1
|
Dakroub A, Dbouk A, Asfour A, Nasser SA, El-Yazbi AF, Sahebkar A, Eid AA, Iratni R, Eid AH. C-peptide in diabetes: A player in a dual hormone disorder? J Cell Physiol 2024; 239:e31212. [PMID: 38308646 DOI: 10.1002/jcp.31212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, New York, USA
| | - Ali Dbouk
- Department of Medicine, Saint-Joseph University Medical School, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Aref Asfour
- Leeds Teaching Hospitals NHS Trust, West Yorkshire, United Kingdom
| | | | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Toprak K, Kaplangöray M, Memioğlu T, İnanir M, Omar B, Taşcanov MB, Biçer A, Demirbağ R. HbA1c/C-peptide ratio is associated with angiographic thrombus burden and short-term mortality in patients presenting with ST-elevation myocardial infarction. Blood Coagul Fibrinolysis 2023; 34:385-395. [PMID: 37577863 DOI: 10.1097/mbc.0000000000001240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
OBJECTIVES Angiographic high thrombus burden (HTB) is associated with increased adverse cardiovascular events in patients with ST-elevation myocardial infarction (STEMI). HbA1c and C-peptide are two interrelated bioactive markers that affect many cardiovascular pathways. HbA1c exhibits prothrombogenic properties, while C-peptide, in contrast, exhibits antithrombogenic effects. In this study, we aimed to demonstrate the value of combining these two biomarkers in a single fraction in predicting HTB and short-term mortality in patients with STEMI. METHODS 1202 patients who underwent primary percutaneous coronary intervention (pPCI) for STEMI were retrospectively included in this study. The study population was divided into thrombus burden (TB) groups and compared in terms of basic clinical demographics, laboratory parameters and HbA1c/C-peptide ratios (HCR). In addition, short-term mortality of the study population was compared according to HCR and TB categories. RESULTS HCR values were significantly higher in the HTB group than in the LTB group (3.5 ± 1.2 vs. 2.0 ± 1.1; P < 0.001; respectively). In the multivariable regression analysis, HCR was determined as an independent predictor of HTB both as a continuous variable [odds ratio (OR): 2.377; confidence interval (CI): 2.090-2.704; P < 0.001] and as a categorical variable (OR: 5.492; CI: 4.115-7.331; P < 0.001). In the receiver operating characteristic (ROC) analysis, HCR predicted HTB with 73% sensitivity and 72% specificity, and furthermore, HCR's predictive value for HTB was superior to HbA1c and C-peptide. The Kaplan-Meier cumulative survival curve showed that short-term mortality increased at HTB. In addition, HCR strongly predicted short-term mortality in Cox regression analysis. CONCLUSIONS In conclusion, HCR is closely associated with HTB and short-term mortality in STEMI patients.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa
| | | | - Tolga Memioğlu
- Bolu Abant Izzet Baysal University, Medical Faculty, Cardiology Department, Bolu
| | - Mehmet İnanir
- Bolu Abant Izzet Baysal University, Medical Faculty, Cardiology Department, Bolu
| | - Bahadir Omar
- Umraniye training and research hospital, Cardiology Department, Istanbul, Turkey
| | | | - Asuman Biçer
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa
| | - Recep Demirbağ
- Department of Cardiology, Faculty of Medicine, Harran University, Sanliurfa
| |
Collapse
|
3
|
Abstract
Zinc is structurally and functionally essential for more than 300 enzymes and 2000 transcription factors in human body. Intracellular labile zinc is the metabolically effective zinc and tiny changes in its concentrations significantly affect the intracellular signaling and enzymatic responses. Zinc is crucial for the embrionic and fetal development of heart. Therefore, it is shown to be related with a variety of congenital heart defects. It is involved in epithelial-to-mesenchymal transformation including endocardial cushion development, which is necessary for atrioventricular septation as well as the morphogenesis of heart valves. In atherosclerosis, monocyte endothelial adhesion, and diapedesis, activation and transformation into macrophages and forming foam cells by the ingestion of oxidized LDL are monocyte related steps which need zinc. Intracellular zinc increases intracellular calcium through a variety of pathways and furthermore, zinc itself can work as a second messenger as calcium. These demonstrate the significance of intracellular zinc in heart failure and arterial hypertension. However, extracellular zinc has an opposite effect by blocking calcium channels, explaining decreased serum zinc levels, contrary to the increased cardiomyocyte and erythrocyte zinc levels in hypertensive subjects. These and other data in the literature demonstrate that zinc has important roles in healthy and diseased cardiovascular system but zinc-cardiovascular system relationship is so complex that, it has not been explained in all means. In this article, we try to review some of the available knowledge about this complex relationship.
Collapse
Affiliation(s)
- Serhan Ozyildirim
- Department of Cardiology, Cardiology Institute, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | | |
Collapse
|
4
|
Geiger M, Hayter E, Martin R, Spence D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J Transl Autoimmun 2022; 5:100161. [PMID: 36039310 PMCID: PMC9418496 DOI: 10.1016/j.jtauto.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Autoimmune diseases affect over 40 million people in the United States. The cause of most autoimmune diseases is unknown; therefore, most therapies focus on treating the symptoms. This review will focus on the autoimmune diseases type 1 diabetes (T1D) and multiple sclerosis (MS) and the emerging roles of red blood cells (RBCs) in the mechanisms and treatment of T1D and MS. An understanding of the role of the RBC in human health is increasing, especially with respect to its role in the regulation of vascular caliber and vessel dilation. The RBC is known to participate in the regulation of blood flow through the release of key signaling molecules, such as adenosine triphosphate (ATP) and the potent vasodilator nitric oxide (NO). However, while these RBC-derived molecules are known to be determinants of blood flow in vivo, disruptions in their concentrations in the circulation are often measured in common autoimmune diseases. Chemical and physical properties of the RBC may play a role in autoimmune disease onset, especially T1D and MS, and complications associated with downstream extracellular levels of ATP and NO. Finally, both ATP and NO are highly reactive molecules in the circulation. Coupled with the challenging matrix posed by the bloodstream, the measurement of these two species is difficult, thus prompting an appraisal of recent and novel methods to quantitatively determining these potential early indicators of immune response.
Collapse
Affiliation(s)
- M. Geiger
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E. Hayter
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - R.S. Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - D. Spence
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Jacobs M, Geiger MK, Summers SE, DeLuca CP, Zinn KR, Spence DM. Albumin Glycation Affects the Delivery of C-Peptide to the Red Blood Cells. ACS MEASUREMENT SCIENCE AU 2022; 2:278-286. [PMID: 35726250 PMCID: PMC9204818 DOI: 10.1021/acsmeasuresciau.2c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Serum albumin is a prominent plasma protein that becomes modified in hyperglycemic conditions. In a process known as glycation, these modifications can change the structure and function of proteins, which decrease ligand binding capabilities and alter the bioavailability of ligands. C-peptide is a molecule that binds to the red blood cell (RBC) and stimulates the release of adenosine triphosphate (ATP), which is known to participate in the regulation of blood flow. C-peptide binding to the RBC only occurs in the presence of albumin, and downstream signaling cascades only occur when the albumin and C-peptide complex contains Zn2+. Here, we measure the binding of glycated bovine serum albumin (gBSA) to the RBC in conditions with or without C-peptide and Zn2+. Key to these studies is the analytical sample preparation involving separation of BSA fractions with boronate affinity chromatography and characterization of the varying glycation levels with mass spectrometry. Results from this study show an increase in binding for higher % glycation of gBSA to the RBCs, but a decrease in ability to deliver C-peptide (0.75 ± 0.11 nM for 22% gBSA) compared to samples with less glycation (1.22 ± 0.16 nM for 13% gBSA). A similar trend was measured for Zn2+ delivery to the RBC as a function of glycation percentage. When 15% gBSA or 18% gBSA was combined with C-peptide/Zn2+, the derived ATP release from the RBCs significantly increased to 113% or 36%, respectively. However, 26% gBSA with C-peptide/Zn2+ had no significant increase in ATP release from RBCs. These results indicate that glycation of BSA interferes in C-peptide and Zn2+ binding to the RBC and subsequent RBC ATP release, which may have implications in C-peptide therapy for people with type 1 diabetes.
Collapse
Affiliation(s)
- Monica
J. Jacobs
- Department
of Comparative Medicine and Integrative Biology, Michigan State University, 784 Wilson Road, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Morgan K. Geiger
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Suzanne E. Summers
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot
Drive, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Charles P. DeLuca
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Kurt R. Zinn
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot
Drive, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| | - Dana M. Spence
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot
Drive, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Sciences & Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, Michigan 48824, United
States
| |
Collapse
|
6
|
Luo J, Jiang J, Huang H, Jiang F, Xu Z, Zhou Z, Zhu H. C-peptide ameliorates high glucose-induced podocyte dysfunction through the regulation of the Notch and TGF-β signaling pathways. Peptides 2021; 142:170557. [PMID: 33901627 DOI: 10.1016/j.peptides.2021.170557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
The podocyte is one of the main components of the glomerular filtration barrier in the kidney, and its injury may contribute to proteinuria, glomerulosclerosis and eventually kidney failure. C-peptide, a cleavage product of proinsulin, shows therapeutic potential for treating diabetic nephropathy (DN). The aim of this study was to investigate the effect of C-peptide on high glucose-induced podocyte dysfunction. In the present study, we found that the protective effects of islet transplantation were superior to simple insulin therapy for the treatment of DN in streptozotocin (STZ)-treated rats. And such superiority may due to the function of C-peptide secreted at the implanted site. Based on this background, we determined that the application of C-peptide significantly prevented high glucose-induced podocyte injury by increasing the expression of nephrin and synaptopodin. Meanwhile, C-peptide suppressed high glucose-induced epithelial-mesenchymal transition (EMT) and renal fibrosis via decreasing the expression of snail, vimentin, α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF). Moreover, the Notch and transforming growth factor-β (TGF-β) signaling pathways were activated by high glucose, and treatment with C-peptide down-regulated the expression of the Notch signaling molecules Notch 1 and Jagged 1 and the TGF-β signaling molecule TGF-β1. These findings suggested that C-peptide might serve as a novel treatment method for DN and podocyte dysfunction.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiahong Jiang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Hongjian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Feifei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zeru Xu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zijun Zhou
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
7
|
Keshavarz H, Meints LM, Geiger MK, R Zinn K, Spence DM. Specific Binding of Leptin to Red Blood Cells Delivers a Pancreatic Hormone and Stimulates ATP Release. Mol Pharm 2021; 18:2438-2447. [PMID: 33939443 DOI: 10.1021/acs.molpharmaceut.1c00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since its discovery in 1994, leptin continues to have new potential physiological roles uncovered, including a role in the regulation of blood flow. Leptin's role in regulating blood flow is not completely understood. Red blood cell (RBC)-derived ATP is a recognized stimulus of blood flow, and multiple studies suggest that C-peptide, a hormone secreted in equimolar amounts with insulin from the pancreatic β-cells, can stimulate that release when delivered by albumin and in combination with Zn2+. Here, we report leptin delivers C-peptide and Zn2+ to RBCs in a saturable and specific manner. We labeled leptin with technetium-99 m (99mTc) to perform binding studies while using albumin to block the specific binding of 99mTc-leptin in the presence or absence of C-peptide. Our results suggest that leptin has a saturable and specific binding site on the RBC ((Kd = 1.79 ± 0.46) × 10-7 M) that is statistically equal to the binding affinity in the presence of 20 nM C-peptide ((Kd = 2.05 ± 0.20) × 10-7 M). While the binding affinity between leptin and the RBC did not change with C-peptide, the moles of bound leptin did increase with C-peptide, suggesting a separate binding site on the cell for a leptin/C-peptide complex. The RBC-derived ATP increased in the presence of a leptin/C-peptide/Zn2+ addition, in a concentration-dependent manner. Control RBCs ATP release increased (71 ± 5.6%) in the presence of C-peptide and Zn2+, which increased further to (94 ± 5.6%) in the presence of Zn2+, C-peptide, and leptin.
Collapse
Affiliation(s)
- Hamideh Keshavarz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lisa M Meints
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morgan K Geiger
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kurt R Zinn
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dana M Spence
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
9
|
Tosato S, Bonetto C, Tomassi S, Zanardini R, Faravelli C, Bruschi C, D'Agostino A, Minelli A, Scocco P, Lasalvia A, Furlato K, Imbesi M, Preti A, Ruggeri M, Gennarelli M, Bocchio-Chiavetto L. Childhood trauma and glucose metabolism in patients with first-episode psychosis. Psychoneuroendocrinology 2020; 113:104536. [PMID: 31864124 DOI: 10.1016/j.psyneuen.2019.104536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 11/29/2019] [Indexed: 01/23/2023]
Abstract
Although the associations between first-episode psychosis (FEP) and metabolic abnormalities on one side, and childhood trauma (CT) and risk of developing psychosis on the other are both well established, evidence on the relationship between CT and metabolic dysregulation in terms of abnormal glucose metabolism is very limited. We tested whether, already at illness onset, FEP patients with a history of CT show dysregulation of a broad range of glucose metabolism markers. In particular, in 148 FEP patients we evaluated serum concentrations of c-peptide, insulin, plasminogen-activator-inhibitor-1 (PAI-1), resistin, visfatin, glucagon, glucagon-like peptide-1 (GLP-1), gastric-inhibitor-peptide (GIP), leptin, and ghrelin. We also assessed CT with the Childhood Experience of Care and Abuse Questionnaire, and stressful life events (SLEs) with a semi-structured interview. Psychopathology, cannabis and tobacco habits, Body Mass Index (BMI) were recorded. Serum concentrations of markers were analyzed from peripheral blood. Ninety-five patients (56 % males, mean age 29.5) reported CT. Multivariate models showed that CT is associated only with the concentrations of c-peptide and insulin after adjusting for age, sex, BMI and SLEs. FEP patients who had experienced CT showed higher c-peptide and insulin serum concentrations. Our study reports that CT might be associated with the metabolic abnormalities in the first stage of psychosis, suggesting that a thorough anamnestic evaluation at psychosis onset that would include the history of CT could be helpful for clinicians in order to implement early programmes of healthy lifestyle education and to guide choice of therapeutic interventions for trauma.
Collapse
Affiliation(s)
- Sarah Tosato
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy.
| | - Chiara Bonetto
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Simona Tomassi
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Zanardini
- IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Carlo Faravelli
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | | | - Alessandra Minelli
- IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Paolo Scocco
- Department of Mental Health, Azienda ULSS 6 Euganea, Padua, Italy
| | - Antonio Lasalvia
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Karin Furlato
- Department of Mental Health, Azienda USL Bolzano, Italy
| | | | - Antonio Preti
- Detection and Intervention in Psychosis, Department of Mental Health, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Massimo Gennarelli
- IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | | | - Luisella Bocchio-Chiavetto
- IRCCS Istituto Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy; Faculty of Psychology, eCampus University, Novedrate (Como), Italy
| |
Collapse
|
10
|
Yaribeygi H, Maleki M, Sathyapalan T, Sahebkar A. The effect of C-peptide on diabetic nephropathy: A review of molecular mechanisms. Life Sci 2019; 237:116950. [PMID: 31605709 DOI: 10.1016/j.lfs.2019.116950] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
C-peptide is a small peptide connecting two chains of proinsulin molecule and is dissociated before the release of insulin. It is secreted in an equimolar amount to insulin from the pancreatic beta-cells into the circulation. Recent evidence demonstrates that it has other physiologic activities beyond its structural function. C-peptide modulates intracellular signaling pathways in various pathophysiologic states and, could potentially be a new therapeutic target for different disorders including diabetic complications. There is growing evidence that c-peptide has modulatory effects on the molecular mechanisms involved in the development of diabetic nephropathy. Although we have little direct evidence, pharmacological properties of c-peptide suggest that it can provide potent renoprotective effects especially, in a c-peptide deficient milieu as in type 1 diabetes mellitus. In this review, we describe possible molecular mechanisms by which c-peptide may improve renal efficiency in a diabetic milieu.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
12
|
Alves MT, Ortiz MMO, Dos Reis GVOP, Dusse LMS, Carvalho MDG, Fernandes AP, Gomes KB. The dual effect of C-peptide on cellular activation and atherosclerosis: Protective or not? Diabetes Metab Res Rev 2019; 35:e3071. [PMID: 30160822 DOI: 10.1002/dmrr.3071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
C-peptide is a cleavage product of proinsulin that acts on different type of cells, such as blood and endothelial cells. C-peptide biological effects may be different in type 1 and type 2 diabetes. Besides, there are further evidence for a functional interaction between C-peptide and insulin. In this way, C-peptide has ambiguous effects, acting as an antithrombotic or thrombotic molecule, depending on the physiological environment and disease conditions. Moreover, C-peptide regulates interaction of leucocytes, erythrocytes, and platelets with the endothelium. The beneficial effects include stimulation of nitric oxide production with its subsequent release by platelets and endothelium, the interaction with erythrocytes leading to the generation of adenosine triphosphate, and inhibition of atherogenic cytokine release. The undesirable action of C-peptide includes the chemotaxis of monocytes, lymphocytes, and smooth muscle cells. Also, C-peptide was related with increased lipid deposits and elevated smooth muscle cells proliferation in the vessel wall, contributing to atherosclerosis. Purpose of this review is to explore these dual roles of C-peptide on the blood, contributing at one side to haemostasis and the other to atherosclerotic process.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mylena Maira Oliveira Ortiz
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luci Maria Sant'Ana Dusse
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina Braga Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
Zalewski PD, Beltrame JF, Wawer AA, Abdo AI, Murgia C. Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Crit Rev Food Sci Nutr 2018; 59:3511-3525. [PMID: 29999409 DOI: 10.1080/10408398.2018.1495614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery of the roles of nitric oxide (NO) in cardiovascular signaling has led to a revolution in the understanding of cardiovascular disease. A new perspective to this story involving zinc (Zn) is emerging. Zn and its associated Zn transporter proteins are important for the integrity and functions of both the large conduit vessels and the microvascular resistance vessels. The Zn and NO pathways are tightly coordinated. Zn ions are required for the dimerization of endothelial nitric oxide synthase and subsequent generation of NO while generation of NO leads to a rapid mobilization of endothelial Zn stores. Labile Zn may mediate important downstream actions of NO including vascular cytoprotection and vasodilation. Several vascular disease risk factors (including aging, smoking and diabetes) interfere with Zn homeostatic mechanisms and both hypozincaemia and Zn transporter protein abnormalities are linked to atherosclerosis and microvascular disease. Some vegetarian diets and long-term use of certain anti-hypertensives may also impact on Zn status. The available evidence supports the existence of a Zn regulatory pathway in the vascular wall that is coupled to the generation and actions of NO and which is compromised in Zn deficiency with consequent implications for the pathogenesis and therapy of vascular disease.
Collapse
Affiliation(s)
- P D Zalewski
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - J F Beltrame
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - A A Wawer
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - A I Abdo
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - C Murgia
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Abstract
Kidney disease is a serious development in diabetes mellitus and poses an increasing clinical problem. Despite increasing incidence and prevalence of diabetic kidney disease, there have been no new therapies for this condition in the last 20 years. Mounting evidence supports a biological role for C-peptide, and findings from multiple studies now suggest that C-peptide may beneficially affect the disturbed metabolic and pathophysiological pathways leading to the development of diabetic nephropathy. Studies of C-peptide in animal models and in humans with type 1 diabetes all suggest a renoprotective effect for this peptide. In diabetic rodents, C-peptide reduces glomerular hyperfiltration and albuminuria. Cohort studies of diabetic patients with combined islet and kidney transplants suggest that maintained C-peptide secretion is protective of renal graft function. Further, in short-term studies of patients with type 1 diabetes, administration of C-peptide is also associated with a lowered hyperfiltration rate and reduced microalbuminuria. Thus, the available information suggests that type 1 diabetes should be regarded as a dual hormone deficiency disease and that clinical trials of C-peptide in diabetic nephropathy are both justified and urgently required.
Collapse
Affiliation(s)
- N J Brunskill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Godwin LA, Brooks JC, Hoepfner LD, Wanders D, Judd RL, Easley CJ. A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes. Analyst 2015; 140:1019-25. [PMID: 25423362 DOI: 10.1039/c4an01725k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Secreted from adipose tissue, adiponectin is a vital endocrine hormone that acts in glucose metabolism, thereby establishing its crucial role in diabetes, obesity, and other metabolic disease states. Insulin exposure to primary adipocytes cultured in static conditions has been shown to stimulate adiponectin secretion. However, conventional, static methodology for culturing and stimulating adipocytes falls short of truly mimicking physiological environments. Along with decreases in experimental costs and sample volume, and increased temporal resolution, microfluidic platforms permit small-volume flowing cell culture systems, which more accurately represent the constant flow conditions through vasculature in vivo. Here, we have integrated a customized primary tissue culture reservoir into a passively operated microfluidic device made of polydimethylsiloxane (PDMS). Fabrication of the reservoir was accomplished through unique PDMS "landscaping" above sampling channels, with a design strategy targeted to primary adipocytes to overcome issues of positive cell buoyancy. This reservoir allowed three-dimensional culture of primary murine adipocytes, accurate control over stimulants via constant perfusion, and sampling of adipokine secretion during various treatments. As the first report of primary adipocyte culture and sampling within microfluidic systems, this work sets the stage for future studies in adipokine secretion dynamics.
Collapse
Affiliation(s)
- Leah A Godwin
- Auburn University, Department of Chemistry and Biochemistry, Auburn, AL 36849, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Chen C, Wang Y, Lockwood SY, Spence DM. 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst 2015; 139:3219-26. [PMID: 24660218 DOI: 10.1039/c3an02357e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A fluidic device constructed with a 3D-printer can be used to investigate stored blood components with subsequent high-throughput calibration and readout with a standard plate reader.
Collapse
Affiliation(s)
- Chengpeng Chen
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
17
|
Yosten GLC, Kolar GR. The Physiology of Proinsulin C-Peptide: Unanswered Questions and a Proposed Model. Physiology (Bethesda) 2015; 30:327-32. [DOI: 10.1152/physiol.00008.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
C-peptide is produced, processed, and secreted with insulin, and appears to exert separate but intimately related effects. In this review, we address the existence of the C-peptide receptor, the interaction between C-peptide and insulin, and the potential physiological significance of proinsulin C-peptide.
Collapse
Affiliation(s)
- Gina L. C. Yosten
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri; and
| | - Grant R. Kolar
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
18
|
C-Peptide and Its Career from Innocent Bystander to Active Player in Diabetic Atherogenesis. Curr Atheroscler Rep 2013; 15:339. [DOI: 10.1007/s11883-013-0339-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|