actions on placental phenotype.
Collapse
Affiliation(s)
- Owen R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
21
|
Solati J. Alterations of sexual behavior and plasma concentrations of pituitary/gonadal hormones after early-life exposure of mice to cypermethrin. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Maniam J, Morris MJ. The link between stress and feeding behaviour. Neuropharmacology 2012; 63:97-110. [PMID: 22710442 DOI: 10.1016/j.neuropharm.2012.04.017] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Exposure to stress is inevitable, and it may occur, to varying degrees, at different phases throughout the lifespan. The impact of stress experienced in later life has been well documented as many populations in modern society experience increasing socio-economic demands. The effects of stress early in life are less well known, partly as the impact of an early exposure may be difficult to quantify, however emerging evidence shows it can impact later in life. One of the major impacts of stress besides changes in psychosocial behaviour is altered feeding responses. The system that regulates stress responses, the hypothalamo-pituitary-adrenal axis, also regulates feeding responses because the neural circuits that regulate food intake converge on the paraventricular nucleus, which contains corticotrophin releasing hormone (CRH), and urocortin containing neurons. In other words the systems that control food intake and stress responses share the same anatomy and thus each system can influence each other in eliciting a response. Stress is known to alter feeding responses in a bidirectional pattern, with both increases and decreases in intake observed. Stress-induced bidirectional feeding responses underline the complex mechanisms and multiple contributing factors, including the levels of glucocorticoids (dependent on the severity of a stressor), the interaction between glucocorticoids and feeding related neuropeptides such as neuropeptide Y (NPY), alpha-melanocyte stimulating hormone (α-MSH), agouti-related protein (AgRP), melanocortins and their receptors, CRH, urocortin and peripheral signals (leptin, insulin and ghrelin). This review discusses the neuropeptides that regulate feeding behaviour and how their function can be altered through cross-talk with hormones and neuropeptides that also regulate the hypothalamo-pituitary-adrenal axis. In addition, long-term stress induced alterations in feeding behaviour, and changes in gene expression of neuropeptides regulating stress and food intake through epigenetic modifications will be discussed. This article is part of a Special Issue entitled 'SI: Central Control of Food Intake'.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
23
|
Enayati M, Solati J, Hosseini MH, Shahi HR, Saki G, Salari AA. Maternal infection during late pregnancy increases anxiety- and depression-like behaviors with increasing age in male offspring. Brain Res Bull 2012; 87:295-302. [DOI: 10.1016/j.brainresbull.2011.08.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/08/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022]
|
24
|
Paris JJ, Brunton PJ, Russell JA, Frye CA. Immune stress in late pregnant rats decreases length of gestation and fecundity, and alters later cognitive and affective behaviour of surviving pre-adolescent offspring. Stress 2011; 14:652-64. [PMID: 21995525 PMCID: PMC3376536 DOI: 10.3109/10253890.2011.628719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immune challenge during pregnancy is associated with preterm birth and poor perinatal development. The mechanisms of these effects are not known. 5α-Pregnan-3α-ol-20-one (3α,5α-THP), the neuroactive metabolite of progesterone, is critical for neurodevelopment and stress responses, and can influence cognition and affective behaviours. To develop an immune challenge model of preterm birth, pregnant Long-Evans rat dams were administered lipopolysaccharide [LPS; 30 μg/kg/ml, intraperitoneal (IP)], interleukin-1β (IL-1β; 1 μg/rat, IP) or vehicle (0.9% saline, IP) daily on gestational days 17-21. Compared to control treatment, prenatal LPS or IL-1β reduced gestational length and the number of viable pups born. At 28-30 days of age, male and female offspring of mothers exposed to prenatal IL-1β had reduced cognitive performance in the object recognition task compared to controls. In females, but not males, prenatal IL-1β reduced anxiety-like behaviour, indicated by entries to the centre of an open field. In the hippocampus, progesterone turnover to its 5α-reduced metabolites was lower in prenatally exposed IL-1β female, but not in male offspring. IL-1β-exposed males and females had reduced oestradiol content in hippocampus, medial prefrontal cortex and diencephalon compared to controls. Thus, immune stress during late pregnancy reduced gestational length and negatively impacted birth outcomes, hippocampal function and central neurosteroid formation in the offspring.
Collapse
Affiliation(s)
- Jason J Paris
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA
| | | | | | | |
Collapse
|