1
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Takano T, Kang G, Esparza M, Matsumura B, Stevens LJ, Hiroi YJ, Tanifuji T, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Highly demarcated structural alterations in the brain and impaired social incentive learning in Tbx1 heterozygous mice. Mol Psychiatry 2025; 30:1876-1886. [PMID: 39463450 PMCID: PMC12014486 DOI: 10.1038/s41380-024-02797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and changes in brain structures. However, because CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how each gene encoded in the 22q11.2 region contributes to structural alterations, associated mental illnesses, and their dimensions. Our previous studies identified Tbx1, a T-box family transcription factor encoded in the 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes and behavioral alterations relevant to affected structures in congenic Tbx1 heterozygous mice. Our data showed that the volumes of the anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were most robustly reduced in Tbx1 heterozygous mice. In an amygdala-dependent task, Tbx1 heterozygous mice were impaired in their ability to learn the incentive value of a social partner. The volumes of the primary and secondary auditory cortexes were increased, and acoustic, but not non-acoustic, sensorimotor gating was impaired in Tbx1 heterozygous mice. Our findings identify the brain's regional volume alterations and their relevant behavioral dimensions associated with Tbx1 heterozygosity.
Collapse
Affiliation(s)
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | | | - Takeshi Takano
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Gina Kang
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Marisa Esparza
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | | | - Yukiko J Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| |
Collapse
|
2
|
Cordes CN, Fredericks CP, Liu L, Brakey DJ, Daniels D, Paul MJ. Altered vocal communication in adult vasopressin-deficient Brattleboro rats. Physiol Behav 2024; 287:114699. [PMID: 39293591 DOI: 10.1016/j.physbeh.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The neuropeptide, arginine vasopressin (AVP), has been implicated in social communication across a diverse array of species. Many rodents communicate basic behavioral states with negative versus positive valence through high-pitched vocalizations above the human hearing range (ultrasonic vocalizations; USVs). Previous studies have found that Brattleboro (Bratt) rats, which have a mutation in the Avp gene, exhibit deficits in their USVs from the early postnatal period through adolescence, but the magnitude of this effect appears to decrease from the juvenile to adolescent phase. The present study tested whether Bratt rats continue to exhibit USV deficits in adulthood. USVs of adult male and female Bratt and wild type (WT) rats were recorded in two contexts: a novel environment (empty arena) and a social context (arena filled with bedding soiled by same-sex conspecifics). The number, frequency, and duration of 50 kHz USVs were quantified by DeepSqueak after validation with manual scoring. Twenty-two kHz measures were quantified by manual scoring because DeepSqueak failed to accurately detect USVs in this frequency range. Adult Bratt rats did not exhibit deficits in the number of 50 kHz USVs: male Bratt rats emitted similar 50 kHz USVs as male WT rats, whereas female Bratt rats emitted more USVs than female WT rats. USV frequency and duration were altered in adult Bratt rats, but in a context-dependent manner. Twenty-two kHz USVs were less affected by the Bratt mutation. The present study demonstrates how chronic AVP deficiency impacts social communication across the lifespan. The present findings reveal a complex role for AVP in vocal communication, whereby disruption to the Avp gene leads to sex-, context-, and developmental phase-specific effects on the quantity and spectrotemporal characteristics of rat USVs.
Collapse
Affiliation(s)
- Chloe N Cordes
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA.
| | - Cole P Fredericks
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA.
| | - Linging Liu
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA.
| | - Destiny J Brakey
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA.
| | - Derek Daniels
- Department of Biological Sciences, University at Buffalo SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo SUNY, Buffalo, NY, USA.
| | - Matthew J Paul
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo SUNY, Buffalo, NY, USA; Evolution, Ecology, and Behavior Program, University at Buffalo SUNY, NY, USA.
| |
Collapse
|
3
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. RESEARCH SQUARE 2023:rs.3.rs-3070199. [PMID: 37461714 PMCID: PMC10350205 DOI: 10.21203/rs.3.rs-3070199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1, a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | - Gina Kang
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Bailey Matsumura
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Lucas J. Stevens
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health San Antonio, Texas 78229, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, Texas 78229, USA
| |
Collapse
|
4
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545013. [PMID: 37398198 PMCID: PMC10312713 DOI: 10.1101/2023.06.14.545013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1 , a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
|
5
|
Mai L, Inada H, Kimura R, Kanno K, Matsuda T, Tachibana RO, Tucci V, Komaki F, Hiroi N, Osumi N. Advanced paternal age diversifies individual trajectories of vocalization patterns in neonatal mice. iScience 2022; 25:104834. [PMID: 36039363 PMCID: PMC9418688 DOI: 10.1016/j.isci.2022.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 10/25/2022] Open
Abstract
Infant crying is a communicative behavior impaired in neurodevelopmental disorders (NDDs). Because advanced paternal age is a risk factor for NDDs, we performed computational approaches to evaluate how paternal age affected vocal communication and body weight development in C57BL/6 mouse offspring from young and aged fathers. Analyses of ultrasonic vocalization (USV) consisting of syllables showed that advanced paternal age reduced the number and duration of syllables, altered the syllable composition, and caused lower body weight gain in pups. Pups born to young fathers had convergent vocal characteristics with a rich repertoire, whereas those born to aged fathers exhibited more divergent vocal patterns with limited repertoire. Additional analyses revealed that some pups from aged fathers displayed atypical USV trajectories. Thus, our study indicates that advanced paternal age has a significant effect on offspring's vocal development. Our computational analyses are effective in characterizing altered individual diversity.
Collapse
Affiliation(s)
- Lingling Mai
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kouta Kanno
- Faculty of Law, Economics and Humanities, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takeru Matsuda
- Statistical Mathematics Unit, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Ryosuke O Tachibana
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Valter Tucci
- Genetics and Epigenetics of Behavior (GEB) Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Fumiyasu Komaki
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan.,Mathematical Informatics Collaboration Unit, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA.,Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
6
|
Hiramoto T, Sumiyoshi A, Yamauchi T, Tanigaki K, Shi Q, Kang G, Ryoke R, Nonaka H, Enomoto S, Izumi T, Bhat MA, Kawashima R, Hiroi N. Tbx1, a gene encoded in 22q11.2 copy number variant, is a link between alterations in fimbria myelination and cognitive speed in mice. Mol Psychiatry 2022; 27:929-938. [PMID: 34737458 PMCID: PMC9054676 DOI: 10.1038/s41380-021-01318-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Copy number variants (CNVs) have provided a reliable entry point to identify the structural correlates of atypical cognitive development. Hemizygous deletion of human chromosome 22q11.2 is associated with impaired cognitive function; however, the mechanisms by which the CNVs contribute to cognitive deficits via diverse structural alterations in the brain remain unclear. This study aimed to determine the cellular basis of the link between alterations in brain structure and cognitive functions in mice with a heterozygous deletion of Tbx1, one of the 22q11.2-encoded genes. Ex vivo whole-brain diffusion-tensor imaging (DTI)-magnetic resonance imaging (MRI) in Tbx1 heterozygous mice indicated that the fimbria was the only region with significant myelin alteration. Electron microscopic and histological analyses showed that Tbx1 heterozygous mice exhibited an apparent absence of large myelinated axons and thicker myelin in medium axons in the fimbria, resulting in an overall decrease in myelin. The fimbria of Tbx1 heterozygous mice showed reduced mRNA levels of Ng2, a gene required to produce oligodendrocyte precursor cells. Moreover, postnatal progenitor cells derived from the subventricular zone, a source of oligodendrocytes in the fimbria, produced fewer oligodendrocytes in vitro. Behavioral analyses of these mice showed selectively slower acquisition of spatial memory and cognitive flexibility with no effects on their accuracy or sensory or motor capacities. Our findings provide a genetic and cellular basis for the compromised cognitive speed in patients with 22q11.2 hemizygous deletion.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, 5-4-30 Moriyama, Moriyama-shi, Shiga, Japan
| | - Qian Shi
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Rie Ryoke
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Shingo Enomoto
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takeshi Izumi
- Department of Pharmacology, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ryuta Kawashima
- Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Shekel I, Giladi S, Raykin E, Weiner M, Chalifa-Caspi V, Lederman D, Kofman O, Golan HM. Isolation-Induced Ultrasonic Vocalization in Environmental and Genetic Mice Models of Autism. Front Neurosci 2021; 15:769670. [PMID: 34880723 PMCID: PMC8645772 DOI: 10.3389/fnins.2021.769670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022] Open
Abstract
Studies in rodent models suggest that calls emitted by isolated pups serve as an early behavioral manifestation of communication deficits and autistic like behavior. Previous studies in our labs showed that gestational exposure to the pesticide chlorpyrifos (CPF) and the Mthfr-knock-out mice are associated with impaired social preference and restricted or repetitive behavior. To extend these studies, we examine how pup communication via ultrasonic vocalizations is altered in these ASD models. We implemented an unsupervised hierarchical clustering method based on the spectral properties of the syllables in order to exploit syllable classification to homogeneous categories while avoiding over-categorization. Comparative exploration of the spectral and temporal aspects of syllables emitted by pups in two ASD models point to the following: (1) Most clusters showed a significant effect of the ASD factor on the start and end frequencies and bandwidth and (2) The highest percent change due to the ASD factor was on the bandwidth and duration. In addition, we found sex differences in the spectral and temporal properties of the calls in both control groups as well as an interaction between sex and the gene/environment factor. Considering the basal differences in the characteristics of syllables emitted by pups of the C57Bl/6 and Balb/c strains used as a background in the two models, we suggest that the above spectral-temporal parameters start frequency, bandwidth, and duration are the most sensitive USV features that may represent developmental changes in ASD models.
Collapse
Affiliation(s)
- Itay Shekel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Shaked Giladi
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eynav Raykin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - May Weiner
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Dror Lederman
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| | - Ora Kofman
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Hava M Golan
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Center for Autism Research, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
8
|
Yamauchi T, Kang G, Hiroi N. Heterozygosity of murine Crkl does not recapitulate behavioral dimensions of human 22q11.2 hemizygosity. GENES BRAIN AND BEHAVIOR 2020; 20:e12719. [PMID: 33269541 DOI: 10.1111/gbb.12719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Deletions in 22q11.2 human chromosome are known to be associated with psychiatric disorders, such as intellectual disability, schizophrenia, autism spectrum disorder, and anxiety disorders. This copy number variation includes a 3.0 Mb deletion and a nested proximal 1.5 Mb hemizygous deletion in the same region. Evidence indicates that the distal 22q11.2 region outside the nested 1.5 Mb deletion also might be contributory in humans. However, the precise genetic architecture within the distal region responsible for psychiatric disorders remains unclear, and this issue cannot be experimentally evaluated beyond the correlation in humans. As CRKL (CRK-like Proto-Oncogene, Adaptor Protein) is one of the genes encoded in the distal 22q11.2 segment and its homozygous deletion causes physical phenotypes of 22q11.2 hemizygous deletion, we tested the hypothesis that its murine homolog Crkl contributes to behavioral phenotypes relevant to psychiatric disorders in mice. Congenic Crkl heterozygosity reduced thigmotaxis, an anxiety-related behavior, in an inescapable open field, but had no apparent effect on social interaction, spontaneous alternation in a T-maze, anxiety-like behavior in an elevated plus maze, or motor activity in an open field. Our data indicate that the heterozygosity of murine Crkl does not recapitulate social deficits, working memory deficits, repetitive behavior traits or hyperactivity of human 22q11.2 hemizygous deletion. Moreover, while 22q11.2 hemizygous deletion is associated with high levels of phobia and anxiety in humans, our data suggest that Crkl heterozygosity rather acts as a protective factor for phobia-like behavior in an open field.
Collapse
Affiliation(s)
- Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|