1
|
Choi J, Joisher HNV, Gill HK, Lin L, Cepko C. Characterization of the development of the high-acuity area of the chick retina. Dev Biol 2024; 511:39-52. [PMID: 38548147 DOI: 10.1016/j.ydbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The fovea is a small region within the central retina that is responsible for our high acuity daylight vision. Chickens also have a high acuity area (HAA), and are one of the few species that enables studies of the mechanisms of HAA development, due to accessible embryonic tissue and methods to readily perturb gene expression. To enable such studies, we characterized the development of the chick HAA using single molecule fluorescent in situ hybridization (smFISH), along with more classical methods. We found that Fgf8 provides a molecular marker for the HAA throughout development and into adult stages, allowing studies of the cellular composition of this area over time. The radial dimension of the ganglion cell layer (GCL) was seen to be the greatest at the HAA throughout development, beginning during the period of neurogenesis, suggesting that genesis, rather than cell death, creates a higher level of retinal ganglion cells (RGCs) in this area. In contrast, the HAA acquired its characteristic high density of cone photoreceptors post-hatching, which is well after the period of neurogenesis. We also confirmed that rod photoreceptors are not present in the HAA. Analyses of cell death in the developing photoreceptor layer, where rods would reside, did not show apoptotic cells, suggesting that lack of genesis, rather than death, created the "rod-free zone" (RFZ). Quantification of each cone photoreceptor subtype showed an ordered mosaic of most cone subtypes. The changes in cellular densities and cell subtypes between the developing and mature HAA provide some answers to the overarching strategy used by the retina to create this area and provide a framework for future studies of the mechanisms underlying its formation.
Collapse
Affiliation(s)
- Jiho Choi
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | - Heer N V Joisher
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | | | - Lucas Lin
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | - Constance Cepko
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
2
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
3
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
4
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Hernández-Núñez I, Marzal A, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Analysis of Programmed Cell Death and Senescence Markers in the Developing Retina of an Altricial Bird Species. Cells 2021; 10:cells10030504. [PMID: 33652964 PMCID: PMC7996935 DOI: 10.3390/cells10030504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
This study shows the distribution patterns of apoptotic cells and biomarkers of cellular senescence during the ontogeny of the retina in the zebra finch (T. guttata). Neurogenesis in this altricial bird species is intense in the retina at perinatal and post-hatching stages, as opposed to precocial bird species in which retinogenesis occurs entirely during the embryonic period. Various phases of programmed cell death (PCD) were distinguishable in the T. guttata visual system. These included areas of PCD in the central region of the neuroretina at the stages of optic cup morphogenesis, and in the sub-optic necrotic centers (St15–St20). A small focus of early neural PCD was detected in the neuroblastic layer, dorsal to the optic nerve head, coinciding with the appearance of the first differentiated neuroblasts (St24–St25). There were sparse pyknotic bodies in the non-laminated retina between St26 and St37. An intense wave of neurotrophic PCD was detected in the laminated retina between St42 and P8, the last post-hatching stage included in the present study. PCD was absent from the photoreceptor layer. Phagocytic activity was also detected in Müller cells during the wave of neurotrophic PCD. With regard to the chronotopographical staining patterns of senescence biomarkers, there was strong parallelism between the SA-β-GAL signal and p21 immunoreactivity in both the undifferentiated and the laminated retina, coinciding in the cell body of differentiated neurons. In contrast, no correlation was found between SA-β-GAL activity and the distribution of TUNEL-positive cells in the developing tissue.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - José Antonio de Mera-Rodríguez
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Ismael Hernández-Núñez
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Alfonso Marzal
- Área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Gervasio Martín-Partido
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain;
- Correspondence: (J.R.-L.); (J.F.-M.)
| | - Javier Francisco-Morcillo
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
- Correspondence: (J.R.-L.); (J.F.-M.)
| |
Collapse
|
5
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Is Senescence-Associated β-Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development? Front Cell Dev Biol 2021; 9:623175. [PMID: 33585480 PMCID: PMC7876289 DOI: 10.3389/fcell.2021.623175] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
During vertebrate embryonic development, cellular senescence occurs at multiple locations. To date, it has been accepted that when there has been induction of senescence in an embryonic tissue, β-galactosidase activity is detectable at a pH as high as 6.0, and this has been extensively used as a marker of cellular senescence in vivo in both whole-mount and cryosections. Such senescence-associated β-galactosidase (SA-β-GAL) labeling appears enhanced in degenerating regions of the vertebrate embryo that are also affected by programmed cell death. In this sense, there is a strong SA-β-GAL signal which overlaps with the pattern of cell death in the interdigital tissue of the developing limbs, and indeed, many of the labeled cells detected go on to subsequently undergo apoptosis. However, it has been reported that β-GAL activity at pH 6.0 is also enhanced in healthy neurons, and some retinal neurons are strongly labeled with this histochemical technique when they begin to differentiate during early embryonic development. These labeled early post-mitotic neurons also express other senescence markers such as p21. Therefore, the reliability of this histochemical technique in studying senescence in cells such as neurons that undergo prolonged and irreversible cell-cycle arrest is questionable because it is also expressed in healthy post-mitotic cells. The identification of new biomarkers of cellular senescence would, in combination with established markers, increase the specificity and efficiency of detecting cellular senescence in embryonic and healthy mature tissues.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
6
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Senescence-associated β-galactosidase activity in the developing avian retina. Dev Dyn 2019; 248:850-865. [PMID: 31226225 DOI: 10.1002/dvdy.74] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Senescence-associated β-galactosidase (SA-β-GAL) histochemistry is the most commonly used biomarker of cellular senescence. These SA-β-GAL-positive cells are senescent embryonic cells that are usually removed by apoptosis from the embryo, followed by macrophage-mediated clearance. RESULTS Some authors have proposed that SA-β-GAL activity in differentiated neurons from young and adult mammals cannot be uniquely attributed to cell senescence, whether in vivo or in vitro. Using the developing visual system of the chicken as a model, the present study found that SA-β-GAL detected in the developing retina corresponded to lysosomal β-galactosidase activity, and that SA-β-GAL activity did not correlate with the chronotopographical distribution of apoptotic cells. However, SA-β-GAL staining in the undifferentiated retina coincided with the appearance of early differentiating neurons. In the laminated retina, SA-β-GAL staining was concentrated in the ganglion, amacrine, and horizontal cell layers. The photoreceptors and pigment epithelial cells also exhibited SA-β-GAL activity throughout retinal development. We have also found that SA-β-GAL staining strongly correlated p21 immunoreactivity. CONCLUSION In conclusion, the results clearly show that SA-β-GAL activity cannot be regarded as a specific marker of senescence during retinal development, and that it is mainly expressed in subpopulations of postmitotic neurons, which are nonproliferative cells, even at early stages of cell differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
7
|
Abstract
Brain inflammaging is increasingly considered as contributing to age-related cognitive loss and neurodegeneration. Despite intensive research in multiple models, no clinically effective pharmacological treatment has been found yet. Here, in the mouse model of brain senescence SAMP8, we tested the effects of proinsulin, a promising neuroprotective agent that was previously proven to be effective in mouse models of retinal neurodegeneration. Proinsulin is the precursor of the hormone insulin but also upholds developmental physiological effects, particularly as a survival factor for neural cells. Adeno-associated viral vectors of serotype 1 bearing the human proinsulin gene were administered intramuscularly to obtain a sustained release of proinsulin into the blood stream, which was able to reach the target area of the hippocampus. SAMP8 mice and the control strain SAMR1 were treated at 1 month of age. At 6 months, behavioral testing exhibited cognitive loss in SAMP8 mice treated with the null vector. Remarkably, the cognitive performance achieved in spatial and recognition tasks by SAMP8 mice treated with proinsulin was similar to that of SAMR1 mice. In the hippocampus, proinsulin induced the activation of neuroprotective pathways and the downstream signaling cascade, leading to the decrease of neuroinflammatory markers. Furthermore, the decrease of astrocyte reactivity was a central effect, as demonstrated in the connectome network of changes induced by proinsulin. Therefore, the neuroprotective effects of human proinsulin unveil a new pharmacological potential therapy in the fight against cognitive loss in the elderly.
Collapse
|
8
|
Mellough CB, Collin J, Khazim M, White K, Sernagor E, Steel DHW, Lako M. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells. Stem Cells 2015; 33:2416-30. [PMID: 25827910 PMCID: PMC4691326 DOI: 10.1002/stem.2023] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/17/2022]
Abstract
We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.
Collapse
Affiliation(s)
- Carla B. Mellough
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Joseph Collin
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| | - Mahmoud Khazim
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
- Institute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Kathryn White
- EM Research Services, Newcastle UniversityNewcastleUnited Kingdom
| | - Evelyne Sernagor
- Institute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - David H. W. Steel
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
- Sunderland Eye InfirmarySunderlandUnited Kingdom
| | - Majlinda Lako
- Institute of Genetic MedicineNewcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
9
|
Francisco-Morcillo J, Bejarano-Escobar R, Rodríguez-León J, Navascués J, Martín-Partido G. Ontogenetic cell death and phagocytosis in the visual system of vertebrates. Dev Dyn 2014; 243:1203-25. [PMID: 25130286 DOI: 10.1002/dvdy.24174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny. During these phases, comparative analyses demonstrate that dying cells show similar but not identical spatiotemporally restricted patterns in different vertebrates. Additionally, the chronotopographical coincidence of PCD with the entry of specialized phagocytes in some regions of the developing vertebrate visual system suggests that factors released from degenerating cells are involved in the cell migration of macrophages and microglial cells. Contradicting this hypothesis however, in many cases the cell corpses generated during degeneration are rapidly phagocytosed by neighboring cells, such as neuroepithelial cells or Müller cells. In this review, we describe the occurrence and the sites of PCD during the morphogenesis and differentiation of the retina and optic pathways of different vertebrates, and discuss the possible relationship between PCD and phagocytes during ontogeny.
Collapse
|
10
|
Wahlin KJ, Enke RA, Fuller JA, Kalesnykas G, Zack DJ, Merbs SL. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death. PLoS One 2013; 8:e79140. [PMID: 24244436 PMCID: PMC3823652 DOI: 10.1371/journal.pone.0079140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Background Vertebrate genomes undergo epigenetic reprogramming during development and disease. Emerging evidence suggests that DNA methylation plays a key role in cell fate determination in the retina. Despite extensive studies of the programmed cell death that occurs during retinal development and degeneration, little is known about how DNA methylation might regulate neuronal cell death in the retina. Methods The developing chicken retina and the rd1 and rhodopsin-GFP mouse models of retinal degeneration were used to investigate programmed cell death during retinal development and degeneration. Changes in DNA methylation were determined by immunohistochemistry using antibodies against 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Results Punctate patterns of hypermethylation paralleled patterns of caspase3-dependent apoptotic cell death previously reported to occur during development in the chicken retina. Degenerating rd1 mouse retinas, at time points corresponding to the peak of rod cell death, showed elevated signals for 5mC and 5hmC in photoreceptors throughout the retina, with the most intense staining observed in the peripheral retina. Hypermethylation of photoreceptors in rd1 mice was associated with TUNEL and PAR staining and appeared to be cCaspase3-independent. After peak rod degeneration, during the period of cone death, occasional hypermethylation was observed in the outer nuclear layer. Conclusion The finding that cell-specific increases of 5mC and 5hmC immunostaining are associated with the death of retinal neurons during both development and degeneration suggests that changes in DNA methylation may play a role in modulating gene expression during the process of retinal degeneration. During retinal development, hypermethylation of retinal neurons associates with classical caspase-dependent apoptosis as well as caspase-3 independent cell death, while hypermethylation in the rd1 mouse photoreceptors is primarily associated with caspase-3 independent programmed cell death. These findings suggest a previously unrecognized role for epigenetic mechanisms in the onset and/or progression of programed cell death in the retina.
Collapse
Affiliation(s)
- Karl J. Wahlin
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raymond A. Enke
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - John A. Fuller
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Giedrius Kalesnykas
- Department of Ophthalmology, Clinical Research Unit, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Donald J. Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute de la Vision, Université Pierre et Marie Curie, Paris, France
| | - Shannath L. Merbs
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Qi Y, Chen L, Zhang L, Liu WB, Chen XY, Yang XG. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway. Exp Eye Res 2013. [DOI: 10.1016/j.exer.2012.11.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Fernández-Sánchez L, Lax P, Isiegas C, Ayuso E, Ruiz JM, de la Villa P, Bosch F, de la Rosa EJ, Cuenca N. Proinsulin slows retinal degeneration and vision loss in the P23H rat model of retinitis pigmentosa. Hum Gene Ther 2012; 23:1290-300. [PMID: 23017108 DOI: 10.1089/hum.2012.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi-) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.
Collapse
Affiliation(s)
- Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, E-03080 Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
14
|
Cockburn DM, Charish J, Tassew NG, Eubanks J, Bremner R, Macchi P, Monnier PP. The double-stranded RNA-binding protein Staufen 2 regulates eye size. Mol Cell Neurosci 2012; 51:101-11. [PMID: 22940085 DOI: 10.1016/j.mcn.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022] Open
Abstract
Regulation of tissue size is a poorly understood process. Mammalian Staufen 2 (Stau2) is a double-stranded mRNA binding protein known to regulate dendrite formation in vitro as well as cell survival and migration in vivo. Three Stau2 isoforms have been identified in the brain of mammals. Here we show that all these Stau2 isoforms are also expressed in the developing eye of chicken embryos. Strikingly, ectopic expression of Stau2 was sufficient to increase eye size, suggesting a novel biological role of Stau2 in eye morphogenesis. Moreover, down regulation of Stau2 in vivo resulted in a small eye. Microphthalmia was not associated with either increased cell death or differentiation but with reduced cell proliferation. Rescue experiments showed that all three Stau2 isoforms present in the developing eye could prevent microphthalmia. Finally, we showed that Stau2 silencing decreased HES-1 and Sox-2 in the developing eye. These data highlight a new biological function for Stau2 and suggest that translation control of specific Stau2-associated transcripts may be a key regulator of tissue size.
Collapse
Affiliation(s)
- Diane M Cockburn
- Toronto Western Research Institute, Genetics and Development Division, MCL-6-415, Toronto M5T 2S8, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
ATP induces the death of developing avian retinal neurons in culture via activation of P2X7 and glutamate receptors. Purinergic Signal 2012; 9:15-29. [PMID: 22733428 DOI: 10.1007/s11302-012-9324-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 06/12/2012] [Indexed: 10/28/2022] Open
Abstract
Previous data suggest that nucleotides are important mitogens in the developing retina. Here, the effect of ATP on the death of cultured chick embryo retina cells was investigated. In cultures obtained from retinas of 7-day-old chick embryos (E7) that were cultivated for 2 days (E7C2), both ATP and BzATP induced a ∼30 % decrease in cell viability that was time- and dose-dependent and that could be blocked by 0.2 mM oxidized ATP or 0.3 μM KN-62. An increase in cleaved caspase-3 levels and in the number of TUNEL-positive cells was observed when cultures were incubated with 3 mM ATP and immunolabeling for cleaved-caspase 3 was observed over neurons but not over glial cells. ATP-dependent cell death was developmentally regulated, the maximal levels being detected by E7C2-3. Nucleotides were able to increase neuronal ethidium bromide and sulforhodamine B uptake in mixed and purified neuronal cultures, an effect that was blocked by the antagonists Brilliant Blue G and oxidized ATP. In contrast, nucleotide-induced cell death was observed only in mixed cultures, but not in purified cultures of neurons or glia. ATP-induced neuronal death was blocked by the glutamatergic antagonists MK801 and DNQX and activation of P2X7 receptors by ATP decreased the uptake of [(3)H]-D-aspartate by cultured glial cells with a concomitant accumulation of it in the extracellular medium. These results suggest that ATP induces apoptosis of chick embryo retinal neurons in culture through activation of P2X7 and glutamate ionotropic receptors. Involvement of a P2X7 receptor-mediated inhibition of the glial uptake of glutamate is suggested.
Collapse
|
16
|
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008151. [PMID: 22570373 DOI: 10.1101/cshperspect.a008151] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All the information to make a complete, fully functional living organism is encoded within the genome of the fertilized oocyte. How is this genetic code translated into the vast array of cellular behaviors that unfold during the course of embryonic development, as the zygote slowly morphs into a new organism? Studies over the last 30 years or so have shown that many of these cellular processes are driven by secreted or membrane-bound signaling molecules. Elucidating how the genetic code is translated into instructions or signals during embryogenesis, how signals are generated at the correct time and place and at the appropriate level, and finally, how these instructions are interpreted and put into action, are some of the central questions of developmental biology. Our understanding of the causes of congenital malformations and disease has improved substantially with the rapid advances in our knowledge of signaling pathways and their regulation during development. In this article, I review some of the signaling pathways that play essential roles during embryonic development. These examples show some of the mechanisms used by cells to receive and interpret developmental signals. I also discuss how signaling pathways downstream from these signals are regulated and how they induce specific cellular responses that ultimately affect cell fate and morphogenesis.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development, King's College London, United Kingdom.
| |
Collapse
|
17
|
West EL, Pearson RA, Duran Y, Gonzalez-Cordero A, MacLaren RE, Smith AJ, Sowden JC, Ali RR. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant 2012; 21:871-87. [PMID: 22325046 DOI: 10.3727/096368911x623871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Degeneration of the neural retina is the leading cause of untreatable blindness in the developed world. Stem cell replacement therapy offers a novel strategy for retinal repair. Postmitotic photoreceptor precursors derived from the early postnatal (P) retina are able to migrate and integrate into the adult mouse retina following transplantation into the subretinal space, but it is likely that a large number of these cells would be required to restore vision. The adult recipient retina presents a very different environment to that from which photoreceptor precursor donor cells isolated from the developing postnatal retina are derived. Here we considered the possibility that modulation of the recipient environment by ectopic expression of developmentally regulated growth factors, normally present during photoreceptor development, might enhance the migration and integration of transplanted cells into the adult neural retina. Adeno-associated viral (AAV) vectors were used to introduce three growth factors previously reported to play a role in photoreceptor development, IGF1, FGF2, and CNTF, into the adult retina, prior to transplantation of P4 cells derived from the Nrl.GFP(+ve) neural retina. At 3 weeks posttransplantation the number of integrated, differentiated photoreceptor cells present in AAV-mediated neurotrophic factor-treated eyes was assessed and compared to control treated contralateral eyes. We show, firstly, that it is possible to manipulate the recipient retinal microenvironment via rAAV-mediated gene transfer with respect to these developmentally relevant growth factors. Moreover, when combined with cell transplantation, AAV-mediated expression of IGF1 led to significantly increased levels of cell integration, while overexpression of FGF2 had no significant effect on integrated cell number. Conversely, expression of CNTF led to a significant decrease in cell integration and an exacerbated glial response that led to glial scarring. Together, these findings demonstrate the importance of the extrinsic environment of the recipient retina for photoreceptor cell transplantation and show for the first time that it is possible to manipulate this environment using viral vectors to influence photoreceptor transplantation efficiency.
Collapse
Affiliation(s)
- E L West
- Department of Genetics, University College London Institute of Ophthalmology, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sanders EJ, Lin WY, Parker E, Harvey S. Growth hormone promotes the survival of retinal cells in vivo. Gen Comp Endocrinol 2011; 172:140-50. [PMID: 21185293 DOI: 10.1016/j.ygcen.2010.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/11/2010] [Indexed: 01/10/2023]
Abstract
Growth hormone (GH) is synthesized and present in the developing chick retina, where it may have local actions in retinal cell differentiation similar to those of conventional growth factors. We have previously shown that retinal GH has neuroprotective effects in retinal ganglion cells. In this paper, we extend our earlier functional studies by examining the in vivo effects of a GH siRNA (NR-cGH-1) after microinjection into the eye cup of the developing chick embryo in ovo. We show that intra-vitreous cGH siRNA lowers both GH mRNA and insulin-like growth factor-1 (IGF-1) mRNA levels in the retina in vivo, and concomitantly elevates the numbers of apoptotic cells in the retina. These effects are apparent 6h after treatment, and persist for at least 24h. The apoptotic cells induced by GH withdrawal were primarily located close to the optic fissure of the developing eye, and were distributed in clusters, suggesting that there are sub-populations of retinal cells that are particularly susceptible to apoptotic stimuli. These results support our view that a GH/IGF-1 axis in retinal cells regulates retinal cell survival in vivo.
Collapse
Affiliation(s)
- Esmond J Sanders
- Department of Physiology, University of Alberta, Edmonton, Alta., Canada
| | | | | | | |
Collapse
|
19
|
Socodato R, Brito R, Calaza KC, Paes-de-Carvalho R. Developmental regulation of neuronal survival by adenosine in the in vitro and in vivo avian retina depends on a shift of signaling pathways leading to CREB phosphorylation or dephosphorylation. J Neurochem 2010; 116:227-39. [PMID: 21054391 DOI: 10.1111/j.1471-4159.2010.07096.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have shown a cAMP/protein kinase A-dependent neuroprotective effect of adenosine on glutamate or re-feeding-induced apoptosis in chick retina neuronal cultures. In the present work, we have studied the effect of adenosine on the survival of retinal progenitor cells. Cultures obtained from 6-day-old (E6) or from 8-day-old (E8) chick embryos were challenged 2 h (C0) or 1 day (C1) after seeding and analyzed after 3-4 days in vitro. Surprisingly, treatment with the selective A2a adenosine receptor agonists N(6) -[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA) or 3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680) promoted cell death when added at E6C0 but not at E6C1 or E8C0. DPMA-induced cell death involved activation of A2a receptors and the phospholipase C/protein kinase C but not the cAMP/protein kinase A pathway, and was not correlated with early modulation of precursor cells proliferation. Regarding cyclic nucleotide responsive element binding protein (CREB) phosphorylation, cultures from E6 embryos behave in an opposite manner from that from E8 embryos, both in vitro and in vivo. While the phospho-CREB level was high at E6C0 cultures and could be diminished by DPMA, it was lower at E8C0 and could be increased by DPMA. Similar to what was observed in cell survival studies, CREB dephosphorylation induced by DPMA in E6C0 cultures was dependent on the Phospholipase C/protein kinase C pathway. Accordingly, cell death induced by DPMA was inhibited by okadaic acid, a phosphatase blocker. Moreover, DPMA as well as the adenosine uptake blocker nitrobenzyl mercaptopurine riboside (NBMPR) modulate cell survival and CREB phosphorylation in a population of cells in the ganglion cell layer in vivo. These data suggest that A2a adenosine receptors as well as CREB may display a novel and important function by controlling the repertoire of developing retinal neurons.
Collapse
Affiliation(s)
- Renato Socodato
- Laboratories of Cellular Neurobiology and Neurobiology of Retina, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | | |
Collapse
|
20
|
calaza KDC, Gardino PF. Neurochemical phenotype and birthdating of specific cell populations in the chick retina. AN ACAD BRAS CIENC 2010; 82:595-608. [DOI: 10.1590/s0001-37652010000300007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 11/16/2009] [Indexed: 11/21/2022] Open
Abstract
The chick embryo is one of the most traditional models in developing neuroscience and its visual system has been one of the most exhaustively studied. The retina has been used as a model for studying the development of the nervous system. Here, we describe the morphological features that characterize each stage of the retina development and studies of the neurogenesis period of some specific neurochemical subpopulations of retinal cells by using a combination of immunohistochemistry and autoradiography of tritiated-thymidine. It could be concluded that the proliferation period of dopaminergic, GABAergic, cholinoceptive and GABAceptive cells does not follow a common rule of the neurogenesis. In addition, some specific neurochemical cell groups can have a restrict proliferation period when compared to the total cell population.
Collapse
|
21
|
Porzionato A, Macchi V, Parenti A, De Caro R. Extracellular signal-regulated kinase and phosphatidylinositol-3-kinase/AKT signalling pathways in the human carotid body and peripheral ganglia. Acta Histochem 2010; 112:305-16. [PMID: 19232686 DOI: 10.1016/j.acthis.2008.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 12/20/2022]
Abstract
Extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/AKT signalling pathways are involved in various cell functions, but their developmental regulation in the carotid body and peripheral ganglia has not yet been fully investigated. ERK and AKT immunolocalisation and activation were studied by anti-ERK, -pERK, -AKT and -pAKT immunohistochemistry in carotid bodies and peripheral (sympathetic and sensory) ganglia, sampled at autopsy from 4 foetuses (mean gestational age 177 days), 8 infants (mean age 10 months), 8 young adults (mean age 38 years) and 6 aged adults (mean age 72.4 years). ERK and AKT immunopositivity and activation were demonstrated in both glomic type I cells and peripheral ganglionic cells and are ascribed to local action by neuromodulators or neurotrophic factors. Mean percentages of ERK- and pERK-immunopositive glomic type I cells were lower in foetuses than in infants and young adults, and those of AKT-immunopositive glomic type I cells were lower in foetuses than in young and old adults, suggesting incomplete maturation of these two signalling pathways in foetal life. Both pERK and pAKT immunoreactions were detected only in post-natal sympathetic and sensory ganglia, demonstrating that, also in peripheral ganglia, these pathways are not yet fully operative during the foetal stage.
Collapse
|
22
|
Stanke JJ, Fischer AJ. Embryonic retinal cells and support to mature retinal neurons. Invest Ophthalmol Vis Sci 2009; 51:2208-18. [PMID: 19892872 DOI: 10.1167/iovs.09-4447] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose. There is a paucity of neuron replacement studies for retinal ganglion cells. Given the complex phenotype of these neurons, replacement of ganglion cells may be impossible. However, transplanted embryonic cells could provide factors that promote the survival of these neurons. The authors sought to determine whether transplanted embryonic retinal cells from various stages of development influence the survival of mature ganglion cells Methods. Acutely dissociated retinal cells, obtained from chick embryos, were transplanted into the vitreous chamber of posthatch chicken eyes after the ganglion cells were selectively damaged. Eight days after transplantation, numbers of ganglion cells were determined Results. Embryonic retinal cells from embryonic day (E)7, E10, and E11 promoted the survival of ganglion cells, whereas cells from earlier or later stages of development or from other tissue sources did not. The environment provided by the posthatch eye did not support the proliferation of the embryo-derived cells, unlike the environment provided by culture conditions. Furthermore, cells that migrated into the retina failed to express neuronal or glial markers; those that remained in the vitreous formed aggregates of neuronal and glial cells Conclusions. The environment provided within the mature retina does not support the differentiation and proliferation of retinal progenitors. Furthermore, embryo-derived cells likely produce secreted factors that promote the survival of damaged ganglion cells. Therefore, embryonic retinal cells could be applied as a cell-based survival therapy to treat neurodegenerative diseases of the retina.
Collapse
Affiliation(s)
- Jennifer J Stanke
- Integrated Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
23
|
Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI-3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox Res 2009; 16:68-76. [PMID: 19526300 DOI: 10.1007/s12640-009-9049-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation is considered as a major regulator of cell death in various pathophysiological conditions, however, no direct information is available about its role in chronic hypoperfusion-induced neuronal death. Here, we provide evidence for the protective effect of PARP inhibition on degenerative retinal damage induced by bilateral common carotid artery occlusion (BCCAO), an adequate chronic hypoperfusion murine model. We found that BCCAO in adult male Wistar rats led to severe degeneration of all retinal layers that was attenuated by a carboxaminobenzimidazol-derivative PARP inhibitor (HO3089) administered unilaterally into the vitreous body immediately following carotid occlusion and then 4 times in a 2-week-period. Normal morphological structure of the retina was preserved and the thickness of the retinal layers was increased in HO3089-treated eyes compared to the BCCAO eyes. For Western blot studies, HO3089 was administered immediately after BCCAO and retinas were removed 4 h later. According to Western blot analysis utilizing phosphorylation-specific primary antibodies, besides activating poly-ADP-ribose (PAR) synthesis, BCCAO induced phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). HO3089 inhibited PAR synthesis, and decreased the phosphorylation of these proapoptotic MAPKs. In addition, HO3089 treatment induced phosphorylation, that is activation, of the protective Akt/glycogen synthase kinase (GSK)-3beta and extracellular signal-regulated kinase (ERK1/2) signaling pathways. These data indicate that PARP activation has a major role in mediating chronic hypoperfusion-induced neuronal death, and inhibition of the enzyme prevents the pathological changes both in the morphology and the kinase signaling cascades involved. These results identify PARP inhibition as a possible molecular target in the clinical management of chronic hypoperfusion-induced neurodegenerative diseases including ocular ischemic syndrome.
Collapse
|
24
|
Ko ML, Jian K, Shi L, Ko GYP. Phosphatidylinositol 3 kinase-Akt signaling serves as a circadian output in the retina. J Neurochem 2009; 108:1607-20. [PMID: 19166512 DOI: 10.1111/j.1471-4159.2009.05931.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The daily rhythm of L-type voltage-gated calcium channels (L-VGCCs) is part of the cellular mechanism underlying the circadian regulation of retina physiology and function. However, it is not completely understood how the circadian clock regulates L-VGCC current amplitudes without affecting channel gating properties. The phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway has been implicated in many vital cellular functions especially in trophic factor-induced ion channel trafficking and membrane insertion. Here, we report that PI3K-Akt signaling participates in the circadian phase-dependent modulation of L-VGCCs. We found that there was a circadian regulation of Akt phosphorylation on Thr308 that peaked at night. Inhibition of PI3K or Akt significantly decreased L-VGCC current amplitudes and the expression of membrane-bound L-VGCCalpha1D subunit only at night but not during the subjective day. Photoreceptors transfected with a dominant negative Ras had significantly less expression of phosphorylated Akt and L-VGCCalpha1D subunit compared with non-transfected photoreceptors. Interestingly, both PI3K-Akt and extracellular signal-related kinase were downstream of Ras, and they appeared to be parallel and equally important pathways to regulate L-VGCC rhythms. Inhibition of either pathway abolished the L-VGCC rhythm indicating that there were multiple mechanisms involved in the circadian regulation of L-VGCC rhythms in retina photoreceptors.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|
25
|
Dreixler JC, Hemmert JW, Shenoy SK, Shen Y, Lee HT, Shaikh AR, Rosenbaum DM, Roth S. The role of Akt/protein kinase B subtypes in retinal ischemic preconditioning. Exp Eye Res 2008; 88:512-21. [PMID: 19084003 DOI: 10.1016/j.exer.2008.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/26/2008] [Accepted: 11/04/2008] [Indexed: 01/26/2023]
Abstract
Potent endogenous protection from ischemia can be induced in the retina by ischemic preconditioning (IPC). Protein kinase B/Akt is a cellular survival factor. We hypothesized that Akt was integral to IPC based upon differential effects of Akt subtypes. Rats were subjected to retinal ischemia after IPC or IPC-mimicking by the opening of mitochondrial KATP (mKATP) channels. The effects of blocking Akt using wortmannin, API-2, or small interfering RNA (siRNA) were examined. Electroretinography assessed functional recovery after ischemia, and TUNEL examined retinal ganglion cell apoptosis. We studied the relationship between Akt activation and known initiators of IPC, including adenosine receptor stimulation and the opening of mKATP channels. The PI-3 kinase inhibitor wortmannin 1 or 4 mg/kg (i.p.), the specific Akt inhibitor API-2, 5-500 microM in the vitreous, or intravitreal siRNA directed against Akt2 or -3, but not Akt1, significantly attenuated the neuroprotective effect of IPC. Interfering RNA against any of the three Akt subtypes significantly but time-dependently attenuated mKATP channel opening to mimic IPC. Adenosine A1 receptor blockade (DPCPX), A2a blockade (CSC), or the mKATP channel blocker 5-hydroxydecanoic acid significantly attenuated Akt activation after IPC. Interfering RNA directed against Akt subtypes prevented the ameliorative effect of IPC on post-ischemic apoptosis. All three Akt subtypes are involved in functional retinal neuroprotection by IPC or IPC-mimicking. Akt is downstream of adenosine A1 and A2a receptors and mKATP channel opening. The results indicate the presence in the retina of robust and redundant endogenous neuroprotection based upon subtypes of Akt.
Collapse
Affiliation(s)
- John C Dreixler
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ 2008; 15:1279-90. [PMID: 18369370 DOI: 10.1038/cdd.2008.40] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Autophagy is a homoeostatic process necessary for the clearance of damaged or superfluous proteins and organelles. The recycling of intracellular constituents also provides energy during periods of metabolic stress, thereby contributing to cell viability. In addition, disruption of autophagic machinery interferes with embryonic development in several species, although the underlying cellular processes affected remain unclear. Here, we investigate the role of autophagy during the early stages of chick retina development, when the retinal neuroepithelium proliferates and starts to generate the first neurons, the retinal ganglion cells. These two developmental processes are accompanied by programmed cell death. Upon treatment with the autophagic inhibitor 3-methyladenine, retinas accumulated numerous TdT-mediated dUTP nick-end labelling-positive cells that correlated with a lack of the 'eat-me' signal phosphatidylserine (PS). In consequence, neighbouring cells did not engulf apoptotic bodies and they persisted as individual cell corpses, a phenotype that was also observed after blockade of phagocytosis with phospho-L-Serine. Supplying the retinas with methylpyruvate, a cell-permeable substrate for ATP production, restored ATP levels and the presentation of PS at the cell surface. Hence, engulfment and lysosomal degradation of apoptotic bodies were also re-established. Together, these data point to a novel role for the autophagic machinery during the development of the central nervous system.
Collapse
|