1
|
Huang D, Li M, Qiao Z, Zhou H, Cai Y, Li X, Zhang Z, Zhou J. Effects of adolescent alcohol exposure on oligodendrocyte lineage cells and myelination in mice: Age and subregion differences. IBRO Neurosci Rep 2024; 17:220-234. [PMID: 39282551 PMCID: PMC11401168 DOI: 10.1016/j.ibneur.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Adolescence is an important phase for the structural and functional development of the brain. The immaturity of adolescent brain development is associated with high susceptibility to exogenous disturbances, including alcohol. In this study, the acquisition of conditioned place preference (CPP) in adolescent mice by alcohol (2 g/kg) and the parvalbumin-positive interneurons (PV+ interneurons), oligodendrocyte lineage cells (OPCs), and myelination in the medial prefrontal cortex (mPFC) were assessed. We aim to determine the age- and subregional-specificity of the effects of alcohol. Alcohol (2 g/kg) was injected intraperitoneally on even days, and saline was injected intraperitoneally on odd days. The control group received a continuous intraperitoneal injection with saline. Differences in alcohol-induced CPP acquisition were assessed, followed by immunohistochemical staining. The results showed a pronounced CPP acquisition in 4- and 5-week-old mice. In the mPFC, there were reduced PV+ interneurons and OPCs in 3-week-old mice and reduced oligodendrocyte numbers in 4-week-old mice. The 5-week-old mice showed impaired myelination and a decrease in the number of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC. Since the alterations in 5-week-old mice are more pronounced, we further explored the mPFC-associated subregional-specificity. In the alcohol-exposed mice, the oligodendrocyte numbers were decreased in the anterior cingulate cortex (ACC), PV+ interneuron numbers were declined in the prelimbic cortex (PL), and the number of oligodendrocytes, PV+ interneurons, and OPCs was also decreased with impaired myelination in the infralimbic cortex (IL). Our data suggest that adolescent alcohol exposure notably affected the acquisition of CPP, myelin formation, and the counts of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC in 5-week-old mice. Also, the IL subregion was the worst-affected subregion of the mPFC in alcohol-exposed 5-week-old mice. It reveals that the effects of alcohol on adolescence and its mPFC myelination show obvious age- and subregional-specificity.
Collapse
Affiliation(s)
- Dong Huang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Maolin Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifei Qiao
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongli Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Cai
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaolong Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zuo Zhang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiyin Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Liu C, Filbey FM. Unlocking the age-old secrets of reward and substance use. Pharmacol Biochem Behav 2024; 239:173766. [PMID: 38604456 DOI: 10.1016/j.pbb.2024.173766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Although substance use is widespread across the lifespan from early adolescence to older adulthood, the prevalence of substance use disorder (SUD) differs between age groups. These age differences in SUD rates necessitate an investigation into how age moderates reward sensitivity, and consequently influences the risks and consequences related to substance use. This theoretical review integrates evidence from the literature to address the dynamic interplay between age and reward in the context of substance use. Overall, increasing evidence demonstrates that age moderates reward sensitivity and underlying reward system neurobiology. Reward sensitivity undergoes a non-linear trajectory across the lifespan. Low levels of reward sensitivity are associated with childhood and late adulthood. In contrast, high levels are associated with early to late adolescence, followed by a decline in the twenties. These fluctuations in reward sensitivity across the lifespan contribute to complex associations with substance use. This lends support to adolescence and young adulthood as vulnerable periods for the risk of subsequent SUD. More empirical research is needed to investigate reward sensitivity during SUD maintenance and recovery. Future research should also involve larger sample sizes and encompass a broader range of age groups, including older adults.
Collapse
Affiliation(s)
- Che Liu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America.
| | - Francesca M Filbey
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America
| |
Collapse
|
3
|
Giacometti LL, Side CM, Chandran K, Stine S, Buck LA, Wenzel-Rideout RM, Barker JM. Effects of adolescent ethanol exposure on adult nondrug reward seeking behavior in male and female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1736-1747. [PMID: 37438117 DOI: 10.1111/acer.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Adolescent alcohol use is associated with an increased likelihood of developing an alcohol use disorder in adulthood, potentially due to the effects of alcohol exposure on reward-seeking behavior. However, it remains unclear whether adolescent drinking is sufficient to alter nondrug reward seeking in adulthood. As adolescence is a period of both brain and sexual maturation, which occur in a sex-dependent manner, males and females may be differentially sensitive to the consequences of adolescent alcohol exposure. The present study investigated whether adolescent ethanol exposure affected food reward taking and seeking in male and female adult mice. METHODS Male and female C57BL/6J mice underwent intermittent ethanol exposure (AIE) via vapor inhalation during early adolescence (28-42 days of age). At 10 weeks of age, the mice were trained in a conditioned place preference paradigm (CPP) for a food reward. We measured food consumption, CPP, and cFos expression in multiple brain regions following CPP testing. Data were analyzed using repeated measures analysis of variance with exposure (air vs. AIE), sex, and time as factors. RESULTS AIE exposure increased food consumption during CPP training in adult male mice, but reduced pellet consumption in adult female mice. AIE exposure impaired CPP expression only in female mice. Despite these behavioral differences, exposure to the reward-paired chamber did not induce differential cFos expression following CPP testing in the prelimbic and infralimbic cortices or the nucleus accumbens core and shell. CONCLUSION These findings indicate that adolescent ethanol exposure disrupted nondrug reward taking and seeking in adulthood in female mice and altered consumption in adult male mice.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kelsey Chandran
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Sam Stine
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rebecca M Wenzel-Rideout
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Age-related differences in the effect of chronic alcohol on cognition and the brain: a systematic review. Transl Psychiatry 2022; 12:345. [PMID: 36008381 PMCID: PMC9411553 DOI: 10.1038/s41398-022-02100-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Adolescence is an important developmental period associated with increased risk for excessive alcohol use, but also high rates of recovery from alcohol use-related problems, suggesting potential resilience to long-term effects compared to adults. The aim of this systematic review is to evaluate the current evidence for a moderating role of age on the impact of chronic alcohol exposure on the brain and cognition. We searched Medline, PsycInfo, and Cochrane Library databases up to February 3, 2021. All human and animal studies that directly tested whether the relationship between chronic alcohol exposure and neurocognitive outcomes differs between adolescents and adults were included. Study characteristics and results of age-related analyses were extracted into reference tables and results were separately narratively synthesized for each cognitive and brain-related outcome. The evidence strength for age-related differences varies across outcomes. Human evidence is largely missing, but animal research provides limited but consistent evidence of heightened adolescent sensitivity to chronic alcohol's effects on several outcomes, including conditioned aversion, dopaminergic transmission in reward-related regions, neurodegeneration, and neurogenesis. At the same time, there is limited evidence for adolescent resilience to chronic alcohol-induced impairments in the domain of cognitive flexibility, warranting future studies investigating the potential mechanisms underlying adolescent risk and resilience to the effects of alcohol. The available evidence from mostly animal studies indicates adolescents are both more vulnerable and potentially more resilient to chronic alcohol effects on specific brain and cognitive outcomes. More human research directly comparing adolescents and adults is needed despite the methodological constraints. Parallel translational animal models can aid in the causal interpretation of observed effects. To improve their translational value, future animal studies should aim to use voluntary self-administration paradigms and incorporate individual differences and environmental context to better model human drinking behavior.
Collapse
|
5
|
Coleman LG, Crews FT, Vetreno RP. The persistent impact of adolescent binge alcohol on adult brain structural, cellular, and behavioral pathology: A role for the neuroimmune system and epigenetics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:1-44. [PMID: 34696871 DOI: 10.1016/bs.irn.2021.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adolescence is a critical neurodevelopmental window for maturation of brain structure, neurocircuitry, and glia. This development is sculpted by an individual's unique experiences and genetic background to establish adult level cognitive function and behavioral makeup. Alcohol abuse during adolescence is associated with an increased lifetime risk for developing an alcohol use disorder (AUD). Adolescents participate in heavy, episodic binge drinking that causes persistent changes in neurocircuitry and behavior. These changes may underlie the increased risk for AUD and might also promote cognitive deficits later in life. In this chapter, we have examined research on the persistent effects of adolescent binge-drinking both in humans and in rodent models. These studies implicate roles for neuroimmune signaling as well as epigenetic reprogramming of neurons and glia, which create a vulnerable neuroenvironment. Some of these changes are reversible, giving hope for future treatments to prevent many of the long-term consequences of adolescent alcohol abuse.
Collapse
Affiliation(s)
- Leon G Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Fulton T Crews
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Mugantseva E, Hyytiä P, Latvala A. Voluntary Adolescent-Onset Alcohol Drinking Fails to Influence Alcohol Consumption or Anxiety-Like Behaviour in Adulthood in Female Alcohol-Preferring Rats. Alcohol Alcohol 2021; 57:396-403. [PMID: 34463340 PMCID: PMC9086760 DOI: 10.1093/alcalc/agab063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Alcohol exposure during adolescence is associated with both increased risk for alcohol use disorders and anxiety in adulthood. Our present experiments examined this association using alcohol-preferring AA (Alko Alcohol) rats selected for high voluntary alcohol drinking. METHODS Two groups of female AA rats acquired alcohol drinking at different ages. We gave the adolescent-onset group free choice to 10% alcohol and water for seven weeks, starting on post-natal day 42 (PND 42), whereas the adult-onset group started drinking alcohol on PND 112. After the 7-week drinking, we withdrew the adolescent group from alcohol for two weeks, followed by another voluntary 7-week drinking period, started at the same age as the adult-onset group. We assessed anxiety-like behaviour repeatedly during alcohol drinking with open field and elevated plus maze tests. At the end of alcohol drinking, we also tested the rats using the light/dark box, stress-induced body temperature test and social dominance test. RESULTS During the first 7-week alcohol drinking, adolescent rats exhibited significantly slower acquisition of alcohol drinking and lower alcohol preference than the adult-onset group. However, when tested at the same age as the adult-onset rats, they displayed identical alcohol intake and preference. We found no alcohol-induced effects on anxiety- or stress-related behaviour in the experimental groups at any time points. CONCLUSIONS These data show that the genetically determined phenotype of high alcohol drinking of the female alcohol-preferring AA rats is not associated with a predisposition to develop anxiety-like behaviour following voluntary alcohol exposure, even when initiated during adolescence.
Collapse
Affiliation(s)
- Ekaterina Mugantseva
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), FI-00014 Helsinki, Finland.,Institute of Theoretical and Experimental Biophysics RAS, Institutskaya, 3, Pushchino, 142290, Moscow region, Russia
| | - Petri Hyytiä
- Department of Pharmacology, Medicum, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland
| | - Antti Latvala
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), FI-00014 Helsinki, Finland.,Institute of Criminology and Legal Policy, University of Helsinki, P.O. Box 16 (Snellmaninkatu 10), FI-00014 Helsinki, Finland
| |
Collapse
|
7
|
Towner TT, Varlinskaya EI. Adolescent Ethanol Exposure: Anxiety-Like Behavioral Alterations, Ethanol Intake, and Sensitivity. Front Behav Neurosci 2020; 14:45. [PMID: 32296315 PMCID: PMC7136472 DOI: 10.3389/fnbeh.2020.00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 01/29/2023] Open
Abstract
Adolescence is a developmental period associated with rapid age-specific physiological, neural, and hormonal changes. Behaviorally, human adolescents are characterized by age-typical increases in novelty-seeking and risk-taking, including the frequent initiation of alcohol and drug use. Alcohol use typically begins during early adolescence, and older adolescents often report high levels of alcohol consumption, commonly referred to as high-intensity drinking. Early-onset and heavy drinking during adolescence are associated with an increased risk of developing alcohol use disorders later in life. Yet, long-term behavioral consequences of adolescent alcohol use that might contribute to excessive drinking in adulthood are still not well understood. Recent animal research, however, using different exposure regimens and routes of ethanol administration, has made substantial progress in identifying the consequences of adolescent ethanol exposure that last into adulthood. Alterations associated with adolescent ethanol exposure include increases in anxiety-like behavior, impulsivity, risk-taking, and ethanol intake, although the observed alterations differ as a function of exposure regimens and routes of ethanol administration. Rodent studies have also shown that adolescent ethanol exposure produces alterations in sensitivity to ethanol, with these alterations reminiscent of adolescent-typical ethanol responsiveness. The goal of this mini-review article is to summarize the current state of animal research, focusing on the long-term consequences related to adolescent ethanol exposure, with a special emphasis on the behavioral alterations and changes to ethanol sensitivity that can foster high levels of drinking in adulthood.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
8
|
Carrara-Nascimento PF, Hoffmann LB, Flório JC, Planeta CS, Camarini R. Effects of Ethanol Exposure During Adolescence or Adulthood on Locomotor Sensitization and Dopamine Levels in the Reward System. Front Behav Neurosci 2020; 14:31. [PMID: 32210774 PMCID: PMC7067700 DOI: 10.3389/fnbeh.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/13/2020] [Indexed: 12/02/2022] Open
Abstract
Behavioral sensitization is a process of neuroadaptation characterized by a gradual increase in motor behaviors. The major neural substrates involved in the behavioral sensitization lie on the dopaminergic mesocorticolimbic pathway, which is still under development during adolescence. To investigate age-differences in ethanol behavioral sensitization and dopamine levels in distinct brain regions of the reward system, adolescent and adult mice were repeatedly pretreated with saline or ethanol (2.0 g/kg i.p.) during 15 consecutive days and challenged with saline or ethanol 5 days after pretreatment. Dopamine and its metabolites were measured in tissue samples of the prefrontal cortex (PFC), nucleus accumbens (NAc) and striatum by HPLC analysis. While repeated ethanol administration resulted in the development of locomotor sensitization in both adult and adolescent mice, only the adults expressed sensitization to a subsequent ethanol challenge injection. Neurochemical results showed reduced dopamine levels in adolescents compared to adults. Specifically, mice pretreated with ethanol during adolescence displayed lower dopamine levels in the PFC compared to the respective adult group in response to an ethanol challenge injection, and preadolescent mice exhibited lower dopamine levels in the NAc following an acute ethanol treatment compared to adults. These findings suggest that adolescent mice are not only less sensitive to the expression of ethanol-induced sensitization than adults, but also show lower dopamine content after ethanol exposition in the PFC and NAc.
Collapse
Affiliation(s)
| | - Lucas Barbosa Hoffmann
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Camilo Flório
- Departmento de Patologia, Escola de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
| | - Cleopatra Silva Planeta
- Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, Brazil
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Camarini R, Hoffmann LB, Suarez A, Rae M, Marcourakis T, Pautassi RM. Cocaine-induced behavioral sensitization is greater in adolescent than in adult mice and heightens cocaine-induced conditioned place preference in adolescents. Pharmacol Biochem Behav 2019; 181:60-68. [PMID: 31004629 DOI: 10.1016/j.pbb.2019.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 11/25/2022]
Abstract
Adolescents are more sensitive than adults to the neural and behavioral effects of psychostimulants, and exhibit greater vulnerability to drug abuse, dependence or relapse into these conditions. We have reported that cocaine pretreatment during adolescence promotes the expression of behavioral sensitization to a greater extent than when the pretreatment occurs at adulthood. Behavioral sensitization has been associated to the transition from drug use to addiction and is postulated to indicate heightened sensitivity to the appetitive motivational effects of drugs. The relationship between behavioral sensitization and conventional measures of drug reward, such as conditioned place preference (CPP), has yet to be thoroughly investigated, and little is known about age-related differences in this phenomenon. The present study tested cocaine-induced CPP in adolescent and adult mice exposed to cocaine (or vehicle) pretreatment, either in an intermittent or "binge" (i.e., heavy cocaine use on a single occasion, which increases the likelihood of experiencing cocaine-related problems) fashion. Cocaine administration induced behavioral sensitization to a greater extent in adolescent than in adult mice. Cocaine-induced CPP was fairly similar in vehicle pretreated adolescent and adult mice, yet greater in adolescent vs. adults after cocaine-induced sensitization. The results confirmed the higher sensitivity of adolescent mice to cocaine-induced behavioral sensitization and suggest its association with greater sensitivity to cocaine's rewarding effects.
Collapse
Affiliation(s)
- Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Lucas Barbosa Hoffmann
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Andrea Suarez
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - Mariana Rae
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
10
|
Nona CN, Hendershot CS, Lê AD. Behavioural sensitization to alcohol: Bridging the gap between preclinical research and human models. Pharmacol Biochem Behav 2018; 173:15-26. [DOI: 10.1016/j.pbb.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
|
11
|
Camarini R, Marianno P, Rae M. Social Factors in Ethanol Sensitization. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:53-80. [PMID: 30193709 DOI: 10.1016/bs.irn.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Behavioral sensitization is a neuroadaptive process characterized by an increase in a particular behavior after repeated exposure to drugs or other stimuli, such as stress. Sensitization can also be extended to neurochemical and neuroendocrine sensitization. Several factors can influence sensitization to the effects of ethanol. For instance, stress is an important component in addiction that can strengthen ethanol-induced behaviors. In animal models, stressful situations can be induced by alterations in social aspects of the animal's environment, such as maternal separation, social conflicts, and housing conditions. Social conflict models involve acute, chronic or intermittent interaction of an animal to a conspecific and can occur at any stage of life, including preweaning, adolescence or adulthood. These events can influence ethanol-induced behavioral sensitization in different ways, such as increases in locomotion, drug reward, and drug-taking behaviors. On the other hand, environmental enrichment can produce a protective phenotype against drug-related behaviors. In this chapter, we discuss findings regarding consequences of social stress and environmental enrichment on sensitization to ethanol.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Mariana Rae
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| |
Collapse
|
12
|
Santos-Rocha JB, Rae M, Teixeira AMA, Teixeira SA, Munhoz CD, Muscará MN, Marcourakis T, Szumlinski KK, Camarini R. Involvement of neuronal nitric oxide synthase in cross-sensitization between chronic unpredictable stress and ethanol in adolescent and adult mice. Alcohol 2018; 68:71-79. [PMID: 29525685 DOI: 10.1016/j.alcohol.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 01/05/2023]
Abstract
The peculiar neurochemical profile of the adolescent brain renders it differently susceptible to several stimuli, including stress and/or drug exposure. Among several stress mediators, nitric oxide (NO) has a role in stress responses. We have demonstrated that adolescent mice are less sensitive to ethanol-induced sensitization than adult mice. The present study investigated whether chronic unpredictable stress (CUS) induces behavioral sensitization to ethanol in adolescent and adult Swiss mice, and investigated the influence of Ca2+-dependent nitric oxide synthase (NOS) activity in the phenomenon. Adolescent and adult mice were exposed to repeated 1.8 g/kg ethanol or CUS and challenged with saline or ethanol. A neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7NI), was administered along with ethanol and CUS to test its effects on behavioral sensitization. Both adolescent and adult mice displayed cross-sensitization between CUS and ethanol in adult mice, with adolescents showing a lower degree of sensitization than adults. nNOS inhibition by 7NI reduced both ethanol sensitization and cross-sensitization. All age differences in the Ca2+-dependent NOS activity in the hippocampus and prefrontal cortex were in the direction of greater activity in adults than in adolescents. Adolescents showed lower sensitivity to cross-sensitization between CUS and ethanol, and the nitric oxide (NO) system seems to have a pivotal role in ethanol-induced behavioral sensitization and cross-sensitization in both adolescent and adult mice.
Collapse
Affiliation(s)
| | - Mariana Rae
- Departmento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, 05508-900, Brazil
| | | | - Simone Aparecida Teixeira
- Departmento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, 05508-900, Brazil
| | - Carolina Demarchi Munhoz
- Departmento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, 05508-900, Brazil
| | - Marcelo Nicolas Muscará
- Departmento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, 05508-900, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP, 05508-000, Brazil
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106-9660, United States
| | - Rosana Camarini
- Departmento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
13
|
Nunez KM, Azanchi R, Kaun KR. Cue-Induced Ethanol Seeking in Drosophila melanogaster Is Dose-Dependent. Front Physiol 2018; 9:438. [PMID: 29740347 PMCID: PMC5925608 DOI: 10.3389/fphys.2018.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 12/27/2022] Open
Abstract
Alcohol use disorder generates devastating social, medical and economic burdens, making it a major global health issue. The persistent nature of memories associated with intoxication experiences often induces cravings and triggers relapse in recovering individuals. Despite recent advances, the neural and molecular mechanisms underlying these memories are complex and not well understood. This makes finding effective pharmacological targets challenging. The investigation of persistent alcohol-associated memories in the fruit fly, Drosophila melanogaster, presents a unique opportunity to gain a comprehensive understanding of the memories for ethanol reward at the level of genes, molecules, neurons and circuits. Here we characterize the dose-dependent nature of ethanol on the expression of memory for an intoxication experience. We report that the concentration of ethanol, number of ethanol exposures, length of ethanol exposures, and timing between ethanol exposures are critical in determining whether ethanol is perceived as aversive or appetitive, and in how long the memory for the intoxicating properties of ethanol last. Our study highlights that fruit flies display both acute and persistent memories for ethanol-conditioned odor cues, and that a combination of parameters that determine the intoxication state of the fly influence the seemingly complex retention and expression of memories associated with intoxication. Our thorough behavioral characterization provides the opportunity to interrogate the biological underpinnings of these observed preference differences in future studies.
Collapse
Affiliation(s)
- Kavin M Nunez
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, United States
| | - Reza Azanchi
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
14
|
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 2018; 19:197-214. [PMID: 29467469 DOI: 10.1038/nrn.2018.10] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Per occasion, alcohol consumption is higher in adolescents than in adults in both humans and laboratory animals, with changes in the adolescent brain probably contributing to this elevated drinking. This Review examines the contributors to and consequences of the use of alcohol in adolescents. Human adolescents with a history of alcohol use differ neurally and cognitively from other adolescents; some of these differences predate the commencement of alcohol consumption and serve as potential risk factors for later alcohol use, whereas others emerge from its use. The consequences of alcohol use in human adolescents include alterations in attention, verbal learning, visuospatial processing and memory, along with altered development of grey and white matter volumes and disrupted white matter integrity. The functional consequences of adolescent alcohol use emerging from studies of rodent models of adolescence include decreased cognitive flexibility, behavioural inefficiencies and elevations in anxiety, disinhibition, impulsivity and risk-taking. Rodent studies have also showed that adolescent alcohol use can impair neurogenesis, induce neuroinflammation and epigenetic alterations, and lead to the persistence of adolescent-like neurobehavioural phenotypes into adulthood. Although only a limited number of studies have examined comparable measures in humans and laboratory animals, the available data provide evidence for notable across-species similarities in the neural consequences of adolescent alcohol exposure, providing support for further translational efforts in this context.
Collapse
Affiliation(s)
- Linda P Spear
- Developmental Exposure Alcohol Research Center (DEARC) and Behavioural Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
15
|
Fernández MS, Báez B, Bordón A, Espinosa L, Martínez E, Pautassi RM. Short-term selection for high and low ethanol intake yields differential sensitivity to ethanol's motivational effects and anxiety-like responses in adolescent Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:220-233. [PMID: 28663116 DOI: 10.1016/j.pnpbp.2017.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/25/2017] [Accepted: 06/24/2017] [Indexed: 12/18/2022]
Abstract
Alcohol use disorders are modulated by genetic factors, but the identification of specific genes and their concomitant biological changes that are associated with a higher risk for these disorders has proven difficult. Alterations in the sensitivity to the motivational effects of ethanol may be one way by which genes modulate the initiation and escalation of ethanol intake. Rats and mice have been selectively bred for high and low ethanol consumption during adulthood. However, selective breeding programs for ethanol intake have not focused on adolescence. This phase of development is associated with the initiation and escalation of ethanol intake and characterized by an increase in the sensitivity to ethanol's appetitive effects and a decrease in the sensitivity to ethanol's aversive effects compared with adulthood. The present study performed short-term behavioral selection to select rat lines that diverge in the expression of ethanol drinking during adolescence. A progenitor nucleus of Wistar rats (F0) and filial generation 1 (F1), F2, and F3 adolescent rats were derived from parents that were selected for high (STDRHI) and low (STDRLO) ethanol consumption during adolescence and were tested for ethanol intake and responsivity to ethanol's motivational effects. STDRHI rats exhibited significantly greater ethanol intake and preference than STDRLO rats. Compared with STDRLO rats, STDRHI F2 and F3 rats exhibited a blunted response to ethanol in the conditioned taste aversion test. F2 and F3 STDRHI rats but not STDRLO rats exhibited ethanol-induced motor stimulation. STDRHI rats exhibited avoidance of the white compartment of the light-dark box, a reduction of locomotion, and a reduction of saccharin consumption, suggesting an anxiety-prone phenotype. The results suggest that the genetic risk for enhanced ethanol intake during adolescence is associated with lower sensitivity to the aversive effects of ethanol, heightened reactivity to ethanol's stimulating effects, and enhanced innate anxiety.
Collapse
Affiliation(s)
- Macarena Soledad Fernández
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina
| | - Bárbara Báez
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina
| | - Ana Bordón
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina
| | - Laura Espinosa
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina
| | - Eliana Martínez
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba C.P. 5000, Argentina.
| |
Collapse
|
16
|
Hendershot CS, Nona CN. A Review of Developmental Considerations in Human Laboratory Alcohol Research. CURRENT ADDICTION REPORTS 2017; 4:364-378. [PMID: 29326866 DOI: 10.1007/s40429-017-0173-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Human laboratory studies involving alcohol administration have generated critical knowledge about individual differences in risk for alcohol use disorder (AUD), but have primarily involved adult populations and cross-sectional research designs. Ethical constraints have largely precluded human laboratory alcohol research in adolescence, and prospective studies have been rare. This paper provides an overview of developmental considerations in human laboratory alcohol research, with a focus on studies conducted with youth. RECENT FINDINGS Recent human laboratory studies from Europe and Canada have examined aspects of alcohol response during late adolescence, while recent survey studies from the United States have highlighted methods for circumventing alcohol administration in studies of adolescents. SUMMARY Across several decades of research, exceedingly few laboratory studies have examined developmental differences in alcohol responses or utilized prospective designs. Efforts to prioritize prospective research would further clarify the role of alcohol sensitivity traits as predictors or markers of AUD onset and progression.
Collapse
Affiliation(s)
- Christian S Hendershot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Christina N Nona
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Effects of environmental enrichment upon ethanol-induced conditioned place preference and pre-frontal BDNF levels in adolescent and adult mice. Sci Rep 2017; 7:8574. [PMID: 28819238 PMCID: PMC5561235 DOI: 10.1038/s41598-017-08795-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023] Open
Abstract
Environmental enrichment (EE) provides a non-pharmacological tool to alter drug-induced reward, yet its effects on ethanol-induced reward remain controversial. We analyzed adolescent vs. adult (mice) differences in the influence of EE on ethanol-induced conditioned place preference (CPP). The effects of these treatments on brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex were examined in a separate group of animals. Ethanol-induced CPP was found in adults, and it was similar in EE and in animals reared under standard housing conditions (SC). Adolescents kept under EE, but not those in SC, exhibited CPP. Among SC, but not among EE, adolescents, BDNF levels were significantly lower in those treated with ethanol than in those given vehicle. These results indicate that, compared to adults, adolescent exhibited reduced sensitivity to ethanol’s rewarding effects, yet the youth but not the adults exhibited sensitivity to the promoting effect of EE upon CPP by ethanol. Ethanol significantly reduced BDNF levels in adolescents reared under standard housing conditions, but not in adult mice nor in adolescents given EE housing conditions. The present results add to the plethora of adolescent-specific responses to ethanol or to environmental stimuli that may put the youth at risk for escalation of ethanol intake.
Collapse
|
18
|
Carrara-Nascimento PF, Hoffmann LB, Contó MB, Marcourakis T, Camarini R. Ethanol Sensitization during Adolescence or Adulthood Induces Different Patterns of Ethanol Consumption without Affecting Ethanol Metabolism. Front Behav Neurosci 2017; 11:46. [PMID: 28386220 PMCID: PMC5362622 DOI: 10.3389/fnbeh.2017.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
In previous study, we demonstrated that ethanol preexposure may increase ethanol consumption in both adolescent and adult mice, in a two-bottle choice model. We now questioned if ethanol exposure during adolescence results in changes of consumption pattern using a three-bottle choice procedure, considering drinking-in-the-dark and alcohol deprivation effect as strategies for ethanol consumption escalation. We also analyzed aldehyde dehydrogenase (ALDH) activity as a measurement of ethanol metabolism. Adolescent and adult Swiss mice were treated with saline (SAL) or 2.0 g/kg ethanol (EtOH) during 15 days (groups: Adolescent-SAL, Adolescent-EtOH, Adult-SAL and Adult-EtOH). Five days after the last injection, mice were exposed to the three-bottle choice protocol using sucrose fading procedure (4% + sucrose vs. 8%–15% ethanol + sucrose vs. water + sucrose) for 2 h during the dark phase. Sucrose was faded out from 8% to 0%. The protocol was composed of a 6-week acquisition period, followed by four withdrawals and reexposures. Both adolescent and adult mice exhibited ethanol behavioral sensitization, although the magnitude of sensitization in adolescents was lower than in adults. Adolescent-EtOH displayed an escalation of 4% ethanol consumption during acquisition that was not observed in Adult-EtOH. Moreover, Adult-EtOH consumed less 4% ethanol throughout all the experiment and less 15% ethanol in the last reexposure period than Adolescent-EtOH. ALDH activity varied with age, in which older mice showed higher ALDH than younger ones. Ethanol pretreatment or the pattern of consumption did not have influence on ALDH activity. Our data suggest that ethanol pretreatment during adolescence but not adulthood may influence the pattern of ethanol consumption toward an escalation in ethanol consumption at low dose, without exerting an impact on ALDH activity.
Collapse
Affiliation(s)
- Priscila F Carrara-Nascimento
- Laboratory of Neurochemistry and Behavioral Pharmacology, Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo São Paulo, Brazil
| | - Lucas B Hoffmann
- Laboratory of Neurochemistry and Behavioral Pharmacology, Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo São Paulo, Brazil
| | - Marcos B Contó
- Laboratory of Neurochemistry and Behavioral Pharmacology, Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, Universidade de São Paulo São Paulo, Brazil
| | - Rosana Camarini
- Laboratory of Neurochemistry and Behavioral Pharmacology, Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
19
|
Alcohol drinking during adolescence increases consumptive responses to alcohol in adulthood in Wistar rats. Alcohol 2017; 59:43-51. [PMID: 28187948 DOI: 10.1016/j.alcohol.2016.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023]
Abstract
Binge drinking and the onset of alcohol-use disorders usually peak during the transition between late adolescence and early adulthood, and early adolescent onset of alcohol consumption has been demonstrated to increase the risk for alcohol dependence in adulthood. In the present study, we describe an animal model of early adolescent alcohol consumption where animals drink unsweetened and unflavored ethanol in high concentrations (20%). Using this model, we investigated the influence of drinking on alcohol-related appetitive behavior and alcohol consumption levels in early adulthood. Further, we also sought to investigate whether differences in alcohol-related drinking behaviors were specific to exposure in adolescence versus exposure in adulthood. Male Wistar rats were given a 2-bottle choice between 20% ethanol and water in one group and between two water bottles in another group during their adolescence (Postnatal Day [PD] 26-59) to model voluntary drinking in adolescent humans. As young adults (PD85), rats were trained in a paradigm that provided free access to 20% alcohol for 25 min after completing up to a fixed-ratio (FR) 16 lever press response. A set of young adult male Wistar rats was exposed to the same paradigm using the same time course, beginning at PD92. The results indicate that adolescent exposure to alcohol increased consumption of alcohol in adulthood. Furthermore, when investigating differences between adolescent high and low drinkers in adulthood, high consumers continued to drink more alcohol, had fewer FR failures, and faster completion of FR schedules in adulthood, whereas the low consumers were no different from controls. Rats exposed to ethanol in young adulthood also increased future intake, but there were no differences in any other components of drinking behavior. Both adolescent- and adult-exposed rats did not exhibit an increase in lever pressing during the appetitive challenge session. These data indicate that adolescent and early adult alcohol exposure can increase consumptive aspects of drinking but that adolescent exposure may preferentially influence the motivation to drink.
Collapse
|
20
|
Camarini R, Pautassi RM. Behavioral sensitization to ethanol: Neural basis and factors that influence its acquisition and expression. Brain Res Bull 2016; 125:53-78. [PMID: 27093941 DOI: 10.1016/j.brainresbull.2016.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/29/2022]
Abstract
Ethanol-induced behavioral sensitization (EBS) was first described in 1980, approximately 10 years after the phenomenon was described for psychostimulants. Ethanol acts on γ-aminobutyric acid (GABA) and glutamate receptors as an allosteric agonist and antagonist, respectively, but it also affects many other molecular targets. The multiplicity of factors involved in the behavioral and neurochemical effects of ethanol and the ensuing complexity may explain much of the apparent disparate results, found across different labs, regarding ethanol-induced behavioral sensitization. Although the mesocorticolimbic dopamine system plays an important role in EBS, we provide evidence of the involvement of other neurotransmitter systems, mainly the glutamatergic, GABAergic, and opioidergic systems. This review also analyses the neural underpinnings (e.g., induction of cellular transcription factors such as cyclic adenosine monophosphate response element binding protein and growth factors, such as the brain-derived neurotrophic factor) and other factors that influence the phenomenon, including age, sex, dose, and protocols of drug administration. One of the reasons that make EBS an attractive phenomenon is the assumption, firmly based on empirical evidence, that EBS and addiction-related processes have common molecular and neural basis. Therefore, EBS has been used as a model of addiction processes. We discuss the association between different measures of ethanol-induced reward and EBS. Parallels between the pharmacological basis of EBS and acute motor effects of ethanol are also discussed.
Collapse
Affiliation(s)
- Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigaciones Médicas M. y M. Ferreyra, Córdoba (IMMF-CONICET-Universidad Nacional de Córdoba), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
21
|
Delta-9-tetrahydrocannabinol (THC) history fails to affect THC's ability to induce place preferences in rats. Pharmacol Biochem Behav 2016; 144:1-6. [PMID: 26905371 DOI: 10.1016/j.pbb.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/07/2023]
Abstract
RATIONALE In pre-clinical models of marijuana abuse, there is relatively limited evidence of delta-9-tetrahydrocannabinol's (THC) rewarding effects, as indexed by its general inability to induce a place preference. One explanation for this failure is that its rewarding effects are masked by its concurrently occurring aversive properties. Consistent with this explanation, THC pre-exposure, which presumably weakens its aversive effects, induces place preferences. Such demonstrations are limited to mice and given reported species differences in THC reactivity, it is unknown to what extent the same shift in affective properties would be evident in rats. METHODS The present experiment examined the effect of THC history (3.2mg/kg) on THC (1 or 3.2mg/kg) induced place preference conditioning in rats. An assessment of taste avoidance was also run to independently characterize THC's aversive effects and any changes that occurred with drug pre-exposure. These assessments were made in a combined taste avoidance/place preference procedure in which a novel saccharin solution and environment were paired with THC (0, 1 or 3.2mg/kg). RESULTS THC did not induce place conditioning, and a history of THC was ineffective in increasing THC's ability to do so, despite the fact that this same history significantly attenuated the aversive effects of THC. CONCLUSIONS The failure of THC to consistently induce place preferences has been argued to be a function of its concurrently occurring aversive effects masking its rewarding properties. The fact that pre-exposure to THC significantly reduced its aversive effects without impacting THC's ability to induce place preferences suggests that THC has weak rewarding effects and/or its residual aversive affects may have still masked its rewarding properties. An important area for future work will be characterizing under what conditions THC is rewarding and whether its overall reinforcing effects are impacted by the relationship between its affective properties.
Collapse
|
22
|
Prenatal stress and adult drug-seeking behavior: interactions with genes and relation to nondrug-related behavior. ADVANCES IN NEUROBIOLOGY 2015; 10:75-100. [PMID: 25287537 DOI: 10.1007/978-1-4939-1372-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addiction inflicts large personal, social, and economic burdens, yet its etiology is poorly defined and effective treatments are lacking. As with other neuropsychiatric disorders, addiction is characterized by a core set of symptoms and behaviors that are believed to be influenced by complex gene-environment interactions. Our group focuses on the interaction between early stress and genetic background in determining addiction vulnerability. Prior work by our group and others has indicated that a history of prenatal stress (PNS) in rodents elevates adult drug seeking in a number of behavioral paradigms. The focus of the present chapter is to summarize work in the area of PNS and addiction models as well as our recent studies of PNS on drug seeking in different strains of mice as a strategy to dissect gene-environment interactions underlying cocaine addiction vulnerability. These studies indicate that ability of PNS to elevate adult cocaine seeking is strain dependent. Further, PNS also alters other nondrug behaviors in a fashion that is dependent on different strains and independent from the strain dependence of drug seeking. Thus, it appears that the ability of PNS to alter behavior related to different psychiatric conditions is orthogonal, with similar nonspecific susceptibility to prenatal stress across genetic backgrounds but with the genetic background determining the specific nature of the PNS effects. Finally, the advent of recombinant inbred mouse strains is allowing us to determine the genetic bases of these gene-environment interactions. Understanding these effects will have broad implications to determining the nature of vulnerability to addiction and perhaps other disorders.
Collapse
|
23
|
Quintanilla ME, Rivera-Meza M, Berrios-Cárcamo PA, Bustamante D, Buscaglia M, Morales P, Karahanian E, Herrera-Marschitz M, Israel Y. Salsolinol, free of isosalsolinol, exerts ethanol-like motivational/sensitization effects leading to increases in ethanol intake. Alcohol 2014; 48:551-9. [PMID: 25086835 DOI: 10.1016/j.alcohol.2014.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Salsolinol is formed non-enzymatically when ethanol-derived acetaldehyde binds to dopamine, yielding 2 distinct products, i.e., salsolinol and isosalsolinol. Early animal studies, revealing that salsolinol promotes alcohol consumption and recent evidence that animals will readily self-administer salsolinol into the posterior ventral tegmental area (p-VTA) together with the finding that salsolinol is able to induce conditioned place preference and to increase locomotor activity, have outlined a role of salsolinol in the behavioral and neurobiological actions of ethanol. Until recently, the only commercially available salsolinol was a mixture containing 85% salsolinol and 10-15% isosalsolinol. The possibility thus exists that either salsolinol or isosalsolinol explains the reinforcing properties of ethanol. We report here that a newly available salsolinol is free of isosalsolinol. Thus, salsolinol, free of isosalsolinol, was injected intracerebrally (30 pmol/0.2 μL, into the ventral tegmental area [VTA]) or intraperitoneally (i.p.) (10 mg/kg) to naïve rats bred as alcohol drinkers to study salsolinol's motivational effects and its role on voluntary ethanol intake. Salsolinol produced conditioned place preference and increased locomotor activity, whether injected intra-VTA or intraperitoneally. Following systemic (i.p.) administration of 10 mg/kg salsolinol, this molecule was detected in vivo by microdialysis of neostriatum, reaching an estimated concentration of 100 nM in the dialyzate. These results indicate that systemically administered salsolinol is able to cross the blood-brain barrier (BBB). Repeated administration of salsolinol sensitized rats to the locomotor activity and led to increases in voluntary ethanol consumption, which was prevented by intra-VTA pretreatment with naltrexone.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Mario Rivera-Meza
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo A Berrios-Cárcamo
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Bustamante
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Marianne Buscaglia
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Eduardo Karahanian
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
24
|
Moreira-Silva D, Morais-Silva G, Fernandes-Santos J, Planeta CS, Marin MT. Stress Abolishes the Effect of Previous Chronic Ethanol Consumption on Drug Place Preference and on the Mesocorticolimbic Brain Pathway. Alcohol Clin Exp Res 2014; 38:1227-36. [DOI: 10.1111/acer.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Daniel Moreira-Silva
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
| | - Gessynger Morais-Silva
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
| | | | - Cleopatra S. Planeta
- Laboratory of Pharmacology ; School of Pharmaceutical Sciences; Univ. Estadual Paulista (UNESP); Araraquara Brazil
| | - Marcelo T. Marin
- Institute of Biomedical Sciences ; Federal University of Uberlândia (UFU); Uberlândia Brazil
- Laboratory of Pharmacology ; School of Pharmaceutical Sciences; Univ. Estadual Paulista (UNESP); Araraquara Brazil
| |
Collapse
|
25
|
Soares-Simi SL, Pastrello DM, Ferreira ZS, Yonamine M, Marcourakis T, Scavone C, Camarini R. Changes in CREB activation in the prefrontal cortex and hippocampus blunt ethanol-induced behavioral sensitization in adolescent mice. Front Integr Neurosci 2013; 7:94. [PMID: 24379765 PMCID: PMC3861743 DOI: 10.3389/fnint.2013.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
Drug dependence is a major health problem in adults and has been recognized as a significant problem in adolescents. We previously demonstrated that repeated treatment with a behaviorally sensitizing dose of ethanol in adult mice induced tolerance or no sensitization in adolescents and that repeated ethanol-treated adolescents expressed lower Fos and Egr-1 expression than adult mice in the prefrontal cortex (PFC). In the present work, we investigated the effects of acute and repeated ethanol administration on cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) DNA-binding activity using the electrophoretic mobility shift assay (EMSA) and the phosphorylated CREB (pCREB)/CREB ratio using immunoblotting in both the PFC and hippocampus in adolescent and adult mice. Adult mice exhibited typical locomotor sensitization after 15 days of daily treatment with 2.0 g/kg ethanol, whereas adolescent mice did not exhibit sensitization. Overall, adolescent mice displayed lower CREB binding activity in the PFC compared with adult mice, whereas opposite effects were observed in the hippocampus. The present results indicate that ethanol exposure induces significant and differential neuroadaptive changes in CREB DNA-binding activity in the PFC and hippocampus in adolescent mice compared with adult mice. These differential molecular changes may contribute to the blunted ethanol-induced behavioral sensitization observed in adolescent mice.
Collapse
Affiliation(s)
- Sabrina L Soares-Simi
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Daniel M Pastrello
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Zulma S Ferreira
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
26
|
Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci 2013; 33:4834-42. [PMID: 23486954 DOI: 10.1523/jneurosci.5839-11.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although alcoholism is a worldwide problem resulting in millions of deaths, only a small percentage of alcohol users become addicted. The specific neural substrates responsible for individual differences in vulnerability to alcohol addiction are not known. In this study, we used rodent models to study behavioral and synaptic correlates related to individual differences in the development of ethanol locomotor sensitization, a form of drug-dependent behavioral plasticity associated with addiction vulnerability. Male Swiss Webster mice were treated daily with saline or 1.8 g/kg ethanol for 21 d. Locomotor activity tests were performed once a week for 15 min immediately after saline or ethanol injections. After at least 11 d of withdrawal, cohorts of saline- or ethanol-treated mice were used to characterize the relationships between locomotor sensitization, ethanol drinking, and glutamatergic synaptic transmission in the nucleus accumbens. Ethanol-treated mice that expressed locomotor sensitization to ethanol drank significantly more ethanol than saline-treated subjects and ethanol-treated animals resilient to this form of behavioral plasticity. Moreover, ethanol-sensitized mice also had reduced accumbal NMDA receptor function and expression, as well as deficits in NMDA receptor-dependent long-term depression in the nucleus accumbens core after a protracted withdrawal. These findings suggest that disruption of accumbal core NMDA receptor-dependent plasticity may represent a synaptic correlate associated with ethanol-induced locomotor sensitization and increased propensity to consume ethanol.
Collapse
|