1
|
Mothe AJ, Jacobson PB, Caprelli M, Ulndreaj A, Rahemipour R, Huang L, Monnier PP, Fehlings MG, Tator CH. Delayed administration of elezanumab, a human anti-RGMa neutralizing monoclonal antibody, promotes recovery following cervical spinal cord injury. Neurobiol Dis 2022; 172:105812. [PMID: 35810963 DOI: 10.1016/j.nbd.2022.105812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) elicits a cascade of degenerative events including cell death, axonal degeneration, and the upregulation of inhibitory molecules which limit repair. Repulsive guidance molecule A (RGMa) is an axon growth inhibitor which is also involved in neuronal cell death and differentiation. SCI causes upregulation of RGMa in the injured rodent, non-human primate, and human spinal cord. Recently, we showed that delayed administration of elezanumab, a high affinity human RGMa-specific monoclonal antibody, promoted neuroprotective and regenerative effects following thoracic SCI. Since most human traumatic SCI is at the cervical level, and level-dependent anatomical and molecular differences may influence pathophysiological responses to injury and treatment, we examined the efficacy of elezanumab and its therapeutic time window of administration in a clinically relevant rat model of cervical impact-compression SCI. Pharmacokinetic analysis of plasma and spinal cord tissue lysate showed comparable levels of RGMa antibodies with delayed administration following cervical SCI. At 12w after SCI, elezanumab promoted long term benefits including perilesional sparing of motoneurons and increased neuroplasticity of key descending pathways involved in locomotion and fine motor function. Elezanumab also promoted growth of corticospinal axons into spinal cord gray matter and enhanced serotonergic innervation of the ventral horn to form synaptic connections caudal to the cervical lesion. Significant recovery in grip and trunk/core strength, locomotion and gait, and spontaneous voiding ability was found in rats treated with elezanumab either immediately post-injury or at 3 h post-SCI, and improvements in specific gait parameters were found when elezanumab was delayed to 24 h post-injury. We also developed a new locomotor score, the Cervical Locomotor Score, a simple and sensitive measure of trunk/core and limb strength and stability during dynamic locomotion.
Collapse
Affiliation(s)
- Andrea J Mothe
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada.
| | - Peer B Jacobson
- Department of Translational Sciences, AbbVie Inc., North Chicago, IL 60064, USA
| | - Mitchell Caprelli
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Antigona Ulndreaj
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Radmehr Rahemipour
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Philippe P Monnier
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, M5S 3H6, ON, Canada
| | - Michael G Fehlings
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada
| | - Charles H Tator
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute & University Health Network, Toronto, M5T 0S8, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T 2S8, ON, Canada.
| |
Collapse
|
2
|
Mothe AJ, Coelho M, Huang L, Monnier PP, Cui YF, Mueller BK, Jacobson PB, Tator CH. Delayed administration of the human anti-RGMa monoclonal antibody elezanumab promotes functional recovery including spontaneous voiding after spinal cord injury in rats. Neurobiol Dis 2020; 143:104995. [PMID: 32590037 DOI: 10.1016/j.nbd.2020.104995] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022] Open
Abstract
Spinal cord injury (SCI) often results in permanent functional loss due to a series of degenerative events including cell death, axonal damage, and the upregulation of inhibitory proteins that impede regeneration. Repulsive Guidance Molecule A (RGMa) is a potent inhibitor of axonal growth that is rapidly upregulated following injury in both the rodent and human central nervous system (CNS). Previously, we showed that monoclonal antibodies that specifically block inhibitory RGMa signaling promote neuroprotective and regenerative effects when administered acutely in a clinically relevant rat model of thoracic SCI. However, it is unknown whether systemic administration of RGMa blocking antibodies are effective for SCI after delayed administration. Here, we administered elezanumab, a human monoclonal antibody targeting RGMa, intravenously either acutely or at 3 h or 24 h following thoracic clip impact-compression SCI. Rats treated with elezanumab acutely and at 3 h post-injury showed improvements in overground locomotion and fine motor function and gait. Rats treated 24 h post-SCI trended towards better recovery demonstrating significantly greater stride length and swing speed. Treated rats also showed greater tissue preservation with reduced lesion areas. As seen with acute treatment, delayed administration of elezanumab at 3 h post-SCI also increased perilesional neuronal sparing and serotonergic and corticospinal axonal plasticity. In addition, all elezanumab treated rats showed earlier spontaneous voiding ability and less post-trauma bladder wall hypertrophy. Together, our data demonstrate the therapeutic efficacy of delayed systemic administration of elezanumab in a rat model of SCI, and uncovers a new role for RGMa inhibition in bladder recovery following SCI.
Collapse
Affiliation(s)
- Andrea J Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada.
| | - Marlon Coelho
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Lili Huang
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
| | - Philippe P Monnier
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yi-Fang Cui
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Bernhard K Mueller
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Peer B Jacobson
- Integrated Sciences and Technology, AbbVie, North Chicago, IL 60064-6099, USA
| | - Charles H Tator
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 0S8, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
3
|
Ephrin-A2 regulates excitatory neuron differentiation and interneuron migration in the developing neocortex. Sci Rep 2017; 7:11813. [PMID: 28924206 PMCID: PMC5603509 DOI: 10.1038/s41598-017-12185-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
The development of the neocortex requires co-ordination between proliferation and differentiation, as well as the precise orchestration of neuronal migration. Eph/ephrin signaling is crucial in guiding neurons and their projections during embryonic development. In adult ephrin-A2 knockout mice we consistently observed focal patches of disorganized neocortical laminar architecture, ranging in severity from reduced neuronal density to a complete lack of neurons. Loss of ephrin-A2 in the pre-optic area of the diencephalon reduced the migration of neocortex-bound interneurons from this region. Furthermore, ephrin-A2 participates in the creation of excitatory neurons by inhibiting apical progenitor proliferation in the ventricular zone, with the disruption of ephrin-A2 signaling in these cells recapitulating the abnormal neocortex observed in the knockout. The disturbance to the architecture of the neocortex observed following deletion of ephrin-A2 signaling shares many similarities with defects found in the neocortex of children diagnosed with autism spectrum disorder.
Collapse
|
4
|
Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson's Disease. J Neurosci 2017; 37:9361-9379. [PMID: 28842419 DOI: 10.1523/jneurosci.0084-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/12/2017] [Accepted: 08/11/2017] [Indexed: 01/06/2023] Open
Abstract
Repulsive guidance molecule member a (RGMa) is a membrane-associated or released guidance molecule that is involved in axon guidance, cell patterning, and cell survival. In our previous work, we showed that RGMa is significantly upregulated in the substantia nigra of patients with Parkinson's disease. Here we demonstrate the expression of RGMa in midbrain human dopaminergic (DA) neurons. To investigate whether RGMa might model aspects of the neuropathology of Parkinson's disease in mouse, we targeted RGMa to adult midbrain dopaminergic neurons using adeno-associated viral vectors. Overexpression of RGMa resulted in a progressive movement disorder, including motor coordination and imbalance, which is typical for a loss of DA release in the striatum. In line with this, RGMa induced selective degeneration of dopaminergic neurons in the substantia nigra (SN) and affected the integrity of the nigrostriatal system. The degeneration of dopaminergic neurons was accompanied by a strong microglia and astrocyte activation. The behavioral, molecular, and anatomical changes induced by RGMa in mice are remarkably similar to the clinical and neuropathological hallmarks of Parkinson's disease. Our data indicate that dysregulation of RGMa plays an important role in the pathology of Parkinson's disease, and antibody-mediated functional interference with RGMa may be a disease modifying treatment option.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a neurodegenerative disease characterized by severe motor dysfunction due to progressive degeneration of mesencephalic dopaminergic (DA) neurons in the substantia nigra. To date, there is no regenerative treatment available. We previously showed that repulsive guidance molecule member a (RGMa) is upregulated in the substantia nigra of PD patients. Adeno-associated virus-mediated targeting of RGMa to mouse DA neurons showed that overexpression of this repulsive axon guidance and cell patterning cue models the behavioral and neuropathological characteristics of PD in a remarkable way. These findings have implications for therapy development as interfering with the function of this specific axon guidance cue may be beneficial to the survival of DA neurons.
Collapse
|
5
|
Leigh BL, Cheng E, Linjing X, Andresen C, Hansen MR, Guymon CA. Photopolymerizable Zwitterionic Polymer Patterns Control Cell Adhesion and Guide Neural Growth. Biomacromolecules 2017; 18:2389-2401. [PMID: 28671816 PMCID: PMC6372952 DOI: 10.1021/acs.biomac.7b00579] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing materials that reduce or eliminate fibrosis encapsulation of neural prosthetic implants could significantly enhance implant fidelity by improving the tissue/electrode array interface. Here, we report on the photografting and patterning of two zwitterionic materials, sulfobetaine methacrylate (SBMA) and carboxybetaine methacrylate (CBMA), for controlling the adhesion and directionality of cells relevant to neural prosthetics. CBMA and SBMA polymers were photopolymerized and grafted on glass surfaces then characterized by X-ray photoelectron spectroscopy, water contact angle, and protein adsorption. Micropatterned surfaces were fabricated with alternating zwitterionic and uncoated bands. Fibroblasts, cells prevalent in fibrotic tissue, almost exclusively migrate and grow on uncoated bands with little to no cells present on zwitterionic bands, especially for CBMA-coated surfaces. Astrocytes and Schwann cells showed similarly low levels of cell adhesion and morphology changes when cultured on zwitterionic surfaces. Additionally, Schwann cells and inner ear spiral ganglion neuron neurites aligned well to zwitterionic patterns.
Collapse
Affiliation(s)
- Braden L. Leigh
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Elise Cheng
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Xu Linjing
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Corinne Andresen
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marlan R. Hansen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Li N, Qiao M, Zhao Q, Zhang P, Song L, Li L, Cui C. Effects of maternal lead exposure on RGMa and RGMb expression in the hippocampus and cerebral cortex of mouse pups. Brain Res Bull 2016; 127:38-46. [DOI: 10.1016/j.brainresbull.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022]
|
7
|
ϒ-secretase and LARG mediate distinct RGMa activities to control appropriate layer targeting within the optic tectum. Cell Death Differ 2015; 23:442-53. [PMID: 26292756 PMCID: PMC5072438 DOI: 10.1038/cdd.2015.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 07/11/2015] [Accepted: 07/02/2015] [Indexed: 11/15/2022] Open
Abstract
While a great deal of progress has been made in understanding the molecular mechanisms that regulate retino-tectal mapping, the determinants that target retinal projections to specific layers of the optic tectum remain elusive. Here we show that two independent RGMa-peptides, C- and N-RGMa, activate two distinct intracellular pathways to regulate axonal growth. C-RGMa utilizes a Leukemia-associated RhoGEF (LARG)/Rho/Rock pathway to inhibit axonal growth. N-RGMa on the other hand relies on ϒ-secretase cleavage of the intracellular portion of Neogenin to generate an intracellular domain (NeICD) that uses LIM-only protein 4 (LMO4) to block growth. In the developing tectum (E18), overexpression of C-RGMa and dominant-negative LARG (LARG-PDZ) induced overshoots in the superficial tectal layer but not in deeper tectal layers. In younger embryos (E12), C-RGMa and LARG-PDZ prevented ectopic projections toward deeper tectal layers, indicating that C-RGMa may act as a barrier to descending axons. In contrast both N-RGMa and NeICD overexpression resulted in aberrant axonal-paths, all of which suggests that it is a repulsive guidance molecule. Thus, two RGMa fragments activate distinct pathways resulting in different axonal responses. These data reveal how retinal projections are targeted to the appropriate layer in their target tissue.
Collapse
|
8
|
Spatiotemporal expression of repulsive guidance molecules (RGMs) and their receptor neogenin in the mouse brain. PLoS One 2013; 8:e55828. [PMID: 23457482 PMCID: PMC3573027 DOI: 10.1371/journal.pone.0055828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023] Open
Abstract
Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs) to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5) family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.
Collapse
|
9
|
Key B, Lah GJ. Repulsive guidance molecule A (RGMa): a molecule for all seasons. Cell Adh Migr 2012; 6:85-90. [PMID: 22568948 DOI: 10.4161/cam.20167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RGMa (repulsive guidance molecule a) was the first identified molecule that possessed the necessary functional activity to repulse and steer growth cones to their target in the brain. By binding to its neogenin receptor, RGMa caused the collapse of growth cones and encouraged axons to grow along specific trajectories in vitro. Although originally characterized in 1990, RGMa was not conclusively shown to mediate axon guidance in vivo for another 12 years. Loss-of-function analysis in mice revealed that RGMa may play a more important role in neural tube morphogenesis. RGMa has now emerged as a molecule with pleiotropic roles involving cell adhesion, cell migration, cell polarity and cell differentiation which together strongly influence early morphogenetic events as well as immune responses. RGMa can be regarded as a molecule for all seasons.
Collapse
Affiliation(s)
- Brian Key
- Brain Growth and Regeneration Lab, School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia.
| | | |
Collapse
|