1
|
Damulewicz M, Woźnicka O, Jasińska M, Pyza E. CRY-dependent plasticity of tetrad presynaptic sites in the visual system of Drosophila at the morning peak of activity and sleep. Sci Rep 2020; 10:18161. [PMID: 33097794 PMCID: PMC7585400 DOI: 10.1038/s41598-020-74442-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022] Open
Abstract
Tetrad synapses are formed between the retina photoreceptor terminals and postsynaptic cells in the first optic neuropil (lamina) of Drosophila. They are remodelled in the course of the day and show distinct functional changes during activity and sleep. These changes result from fast degradation of the presynaptic scaffolding protein Bruchpilot (BRP) by Cryptochrome (CRY) in the morning and depend on BRP-170, one of two BRP isoforms. This process also affects the number of synaptic vesicles, both clear and dense-core, delivered to the presynaptic elements. In cry01 mutants lacking CRY and in brpΔ170, the number of synaptic vesicles is lower in the morning peak of activity than during night-sleep while in wild-type flies the number of synaptic vesicles is similar at these two time points. CRY may also set phase of the circadian rhythm in plasticity of synapses. The process of synapse remodelling stimulates the formation of clear synaptic vesicles in the morning. They carry histamine, a neurotransmitter in tetrad synapses and seem to be formed from glial capitate projections inside the photoreceptor terminals. In turn dense-core vesicles probably carry synaptic proteins building the tetrad presynaptic element.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Małgorzata Jasińska
- Department of Histology, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
2
|
Damulewicz M, Mazzotta GM, Sartori E, Rosato E, Costa R, Pyza EM. Cryptochrome Is a Regulator of Synaptic Plasticity in the Visual System of Drosophila melanogaster. Front Mol Neurosci 2017; 10:165. [PMID: 28611590 PMCID: PMC5448152 DOI: 10.3389/fnmol.2017.00165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/11/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila CRYPTOCHROME (CRY) is a blue light sensitive protein with a key role in circadian photoreception. A main feature of CRY is that light promotes an interaction with the circadian protein TIMELESS (TIM) resulting in their ubiquitination and degradation, a mechanism that contributes to the synchronization of the circadian clock to the environment. Moreover, CRY participates in non-circadian functions such as magnetoreception, modulation of neuronal firing, phototransduction and regulation of synaptic plasticity. In the present study we used co-immunoprecipitation, yeast 2 hybrid (Y2H) and in situ proximity ligation assay (PLA) to show that CRY can physically associate with the presynaptic protein BRUCHPILOT (BRP) and that CRY-BRP complexes are located mainly in the visual system. Additionally, we present evidence that light-activated CRY may decrease BRP levels in photoreceptor termini in the distal lamina, probably targeting BRP for degradation.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology and Earth Sciences, Jagiellonian UniversityKrakow, Poland
| | | | - Elena Sartori
- Department of Biology, University of PadovaPadova, Italy
| | - Ezio Rosato
- Department of Genetics, University of Leicester LeicesterUnited Kingdom
| | - Rodolfo Costa
- Department of Biology, University of PadovaPadova, Italy
| | - Elzbieta M. Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology and Earth Sciences, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
3
|
Kijak E, Pyza E. TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in behavior and plasticity of L2 interneurons in the brain of Drosophila melanogaster. PLoS One 2017; 12:e0171848. [PMID: 28196106 PMCID: PMC5308838 DOI: 10.1371/journal.pone.0171848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/26/2017] [Indexed: 12/19/2022] Open
Abstract
Drosophila melanogaster is a common model used to study circadian rhythms in behavior and circadian clocks. However, numerous circadian rhythms have also been detected in non-clock neurons, especially in the first optic neuropil (lamina) of the fly's visual system. Such rhythms have been observed in the number of synapses and in the structure of interneurons, which exhibit changes in size and shape in a circadian manner. Although the patterns of these changes are known, the mechanism remains unclear. In the present study, we investigated the role of the TOR signaling pathway and autophagy in regulating circadian rhythms based on the behavior and structural plasticity of the lamina L2 monopolar cell dendritic trees. In addition, we examined the cyclic expression of the TOR signaling pathway (Tor, Pi3K class 1, Akt1) and autophagy (Atg5 and Atg7) genes in the fly's brain. We observed that Tor, Atg5 and Atg7 exhibit rhythmic expressions in the brain of wild-type flies in day/night conditions (LD 12:12) that are abolished in per01 clock mutants. The silencing of Tor in per expressing cells shortens a period of the locomotor activity rhythm of flies. In addition, silencing of the Tor and Atg5 genes in L2 cells disrupts the circadian plasticity of the L2 cell dendritic trees measured in the distal lamina. In turn, silencing of the Atg7 gene in L2 cells changes the pattern of this rhythm. Our results indicate that the TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in the behavior and plasticity of neurons in the brain of adult flies.
Collapse
Affiliation(s)
- Ewelina Kijak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Woźnicka O, Görlich A, Sigrist S, Pyza E. BRP-170 and BRP190 isoforms of Bruchpilot protein differentially contribute to the frequency of synapses and synaptic circadian plasticity in the visual system of Drosophila. Front Cell Neurosci 2015; 9:238. [PMID: 26175667 PMCID: PMC4485229 DOI: 10.3389/fncel.2015.00238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
In the first optic neuropil (lamina) of the optic lobe of Drosophila melanogaster, two classes of synapses, tetrad and feedback, show daily rhythms in the number and size of presynaptic profiles examined at the level of transmission electron microscopy (TEM). Number of tetrad presynaptic profiles increases twice a day, once in the morning and again in the evening, and their presynaptic ribbons are largest in the evening. In contrast, feedback synapses peak at night. The frequency of synapses is correlated with size of the presynaptic element measured as the platform size of so-called T-bars, with T-bar platforms being largest with increasing synapse frequency. The large scaffold protein Bruchpilot (BRP) is a major essential constituent of T-bars, with two major isoforms of 190 and 170 kD forming T-bars of the peripheral neuromuscular junctions (NMJ) synapses and in the brain. In addition to the analysis of cyclic plasticity of tetrad and feedback synapses in wild-type flies, we used TEM to examine daily changes in the size and distribution of synapses within isoform-specific BRP mutants, expressing BRP-190 (BRPΔ170) or BRP-170 (BRPΔ190) only. We found that the number and circadian plasticity of synapses depends on both isoforms. In the BRPΔ190 lacking BRP-190 there was almost 50% less tetrad synapses demonstrable than when both isoforms were present. The lack of BRP-170 and BRP-190 increased and decreased, respectively the number of feedback synapses, indicating that BRP-190 forms most of the feedback synapses. In both mutants, the daily plasticity of tetrad and feedback presynaptic profiles was abolished, except for feedback synapses in BRPΔ190. The oscillations in the number and size of presynaptic elements seem to depend on a different contribution of BRP isoforms in a presynaptic element at different time during the day and night and at various synapse types. The participation of both BRP isoforms may vary in different classes of synapses.
Collapse
Affiliation(s)
- Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Alicja Görlich
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Stephan Sigrist
- Neurogenetik, Institut für Biologie, Freie Universität Berlin Berlin, Germany ; NeuroCure and Institut für Medizinische Physik and Biophysik, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|
5
|
Górska-Andrzejak J, Damulewicz M, Pyza E. Circadian changes in neuronal networks. CURRENT OPINION IN INSECT SCIENCE 2015; 7:76-81. [PMID: 32846686 DOI: 10.1016/j.cois.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 06/11/2023]
Abstract
The circadian clock generates circadian plasticity in some of the clock and non-clock neurons leading to the daily changes in their structure and in the number of synaptic contacts. This plasticity affects neuronal networks in the brain. The two best known examples of circadian changes in neuronal networks are those observed in the first optic neuropil (lamina) of the fly's visual system and between one group of clock neurons, the small ventral lateral neurons (s-LNvs), and their target cells in the dorsal part of the Drosophila brain. Both of these networks are remodeled in the course of the day by the circadian clock and they are further affected by external stimuli.
Collapse
Affiliation(s)
- Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
6
|
Krzeptowski W, Górska-Andrzejak J, Kijak E, Görlich A, Guzik E, Moore G, Pyza EM. External and circadian inputs modulate synaptic protein expression in the visual system of Drosophila melanogaster. Front Physiol 2014; 5:102. [PMID: 24772085 PMCID: PMC3982107 DOI: 10.3389/fphys.2014.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/28/2014] [Indexed: 12/30/2022] Open
Abstract
In the visual system of Drosophila melanogaster the retina photoreceptors form tetrad synapses with the first order interneurons, amacrine cells and glial cells in the first optic neuropil (lamina), in order to transmit photic and visual information to the brain. Using the specific antibodies against synaptic proteins; Bruchpilot (BRP), Synapsin (SYN), and Disc Large (DLG), the synapses in the distal lamina were specifically labeled. Then their abundance was measured as immunofluorescence intensity in flies held in light/dark (LD 12:12), constant darkness (DD), and after locomotor and light stimulation. Moreover, the levels of proteins (SYN and DLG), and mRNAs of the brp, syn, and dlg genes, were measured in the fly's head and brain, respectively. In the head we did not detect SYN and DLG oscillations. We found, however, that in the lamina, DLG oscillates in LD 12:12 and DD but SYN cycles only in DD. The abundance of all synaptic proteins was also changed in the lamina after locomotor and light stimulation. One hour locomotor stimulations at different time points in LD 12:12 affected the pattern of the daily rhythm of synaptic proteins. In turn, light stimulations in DD increased the level of all proteins studied. In the case of SYN, however, this effect was observed only after a short light pulse (15 min). In contrast to proteins studied in the lamina, the mRNA of brp, syn, and dlg genes in the brain was not cycling in LD 12:12 and DD, except the mRNA of dlg in LD 12:12. Our earlier results and obtained in the present study showed that the abundance of BRP, SYN and DLG in the distal lamina, at the tetrad synapses, is regulated by light and a circadian clock while locomotor stimulation affects their daily pattern of expression. The observed changes in the level of synaptic markers reflect the circadian plasticity of tetrad synapses regulated by the circadian clock and external inputs, both specific and unspecific for the visual system.
Collapse
Affiliation(s)
- Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Ewelina Kijak
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Alicja Görlich
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Elżbieta Guzik
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Gareth Moore
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Elżbieta M Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| |
Collapse
|
7
|
Górska-Andrzejak J, Makuch R, Stefan J, Görlich A, Semik D, Pyza E. Circadian expression of the presynaptic active zone protein bruchpilot in the lamina ofDrosophila melanogaster. Dev Neurobiol 2012; 73:14-26. [DOI: 10.1002/dneu.22032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/28/2012] [Accepted: 05/08/2012] [Indexed: 11/08/2022]
|
8
|
Damulewicz M, Pyza E. The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity. PLoS One 2011; 6:e21258. [PMID: 21760878 PMCID: PMC3124489 DOI: 10.1371/journal.pone.0021258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/26/2011] [Indexed: 01/08/2023] Open
Abstract
In the first optic neuropil (lamina) of the fly's visual system, two interneurons, L1 and L2 monopolar cells, and epithelial glial cells show circadian rhythms in morphological plasticity. These rhythms depend on clock gene period (per) and cryptochrome (cry) expression. In the present study, we found that rhythms in the lamina of Drosophila melanogaster may be regulated by circadian clock neurons in the brain since the lamina is invaded by one neurite extending from ventral lateral neurons; the so-called pacemaker neurons. These neurons and the projection to the lamina were visualized by green fluorescent protein (GFP). GFP reporter gene expression was driven by the cry promotor in cry-GAL4/UAS-GFP transgenic lines. We observed that the neuron projecting to the lamina forms arborizations of varicose fibers in the distal lamina. These varicose fibers do not form synaptic contacts with the lamina cells and are immunoreactive to the antisera raised against a specific region of Schistocerca gregaria ion transport peptide (ITP). ITP released in a paracrine way in the lamina cortex, may regulate the swelling and shrinking rhythms of the lamina monopolar cells and the glia by controlling the transport of ions and fluids across cell membranes at particular times of the day.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
9
|
Circadian rhythms in the morphology of neurons in Drosophila. Cell Tissue Res 2011; 344:381-9. [DOI: 10.1007/s00441-011-1174-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/13/2011] [Indexed: 12/13/2022]
|
10
|
Groh C, Meinertzhagen IA. Brain plasticity in Diptera and Hymenoptera. Front Biosci (Schol Ed) 2010; 2:268-88. [PMID: 20036946 DOI: 10.2741/s63] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To mediate different types of behaviour, nervous systems need to coordinate the proper operation of their neural circuits as well as short- and long-term alterations that occur within those circuits. The latter ultimately devolve upon specific changes in neuronal structures, membrane properties and synaptic connections that are all examples of plasticity. This reorganization of the adult nervous system is shaped by internal and external influences both during development and adult maturation. In adults, behavioural experience is a major driving force of neuronal plasticity studied particularly in sensory systems. The range of adaptation depends on features that are important to a particular species, and is therefore specific, so that learning is essential for foraging in honeybees, while regenerative capacities are important in hemimetabolous insects with long appendages. Experience is usually effective during a critical period in early adult life, when neural function becomes tuned to future conditions in an insect's life. Tuning occur at all levels, in synaptic circuits, neuropile volumes, and behaviour. There are many examples, and this review incorporates only a select few, mainly those from Diptera and Hymenoptera.
Collapse
Affiliation(s)
- Claudia Groh
- Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | |
Collapse
|
11
|
Weber P, Kula-Eversole E, Pyza E. Circadian control of dendrite morphology in the visual system of Drosophila melanogaster. PLoS One 2009; 4:e4290. [PMID: 19173003 PMCID: PMC2628732 DOI: 10.1371/journal.pone.0004290] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/02/2008] [Indexed: 11/19/2022] Open
Abstract
Background In the first optic neuropil (lamina) of the fly's visual system, monopolar cells L1 and L2 and glia show circadian rhythms in morphological plasticity. They change their size and shape during the day and night. The most pronounced changes have been detected in circadian size of the L2 axons. Looking for a functional significance of the circadian plasticity observed in axons, we examined the morphological plasticity of the L2 dendrites. They extend from axons and harbor postsynaptic sites of tetrad synaptic contacts from the photoreceptor terminals. Methodology/Principal Findings The plasticity of L2 dendrites was evaluated by measuring an outline of the L2 dendritic trees. These were from confocal images of cross sections of L2 cells labeled with GFP. They were in wild-type and clock mutant flies held under different light conditions and sacrified at different time points. We found that the L2 dendrites are longest at the beginning of the day in both males and females. This rhythm observed under a day/night regime (LD) was maintained in constant darkness (DD) but not in continuous light (LL). This rhythm was not present in the arrhythmic per01 mutant in LD or in DD. In the clock photoreceptor cryb mutant the rhythm was maintained but its pattern was different than that observed in wild-type flies. Conclusions/Significance The results obtained showed that the L2 dendrites exhibit circadian structural plasticity. Their morphology is controlled by the per gene-dependent circadian clock. The L2 dendrites are longest at the beginning of the day when the daytime tetrad presynaptic sites are most numerous and L2 axons are swollen. The presence of the rhythm, but with a different pattern in cryb mutants in LD and DD indicates a new role of cry in the visual system. The new role is in maintaining the circadian pattern of changes of the L2 dendrite length and shape.
Collapse
Affiliation(s)
- Paweł Weber
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Elżbieta Kula-Eversole
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Kraków, Poland
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Elżbieta Pyza
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Kraków, Poland
- * E-mail:
| |
Collapse
|
12
|
Current world literature. Ageing: biology and nutrition. Curr Opin Clin Nutr Metab Care 2009; 12:95-100. [PMID: 19057195 DOI: 10.1097/mco.0b013e32831fd97a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|