1
|
Martz J, Shelton MA, Geist L, Seney ML, Kentner AC. Sex differences in offspring risk and resilience following 11β-hydroxylase antagonism in a rodent model of maternal immune activation. Neuropsychopharmacology 2024; 49:1078-1090. [PMID: 38007547 PMCID: PMC11109257 DOI: 10.1038/s41386-023-01771-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Maternal immune activation (MIA) puts offspring at greater risk for neurodevelopmental disorders associated with impaired social behavior. While it is known that immune signaling through maternal, placental, and fetal compartments contributes to these phenotypical changes, it is unknown to what extent the stress response to illness is involved and how it can be harnessed for potential interventions. To this end, on gestational day 15, pregnant rat dams were administered the bacterial mimetic lipopolysaccharide (LPS; to induce MIA) alongside metyrapone, a clinically available 11β-hydroxylase (11βHSD) inhibitor used to treat hypercortisolism in pregnant, lactating, and neonatal populations. Maternal, placental, and fetal brain levels of corticosterone and placental 11βHSD enzymes type 1 and 2 were measured 3-hrs post treatment. Offspring social behaviors were evaluated across critical phases of development. MIA was associated with increased maternal, placental, and fetal brain corticosterone concentrations that were diminished with metyrapone exposure. Metyrapone protected against reductions in placental 11βHSD2 in males only, suggesting that less corticosterone was inactivated in female placentas. Behaviorally, metyrapone-exposure attenuated MIA-induced social disruptions in juvenile, adolescent, and adult males, while females were unaffected or performed worse. Metyrapone-exposure reversed MIA-induced transcriptional changes in monoamine-, glutamate-, and GABA-related genes in adult male ventral hippocampus, but not in females. Taken together, these findings illustrate that MIA-induced HPA responses act alongside the immune system to produce behavioral deficits. As a clinically available drug, the sex-specific benefits and constraints of metyrapone should be investigated further as a potential means of reducing neurodevelopmental risks due to gestational MIA.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, USA
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Laurel Geist
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Gal A, Raykin E, Giladi S, Lederman D, Kofman O, Golan HM. Temporal dynamics of isolation calls emitted by pups in environmental and genetic mouse models of autism spectrum disorder. Front Neurosci 2023; 17:1274039. [PMID: 37942134 PMCID: PMC10629105 DOI: 10.3389/fnins.2023.1274039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Environmental and genetic factors contribute to the increased risk for neurodevelopmental disorders, including deficits in the development of social communication. In the mouse, ultrasonic vocalizations emitted by the pup stimulate maternal retrieval and potentiate maternal care. Therefore, isolation induced ultrasonic vocalization emitted by pups provides a means to evaluate deficits in communication during early development, before other ways of communication are apparent. Previous studies in our labs showed that gestational exposure to the pesticide chlorpyrifos (CPF) and the Methylenetetrahydrofolate (Mthfr)-knock-out mice are associated with impaired social preference, restricted or repetitive behavior and altered spectral properties of pups' ultrasonic vocalization. In this study, we explore the temporal dynamics of pups' vocalization in these Autism spectrum disorder (ASD) models. Methods We utilized the maternal potentiation protocol and analyzed the time course of pup vocalizations following isolation from the nest. Two models of ASD were studied: gestational exposure to the pesticide CPF and the Mthfr-knock-out mice. Results Vocalization emitted by pups of both ASD models were dynamically modified in quantity and spectral structure within each session and between the two isolation sessions. The first isolation session was characterized by a buildup of call quantity and significant effects of USV spectral structure variables, and the second isolation session was characterized by enhanced calls and vocalization time, but minute effect on USV properties. Moreover, in both models we described an increased usage of harmonic calls with time during the isolation sessions. Discussion Communication between two or more individuals requires an interplay between the two sides and depends on the response and the time since the stimulus. As such, the presence of dynamic changes in vocalization structure in the control pups, and the alteration observed in the pups of the ASD models, suggest impaired regulation of vocalization associated with the environmental and genetic factors. Last, we propose that temporal dynamics of ultrasonic vocalization communication should be considered in future analysis in rodent models of ASD to maximize the sensitivity of the study of vocalizations.
Collapse
Affiliation(s)
- Ayelet Gal
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eynav Raykin
- Psychology Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shaked Giladi
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dror Lederman
- Faculty of Engineering, Holon Institute of Technology Holon, Holon, Israel
| | - Ora Kofman
- Psychology Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hava M. Golan
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Center for Autism Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Liu Y, Shan L, Liu T, Li J, Chen Y, Sun C, Yang C, Bian X, Niu Y, Zhang C, Xi J, Rao Y. Molecular and cellular mechanisms of the first social relationship: A conserved role of 5-HT from mice to monkeys, upstream of oxytocin. Neuron 2023; 111:1468-1485.e7. [PMID: 36868221 DOI: 10.1016/j.neuron.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/21/2021] [Accepted: 02/07/2023] [Indexed: 03/05/2023]
Abstract
Maternal affiliation by infants is the first social behavior of mammalian animals. We report here that elimination of the Tph2 gene essential for serotonin synthesis in the brain reduced affiliation in mice, rats, and monkeys. Calcium imaging and c-fos immunostaining showed maternal odors activation of serotonergic neurons in the raphe nuclei (RNs) and oxytocinergic neurons in the paraventricular nucleus (PVN). Genetic elimination of oxytocin (OXT) or its receptor reduced maternal preference. OXT rescued maternal preference in mouse and monkey infants lacking serotonin. Tph2 elimination from RN serotonergic neurons innervating PVN reduced maternal preference. Reduced maternal preference after inhibiting serotonergic neurons was rescued by oxytocinergic neuronal activation. Our genetic studies reveal a role for serotonin in affiliation conserved from mice and rats to monkeys, while electrophysiological, pharmacological, chemogenetic, and optogenetic studies uncover OXT downstream of serotonin. We suggest serotonin as the master regulator upstream of neuropeptides in mammalian social behaviors.
Collapse
Affiliation(s)
- Yan Liu
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China.
| | - Liang Shan
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China
| | - Tiane Liu
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China
| | - Juan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Changhong Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chaojuan Yang
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China
| | - Xiling Bian
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Zhang
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China
| | - Jianzhong Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yi Rao
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China; PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Santana‐Coelho D, Womble PD, Blandin KJ, Pilcher JB, O'Neill GM, Douglas LA, Chilukuri SV, Tran DLK, Wiley TA, Lugo JN. Assessment of the effects of sex, age, and rearing condition on ultrasonic vocalizations elicited by pups during the maternal potentiation paradigm in C57BL/6J mice. Dev Psychobiol 2022; 64:e22341. [PMID: 36426792 PMCID: PMC9828101 DOI: 10.1002/dev.22341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022]
Abstract
Isolation-induced ultrasonic vocalizations (USVs) are important to elicit parental retrieval. This behavior is critical for the animal's survival and can be altered in models of developmental disorders. The potentiation of vocalizations in response to reunion with the dam, also called maternal potentiation, has been extensively studied in rats. However, the assessment of this paradigm in mice is scarce. In rats, the potentiation of vocalizations is dependent on rearing conditions. Since mice are the main species used for genetic models of diseases, we aimed to investigate how different factors such as age, sex, and rearing conditions can affect the potentiation of vocalizations in the maternal potentiation paradigm in mice. We carried out experiments using biparental (dam and sire) or uniparental rearing (dam). Pups were tested on postnatal days (PD) 9 or 12. Pups showed increased potentiation in both sexes at PD9 with uniparental rearing. Both rearing conditions and ages changed the repertoire from the first to the second isolation. Spectral parameters were affected by sex, rearing condition and reunion at PD9. At PD12, only duration was altered by reunion. We conclude that the performance of the pups in the maternal potentiation paradigm is dependent on age, sex, and rearing condition.
Collapse
Affiliation(s)
| | - Paige D. Womble
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | | | - Jacob B. Pilcher
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | - Grace M. O'Neill
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | | | | | - Doan L. K. Tran
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | - Taylor A. Wiley
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| | - Joaquin N. Lugo
- Department of Psychology and NeuroscienceBaylor UniversityWacoTexasUSA
| |
Collapse
|
5
|
Wilson KM, Wagner VA, Saltzman W. Specificity of California mouse pup vocalizations in response to olfactory stimuli. Dev Psychobiol 2022; 64:e22261. [DOI: 10.1002/dev.22261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kerianne M. Wilson
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California USA
| | - Victoria A. Wagner
- Graduate Program in Neuroscience University of California Riverside Riverside California USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California USA
- Graduate Program in Neuroscience University of California Riverside Riverside California USA
| |
Collapse
|
6
|
Warren MR, Campbell D, Borie AM, Ford CL, Dharani AM, Young LJ, Liu RC. Maturation of Social-Vocal Communication in Prairie Vole ( Microtus ochrogaster) Pups. Front Behav Neurosci 2022; 15:814200. [PMID: 35087387 PMCID: PMC8787284 DOI: 10.3389/fnbeh.2021.814200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Impairments in social communication are common among neurodevelopmental disorders. While traditional animal models have advanced our understanding of the physiological and pathological development of social behavior, they do not recapitulate some aspects where social communication is essential, such as biparental care and the ability to form long-lasting social bonds. Prairie voles (Microtus ochrogaster) have emerged as a valuable rodent model in social neuroscience because they naturally display these behaviors. Nonetheless, the role of vocalizations in prairie vole social communication remains unclear. Here, we studied the ontogeny [from postnatal days (P) 8-16] of prairie vole pup ultrasonic vocalizations (USVs), both when isolated and when the mother was present but physically unattainable. In contrast to other similarly sized rodents such as mice, prairie vole pups of all ages produced isolation USVs with a relatively low fundamental frequency between 22 and 50 kHz, often with strong harmonic structure. Males consistently emitted vocalizations with a lower frequency than females. With age, pups vocalized less, and the acoustic features of vocalizations (e.g., duration and bandwidth) became more stereotyped. Manipulating an isolated pup's social environment by introducing its mother significantly increased vocal production at older (P12-16) but not younger ages, when pups were likely unable to hear or see her. Our data provide the first indication of a maturation in social context-dependent vocal emission, which may facilitate more active acoustic communication. These results help lay a foundation for the use of prairie voles as a model organism to probe the role of early life experience in the development of social-vocal communication.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Drayson Campbell
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Amélie M. Borie
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar M. Dharani
- Summer Opportunities of Academic Research Program, James T. Laney School of Graduate Studies, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
7
|
Neuroendocrine Mechanisms of Social Bonds and Separation Stress in Rodents, Dogs, and Other Species. Curr Top Behav Neurosci 2021; 54:3-22. [PMID: 34518995 DOI: 10.1007/7854_2021_257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mammalian species form unique bonds between mothers and infants. Maternal care, including suckling, is necessary for infant survival, and the mother and, sometimes, the father require a lot of effort in nurturing infants. An infant's probability of survival depends on the extent of the investment of care by the mother. In parallel, mothers must identify their offspring and invest only in those who possess their genes to achieve evolutionary benefits. Therefore, they need to recognize their offspring and show a strong preference for them. For this reason, bond formation between mothers and infants is important. The mother monitors her offspring's physical condition and stays close to them. The offspring also form strong bonds with their mothers. Therefore, a separation between the mother and infant causes severe stress for both parties. Although it was initially thought that such bonds between mother and infant are limited to the same species, we have also observed a similar phenomenon in the human-dog relationship. In this article, we discuss the neuroendocrine mechanisms that underlie bond formation and separation based on findings of neurobiological research in mice and the relationship between humans and dogs.
Collapse
|
8
|
Tsuji T, Mizutani R, Minami K, Furuhara K, Fujisaku T, Pinyue F, Jing Z, Tsuji C. Oxytocin administration modulates the complex type of ultrasonic vocalisation of mice pups prenatally exposed to valproic acid. Neurosci Lett 2021; 758:135985. [PMID: 34048819 DOI: 10.1016/j.neulet.2021.135985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/26/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by communication disability with no curative treatment. Maternal separation-induced ultrasonic vocalisation (USV) was widely used to assess communication disability between pups and dams. Particularly, USV calls in many genetically modified ASD model mice were altered. Previously, we demonstrated that mice pups exposed to valproic acid in utero (VPA pups) showed decreased number of USV calls on postnatal day 11 and were rescued by subcutaneous injection of oxytocin. However, the qualitative change of USV calls by oxytocin has not been evaluated in VPA pups. In the present study, we examined the duration of oxytocin effect and analysed the altered pattern of USV calls using VPA pups. The oxytocin administration increased the total number of USV calls and the effect persisted up to 120 min in VPA pups. The pattern analysis revealed that the increase in the number of complex calls also persisted up to 120 min. These results suggested that oxytocin had a prolonged effect on USV calls, mainly on complex calls, in VPA pup, showing that oxytocin could recover their social modality to respond to maternal separation.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Japan.
| | - Ryuko Mizutani
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan
| | - Kana Minami
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan; Department of Health Development Nursing, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Tomoaki Fujisaku
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Fu Pinyue
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan
| | - Zhong Jing
- Physiological Department, Guangxi University of Chinese Medicine, Nanning, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan.
| |
Collapse
|
9
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
10
|
Caruso A, Ricceri L, Scattoni ML. Ultrasonic vocalizations as a fundamental tool for early and adult behavioral phenotyping of Autism Spectrum Disorder rodent models. Neurosci Biobehav Rev 2020; 116:31-43. [DOI: 10.1016/j.neubiorev.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
|
11
|
Colucci P, De Castro V, Peloso A, Splendori M, Trezza V, Campolongo P. Perinatal exposure to omega-3 fatty acid imbalance leads to early behavioral alterations in rat pups. Behav Brain Res 2020; 392:112723. [DOI: 10.1016/j.bbr.2020.112723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023]
|
12
|
Stroobants S, Creemers J, Bosmans G, D’Hooge R. Post-weaning infant-to-mother bonding in nutritionally independent female mice. PLoS One 2020; 15:e0227034. [PMID: 31940385 PMCID: PMC6961874 DOI: 10.1371/journal.pone.0227034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023] Open
Abstract
Infant-parent attachment is highly selective and continues beyond essential care in primates, most prominently in humans, and the quality of this attachment crucially determines cognitive and emotional development of the infant. Altricial rodent species such as mice (Mus musculus) display mutual recognition and communal nursing in wild and laboratory environments, but parental bonding beyond the nursing period has not been reported. We presently demonstrated that socially and nutritionally independent mice still prefer to interact selectively with their mother dam. Furthermore, we observed gender differences in the mother-infant relationship, and showed disruption of this relationship in haploinsufficient Nbea+/- mice, a putative autism model with neuroendocrine dysregulation. To our knowledge, this is the first observation of murine infant-to-mother bonding beyond the nursing period.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- mINT Behavioral Phenotyping Facility, KU Leuven, Leuven, Belgium
| | - John Creemers
- Laboratory of Biochemical Neuroendocrinology, KU Leuven, Leuven, Belgium
| | - Guy Bosmans
- Parenting and Special Education Research Unit, KU Leuven, Leuven, Belgium
| | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- mINT Behavioral Phenotyping Facility, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Johnson SA, Painter MS, Javurek AB, Murphy CR, Howald EC, Khan ZZ, Conard CM, Gant KL, Ellersieck MR, Hoffmann F, Schenk AK, Rosenfeld CS. Characterization of vocalizations emitted in isolation by California mouse (Peromyscus californicus) pups throughout the postnatal period. ACTA ACUST UNITED AC 2018; 131:30-39. [PMID: 28182483 DOI: 10.1037/com0000057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rodent species, such as monogamous and biparental California mice, produce vocalizations as a means of communication. A temporal examination of vocalizations produced by California mice pups in isolation was performed. Pup recordings were performed for 3 min at ∼10.00 and 14.00 hrs on early postnatal days (PND) 2-4, 7, 21, and 28. Once initial recordings were finished, pups were returned to the home cage with parents and any siblings for 5 minutes to determine if active biparental responses resulted in an enhanced vocalization response when pups were isolated and retested. We also sought to determine whether potential reduction in vocalizations by older pups might be due to procedure-habituation procedure associated with less anxiety and/or possibly decreased need for parental care. Vocalizations were measured in weanling (30 days of age) "naïve" pups not previously isolated. Results show older pups took significantly longer to vocalize, indicated by increased latency before producing their initial syllable compared to earlier ages. With increasing age, pups demonstrated decreased syllable duration, reduced number and duration of phrases, and decreased number of syllables per phrase. No differences in pup vocalizations were observed before and after being placed back with parents, suggestive biparental potentiation may not exist in California mice pups. Comparison of the naïve to habituated weanling pups indicated the former group had more total calls but no other differences in vocalization parameters were detected between these 2 groups. Collectively, the findings suggest that as California mice pups mature and approach weaning they generally vocalize less in isolation. (PsycINFO Database Record
Collapse
Affiliation(s)
- Sarah A Johnson
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | - Michele S Painter
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | - Angela B Javurek
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | - Claire R Murphy
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | - Emily C Howald
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | - Zoya Z Khan
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | - Caroline M Conard
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | - Kristal L Gant
- Bond Life Sciences Center and Department of Biomedical Sciences, University of Missouri
| | | | - Frauke Hoffmann
- Department of Ecophysiology and Aquaculture, Leibniz- Institute of Freshwater Ecology and Inland Fisheries
| | | | | |
Collapse
|
14
|
Scattoni ML, Michetti C, Ricceri L. Rodent Vocalization Studies in Animal Models of the Autism Spectrum Disorder. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00042-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Boulanger Bertolus J, Mouly AM, Sullivan RM. Ecologically relevant neurobehavioral assessment of the development of threat learning. Learn Mem 2016; 23:556-66. [PMID: 27634146 PMCID: PMC5026204 DOI: 10.1101/lm.042218.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
Abstract
As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor-shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10-15 d old), pups have access to both networks: odor-shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat.
Collapse
Affiliation(s)
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York 10010, USA
| |
Collapse
|
16
|
Yin X, Chen L, Xia Y, Cheng Q, Yuan J, Yang Y, Wang Z, Wang H, Dong J, Ding Y, Zhao X. Maternal Deprivation Influences Pup Ultrasonic Vocalizations of C57BL/6J Mice. PLoS One 2016; 11:e0160409. [PMID: 27552099 PMCID: PMC4994965 DOI: 10.1371/journal.pone.0160409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Maternal deprivation (MD) is frequently used as an early life stress model in rodents to investigate behavioral and neurological responses under stressful conditions. However, the effect of MD on the early postnatal development of rodents, which is when multiple neural systems become established, is rarely investigated due to methodological limitations. Ultrasonic vocalizations (USVs) are one of the few responses produced by neonatal rodents that can be quantitatively analyzed, and the quantification of USVs is regarded as a novel approach to investigate possible alterations in the neurobehavioral and emotional development of infant rodents under stress. To investigate the effect of MD on pup mice, we subjected C57BL/6J mice to MD and recorded the USVs of pups on postnatal days 1, 3, 7, 8, and 14. To determine whether the effect of MD on USVs was acute or cumulative, pre- and post-separation USV groups were included; sex differences in pup USV emission were also investigated. Our results suggest that (i) USV activity was high on postnatal days 3-8; (ii) the MD effect on USVs was acute, and a cumulative effect was not found; (iii) the MD mice vocalized more and longer than the controls at a lower frequency, and the effect was closely related to age; and (iv) female pups were more susceptible than males to the effect of MD on USV number and duration between postnatal days 3-8.
Collapse
Affiliation(s)
- Xiaowen Yin
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Psychiatry, The Seventh Hospital of HangZhou, Zhejiang, China
| | - Ling Chen
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yong Xia
- Department of Psychiatry, The Seventh Hospital of HangZhou, Zhejiang, China
| | - Qunkang Cheng
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jiabei Yuan
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yang
- Department of Psychiatry, The Seventh Hospital of HangZhou, Zhejiang, China
| | - Zhaoxin Wang
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haojie Wang
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianshu Dong
- Shanghai Health Education Institute, Shanghai, China
| | - Yuqiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- * E-mail: (YQD); (XDZ)
| | - Xudong Zhao
- Department of Psychosomatic Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (YQD); (XDZ)
| |
Collapse
|
17
|
Muller JM, Shair HN. Isolation-induced vocalization in the infant rat depends on the nucleus accumbens. Dev Psychobiol 2016; 58:1116-1123. [PMID: 27452836 DOI: 10.1002/dev.21447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/30/2016] [Indexed: 11/08/2022]
Abstract
Mammalian infants vocalize when socially isolated. Vocalization guides the return of the caregiver and thereby maintains an environment critical to the infant's survival. Although the role of the periaqueductal gray area (PAG) in these vocalizations is established, other aspects of the relevant neural circuitry remain under-studied. Here we report that output from the nucleus accumbens (Acb) is necessary for isolation-induced vocalizations of infant rats aged postnatal days (PND) 11-13. Local inhibition via infusion of the GABAA agonist muscimol (.8 μg/side) of the Acb, but not the dorsolateral striatum, blocked isolation-induced vocalizations, independent of whether the isolation was at room temperature, followed a brief reunion with the dam, or occurred in a cool (10 °C) environment. These findings highlight a possible anatomical area mediating the mammalian infant response to social separation and, more generally, to the development of social attachment.
Collapse
Affiliation(s)
- Jeff M Muller
- Department of Developmental Neuroscience, The New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York
| | - Harry N Shair
- Department of Developmental Neuroscience, The New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
18
|
Homberg JR, Olivier JDA, VandenBroeke M, Youn J, Ellenbroek AK, Karel P, Shan L, van Boxtel R, Ooms S, Balemans M, Langedijk J, Muller M, Vriend G, Cools AR, Cuppen E, Ellenbroek BA. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model. Dis Model Mech 2016; 9:1147-1158. [PMID: 27483345 PMCID: PMC5087833 DOI: 10.1242/dmm.024752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 01/25/2023] Open
Abstract
Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1). Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.
Collapse
Affiliation(s)
- Judith R Homberg
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Jocelien D A Olivier
- Department of Neurobiology, Unit Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Marie VandenBroeke
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Jiun Youn
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Arabella K Ellenbroek
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Peter Karel
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Ling Shan
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Ruben van Boxtel
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands
| | - Sharon Ooms
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Monique Balemans
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Jacqueline Langedijk
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Mareike Muller
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Gert Vriend
- CMBI, Radboud University Nijmegen Medical Centre, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Alexander R Cools
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands
| | - Bart A Ellenbroek
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| |
Collapse
|
19
|
Robison WT, Myers MM, Hofer MA, Shair HN, Welch MG. Prairie vole pups show potentiated isolation-induced vocalizations following isolation from their mother, but not their father. Dev Psychobiol 2016; 58:687-99. [PMID: 26990108 DOI: 10.1002/dev.21408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 02/25/2016] [Indexed: 01/19/2023]
Abstract
Vocalizations can be markers of emotional social communication. Maternal potentiation was originally described as an increased rate of vocalization by isolated rat pups following an interaction with their mothers, but not with other social companions. Here we asked if potentiation in prairie voles, a species with pair-bonding and bi-parental rearing, is parent-specific. We found that isolated, 8-11-day-old voles exhibited potentiation following reunions with the dam, but not the sire. These responses were present whether parents were anesthetized or active during the reunion. There were no significant correlations between parental behaviors during reunions and pup vocalization rates during re-isolation. The absence of potentiation to the sire contrasts to findings in bi-parentally reared rat pups, which do potentiate vocalizations to the sire. We interpret these results to be consistent with the idea that potentiation reflects disruption of mother-infant coregulation and is dependent upon the unique biology of mothering. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:687-699, 2016.
Collapse
Affiliation(s)
- W Theodore Robison
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY, 10032
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, 10032
| | - Michael M Myers
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, 10032
- Division of Developmental Neuroscience, Unit 40, New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, 10032
| | - Myron A Hofer
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, 10032
- Division of Developmental Neuroscience, Unit 40, New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032
| | - Harry N Shair
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, 10032
- Division of Developmental Neuroscience, Unit 40, New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032
| | - Martha G Welch
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, 10032
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, 10032
| |
Collapse
|
20
|
Shair HN, Rupert DD, Rosko LM, Hofer MA, Myers MM, Welch MG. Effects of maternal deprivation and the duration of reunion time on rat pup ultrasonic vocalization responses to isolation: possible implications for human infant studies. Dev Psychobiol 2014; 57:63-72. [PMID: 25380197 DOI: 10.1002/dev.21258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023]
Abstract
In a paradigm that may serve as a translational model for maternal separation experiences of human infants in neonatal intensive care units, we examined how the duration of reunion with the dam influenced the phenomenon of maternal potentiation of ultrasonic vocalizations, in which isolated rat pups increase rates of vocalization following brief interactions with dams. We report that maternal potentiation in 12-13 day-old rats did not occur after reunions with their anesthetized dam that lasted longer than 15-min. However, after 18 hr maternal separation, isolated pups given reunions with their anesthetized dam increased vocalization rate even with reunions as long as 3 hr. Using a split-cage apparatus that prevented physical contact, the impact of 18 hr separations on maternal potentiation was partially offset by experiencing olfactory and/or auditory stimuli of the mother. These results suggest that maintaining partial maternal sensory exposure during prolonged maternal separation can reduce responses elicited by subsequent maternal separation.
Collapse
Affiliation(s)
- Harry N Shair
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, 10032, NY; Departments of Psychiatry, Columbia University College of Physicians and Surgeons, New York, 10032, NY
| | | | | | | | | | | |
Collapse
|