1
|
Wang G, Qi W, Liu QH, Guan W. GluN2A: A Promising Target for Developing Novel Antidepressants. Int J Neuropsychopharmacol 2024; 27:pyae037. [PMID: 39185814 DOI: 10.1093/ijnp/pyae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Depression is a heterogeneous disorder with high morbidity and disability rates that poses serious problems regarding mental health care. It is now well established that N-methyl D-aspartate receptor (NMDAR) modulators are being increasingly explored as potential therapeutic options for treating depression, although relatively little is known about their mechanisms of action. NMDARs are glutamate-gated ion channels that are ubiquitously expressed in the central nervous system (CNS), and they have been shown to play key roles in excitatory synaptic transmission. GluN2A, the predominant Glu2N subunit of functional NMDARs in neurons, is involved in various physiological processes in the CNS and is associated with diseases such as anxiety, depression, and schizophrenia. However, the role of GluN2A in the pathophysiology of depression has not yet been elucidated. METHODS We reviewed several past studies to better understand the function of GluN2A in depression. Additionally, we also summarized the pathogenesis of depression based on the regulation of GluN2A expression, particularly its interaction with neuroinflammation and neurogenesis, which has received considerable critical attention and is highly implicated in the onset of depression. RESULTS These evidence suggests that GluN2A overexpression impairs structural and functional synaptic plasticity, which contributes to the development of depression. Consequently, this knowledge is vital for the development of selective antagonists targeting GluN2A subunits using pharmacological and molecular methods. CONCLUSIONS Specific inhibition of the GluN2A NMDAR subunit is resistant to chronic stress-induced depressive-like behaviors, making them promising targets for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, China
| | - Qiu-Hua Liu
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China
| |
Collapse
|
2
|
Jin J, Wang R, Lin Q. The Increased Channel Activity of N-Methyl-D-Aspartate Receptors at Extrasynaptic Sites in the Anterior Cingulate Cortex of Neonatal Rats Following Prolonged Ketamine Exposure. J Pain Res 2021; 14:2381-2389. [PMID: 34393508 PMCID: PMC8360360 DOI: 10.2147/jpr.s320674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ketamine is a dissociative anesthetic, commonly used for analgesia and anesthesia in a variety of pediatric procedures. It acts as a non-competitive antagonist to block ion channels of the N-methyl-D-aspartate receptors (NMDARs). Our previous study showed that repeated ketamine exposure developed a compensatory increase in NMDAR-mediated currents in neurons of the anterior cingulate cortex (ACC) of neonatal rats, and this increase was largely mediated by the GluN2B subunit-containing receptors, a predominant type of NMDARs during embryonic and early development of the brain. These data provide the molecular evidence to support that immature neurons are highly vulnerable to the development of apoptotic cell death after prolonged ketamine exposure. Methods Using whole-cell patch-clamp electrophysiology in an in vitro preparation of rat forebrain slices containing the ACC, the present study aimed at further determining whether GluN2B-containing NMDARs at extrasynaptic sites of immature neurons were the major target of ketamine for developing a compensatory increase in NMDAR-mediated synaptic transmission. Results Our major findings were that GluN2B subunits played a significant role in mediating ketamine-induced blockade of NMDAR-mediated currents in neonatal neurons and GluN2B-containing NMDARs expressed at extrasynaptic sites in neonatal neurons were the major player in compensatory enhancement of NMDAR-mediated currents after repeated ketamine exposure. Conclusion These results provide new evidence to strongly indicate that GluN2B-containing NMDARs at extrasynaptic sites are the key molecule contributing to the high vulnerability of the neonatal brain to ketamine-induced neurotoxic effects.
Collapse
Affiliation(s)
- Jianhui Jin
- Department of pain Management, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| | - Ruirui Wang
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| | - Qing Lin
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
3
|
Effect of Neuroprotective Magnesium Sulfate Treatment on Brain Transcription Response to Hypoxia Ischemia in Neonate Mice. Int J Mol Sci 2021; 22:ijms22084253. [PMID: 33923910 PMCID: PMC8074012 DOI: 10.3390/ijms22084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
MgSO4 is widely used in the prevention of preterm neurological disabilities but its modes of action remain poorly established. We used a co-hybridization approach using the transcriptome in 5-day old mice treated with a single dose of MgSO4 (600 mg/kg), and/or exposed to hypoxia-ischemia (HI). The transcription of hundreds of genes was altered in all the groups. MgSO4 mainly produced repressions culminating 6 h after injection. Bio-statistical analysis revealed the repression of synaptogenesis and axonal development. The putative targets of MgSO4 were Mnk1 and Frm1. A behavioral study of adults did not detect lasting effects of neonatal MgSO4 and precluded NMDA-receptor-mediated side effects. The effects of MgSO4 plus HI exceeded the sum of the effects of separate treatments. MgSO4 prior to HI reduced inflammation and the innate immune response probably as a result of cytokine inhibition (Ccl2, Ifng, interleukins). Conversely, MgSO4 had little effect on HI-induced transcription by RNA-polymerase II. De novo MgSO4-HI affected mitochondrial function through the repression of genes of oxidative phosphorylation and many NAD-dehydrogenases. It also likely reduced protein translation by the repression of many ribosomal proteins, essentially located in synapses. All these effects appeared under the putative regulatory MgSO4 induction of the mTORC2 Rictor coding gene. Lasting effects through Sirt1 and Frm1 could account for this epigenetic footprint.
Collapse
|
4
|
Turktan M, Yilmaz MB, Hatipoglu Z, Ilgaz S, Barc ED, Oksuz H, Akillioglu K, Ozcengiz D. Molecular determinants of behavioral changes induced by neonatal ketamine and dexmedetomidine application. J Neural Transm (Vienna) 2019; 126:1577-1588. [PMID: 31522257 DOI: 10.1007/s00702-019-02081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/08/2019] [Indexed: 01/29/2023]
Abstract
Ketamine (KET), an anesthetic, analgesic, and a sedative N-methyl-D-aspartate (NMDA) receptor antagonist agent, exposure during neonatal period may lead to learning impairment, behavioral abnormalities, and cognitive decline in the later years of life. In recent studies, it has been reported that sedative-acting α2 agonist dexmedetomidine (DEX), which is commonly used in clinical practice with KET, has neuroprotective effects and prevents the undesirable effects of anesthesia. To elucidate the underlying mechanisms of these actions, we investigated the interaction between NMDA receptors α2 adrenoceptor and adulthood behaviors in neonatally KET and/or DEX administrated mice. Balb/c male mice were administrated with saline, KET (75 mg/kg), DEX (10 µg/kg), or KET + DEX (75 mg/kg + 10 µg/kg) on postnatal day 7. During adulthood (8-10 weeks old) mice were subjected to elevated plus maze, open field, and Morris water maze tests. After behavioral tests, hippocampus samples were extracted for mRNA expression studies of NMDAR subunits (GluN1, GluN2A, and GluN2B) and α2 adrenoceptor subunits (α2A, α2B, and α2C) by real-time PCR. Ketamine increased horizontal and vertical locomotor activity (p < 0.01) and impaired spatial learning-memory (p < 0.05). DEX increased anxiety-like behavior (p < 0.01), but did not affect spatial learning-memory and locomotor activity. KET + DEX impaired spatial learning-memory (p < 0.01), increased horizontal locomotor activity (p < 0.01), and anxiety-like behavior (p < 0.05). Our study implies that DEX cannot prevent the adverse effects of KET, on spatial learning-memory, and locomotor activity. In addition to this, it can be thought that during brain development, there is an interaction between NMDAR and α2 adrenoceptor systems.
Collapse
Affiliation(s)
- Mediha Turktan
- Department of Anesthesiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mehmet Bertan Yilmaz
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Zehra Hatipoglu
- Department of Anesthesiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Seda Ilgaz
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Esma Deniz Barc
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Hale Oksuz
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Kubra Akillioglu
- Department of Medical Physiology, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey.
| | - Dilek Ozcengiz
- Department of Anesthesiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Sayson LV, Botanas CJ, Custodio RJP, Abiero A, Kim M, Lee HJ, Kim HJ, Yoo SY, Lee KW, Ryu HW, Acharya S, Kim KM, Lee YS, Cheong JH. The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT 2 receptors. Psychopharmacology (Berl) 2019; 236:2201-2210. [PMID: 30891619 DOI: 10.1007/s00213-019-05219-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
RATIONALE Depressive syndrome or depression is a debilitating brain disorder affecting numerous people worldwide. Although readily available, current antidepressants have low remission rates and late onset times. Recently, N-methyl-D-aspartate (NMDA) receptor antagonists, like ketamine and methoxetamine (MXE), were found to elicit rapid antidepressant effects. As the search for glutamatergic-based antidepressants is increasing, we synthesized three novel MXE analogs, N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK). OBJECTIVES To determine whether the three novel MXE analogs induce antidepressant effects and explore their mechanistic correlation. METHODS We examined their affinity for NMDA receptors through a radioligand binding assay. Mice were treated with each drug (2.5, 5, and 10 mg/kg), and their behavior was assessed 30 min later in the forced swimming test (FST), tail suspension test (TST), elevated plus-maze (EPM) test, and open-field test (OFT). Another group of mice were pretreated with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, or ketanserin (KS), a 5-HT2 receptor antagonist, during the FST. We also measured mRNA levels of the AMPA receptor subunits GluA1 and GluA2, brain-derived neurotrophic factor (BDNF), and mammalian target of rapamycin (mTOR) in the hippocampus and prefrontal cortex. RESULTS The MXE analogs showed affinity to NMDA receptors and decreased immobility time during the FST and TST. NBQX and KS blocked their effects in the FST. The compounds did not induce behavioral alteration during the EPM and OFT. The compounds altered GluA1, GluA2, and BDNF mRNA levels. CONCLUSION These results suggest that the novel MXE analogs induce antidepressant effects, which is likely via AMPA and 5-HT2 receptor activation.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Raly James Perez Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Sung Yeun Yoo
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kun Won Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Hye Won Ryu
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Srijan Acharya
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Yongbong-dong, Buk-gu, Gwangju, Republic of Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Yongbong-dong, Buk-gu, Gwangju, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
6
|
Chollat C, Lecointre M, Leuillier M, Remy-Jouet I, Do Rego JC, Abily-Donval L, Ramdani Y, Richard V, Compagnon P, Dureuil B, Marret S, Gonzalez BJ, Jégou S, Tourrel F. Beneficial Effects of Remifentanil Against Excitotoxic Brain Damage in Newborn Mice. Front Neurol 2019; 10:407. [PMID: 31068895 PMCID: PMC6491788 DOI: 10.3389/fneur.2019.00407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/04/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Remifentanil, a synthetic opioid used for analgesia during cesarean sections, has been shown in ex vivo experiments to exert anti-apoptotic activity on immature mice brains. The present study aimed to characterize the impact of remifentanil on brain lesions using an in vivo model of excitotoxic neonatal brain injury. Methods: Postnatal day 2 (P2) mice received three intraperitoneal injections of remifentanil (500 ng/g over a 10-min period) or saline just before an intracortical injection of ibotenate (10 μg). Cerebral reactive oxygen species (ROS) production, cell death, in situ labeling of cortical caspase activity, astrogliosis, inflammation mediators, and lesion size were determined at various time points after ibotenate injection. Finally, behavioral tests were performed until P18. Results: In the injured neonatal brain, remifentanil significantly decreased ROS production, cortical caspase activity, DNA fragmentation, interleukin-1β levels, and reactive astrogliosis. At P7, the sizes of the ibotenate-induced lesions were significantly reduced by remifentanil treatment. Performance on negative geotaxis (P6-8) and grasping reflex (P10-12) tests was improved in the remifentanil group. At P18, a sex specificity was noticed; remifentanil-treated females spent more time in the open field center than did the controls, suggesting less anxiety in young female mice. Conclusions: In vivo exposure to remifentanil exerts a beneficial effect against excitotoxicity on the developing mouse brain, which is associated with a reduction in the size of ibotenate-induced brain lesion as well as prevention of some behavioral deficits in young mice. The long-term effect of neonatal exposure to remifentanil should be investigated.
Collapse
Affiliation(s)
- Clément Chollat
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France.,Neonatal Intensive Care Unit of Port-Royal, Paris Centre University Hospitals, APHP, Paris Descartes University, Paris, France
| | - Maryline Lecointre
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France
| | - Matthieu Leuillier
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France
| | - Isabelle Remy-Jouet
- INSERM U1096, Biology Oxidative Stress Systems Platform, Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France
| | | | - Lénaïg Abily-Donval
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France.,Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Yasmina Ramdani
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France
| | - Vincent Richard
- INSERM U1096, Biology Oxidative Stress Systems Platform, Institute for Research and Innovation in Biomedicine, Normandy University, Rouen, France
| | | | - Bertrand Dureuil
- Department Anesthetics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Stéphane Marret
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France.,Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Bruno José Gonzalez
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France
| | - Sylvie Jégou
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France
| | - Fabien Tourrel
- INSERM U1245, Genetics and Pathophysiology of Neurodevelopment Disorders Team, Faculty of Medicine, Institute of Research and Innovation in Biomedicine, Normandy University, Rouen, France.,Department Anesthetics and Intensive Care, Rouen University Hospital, Rouen, France
| |
Collapse
|
7
|
|
8
|
Long-Term Neurobehavioral Consequences of a Single Ketamine Neonatal Exposure in Rats: Effects on Cellular Viability and Glutamate Transport in Frontal Cortex and Hippocampus. Neurotox Res 2018; 34:649-659. [PMID: 29968149 DOI: 10.1007/s12640-018-9927-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
The neonatal exposure to general anesthetics has been associated with neuronal apoptosis and dendritic spines morphologic changes in the developing brain. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated short- and long-term effects of a single ketamine (20 mg/kg, s.c.) neonatal exposure at postnatal day 7 in rats on the hippocampal and frontal cortical cellular viability. Additionally, putative neurochemical alterations and neurobehavioral impairments were evaluated in the adulthood. Ketamine neonatal administration selectively decreased cellular viability in the hippocampus, but not in the frontal cortex, 24 h after the treatment. Interestingly, a single ketamine neonatal exposure prevented the vulnerability to glutamate-induced neurotoxicity in the frontal cortex of adult rats. No short- or long-term damage to cellular membranes, as an indicative of cell death, was observed in hippocampal or cortical slices. However, ketamine induced a long-term increase in hippocampal glutamate uptake. Regarding behavioral analysis, neonatal ketamine exposure did not alter locomotor activity and anxiety-related parameters evaluated in the open-field test. However, ketamine administration disrupted the hippocampal-dependent object recognition ability of adult rats, while improved the motor coordination addressed on the rotarod. These findings indicate that a single neonatal ketamine exposure induces a short-term reduction in the hippocampal, but not in cortical, cellular viability, and long-term alterations in hippocampal glutamate transport, improvement on motor performance, and short-term recognition memory impairment.
Collapse
|
9
|
Lee JH, Zhang JY, Wei ZZ, Yu SP. Impaired social behaviors and minimized oxytocin signaling of the adult mice deficient in the N-methyl-d-aspartate receptor GluN3A subunit. Exp Neurol 2018; 305:1-12. [PMID: 29554474 DOI: 10.1016/j.expneurol.2018.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/05/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of neurological diseases, such as schizophrenia, autism spectrum disorders (ASD), and Alzheimer's disease (AD), whose unique clinical hallmark is a constellation of impaired social and/or cognitive behaviors. GluN3A (NR3A) is a unique inhibitory subunit in the NMDAR complex. The role of GluN3A in social behavioral activities is obscure. In this study, we sought to evaluate altered social activities in adult GluN3A knockout (KO) mice. GluN3A KO mice spent less time in reciprocal social interaction in the social interaction test compared to wild-type (WT) mice. A social approach test using a three-chamber system confirmed that mice lacking GluN3A had lower sociability and did not exhibit a preference for social novelty. GluN3A KO mice displayed abnormal food preference in the social transmission of food preference task and low social interaction activity in the five-trial social memory test, but without social memory deficits. Using a home cage monitoring system, we observed reduced social grooming behavior in GluN3A KO mice. Signaling genes that might mediate the altered social behaviors were examined in the prefrontal cortex, hippocampus, and thalamus. Among nine genes examined, the expression of the oxytocin receptor was significantly lower in the prefrontal cortex of GluN3A KO mice than that in WT mice. Oxytocin treatment rescued social activity deficits in GluN3A KO mice. These findings support a novel idea that a chronic state of moderate increases in NMDAR activities may lead to downregulation of the oxytocin signaling and impaired behavioral activities that are seen in psychiatric/neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Ya Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, VA Medical Center, Atlanta, GA 30033, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, VA Medical Center, Atlanta, GA 30033, USA.
| |
Collapse
|
10
|
Effects on adult cognitive function after neonatal exposure to clinically relevant doses of ionising radiation and ketamine in mice. Br J Anaesth 2018; 120:546-554. [PMID: 29452811 DOI: 10.1016/j.bja.2017.11.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Radiological methods for screening, diagnostics and therapy are frequently used in healthcare. In infants and children, anaesthesia/sedation is often used in these situations to relieve the patients' perception of stress or pain. Both ionising radiation (IR) and ketamine have been shown to induce developmental neurotoxic effects and this study aimed to identify the combined effects of these in a murine model. METHODS Male mice were exposed to a single dose of ketamine (7.5 mg kg-1 body weight) s.c. on postnatal day 10. One hour after ketamine exposure, mice were whole body irradiated with 50-200 mGy gamma radiation (137Cs). Behavioural observations were performed at 2, 4 and 5 months of age. At 6 months of age, cerebral cortex and hippocampus tissue were analysed for neuroprotein levels. RESULTS Animals co-exposed to IR and ketamine displayed significant (P≤0.01) lack of habituation in the spontaneous behaviour test, when compared with controls and single agent exposed mice. In the Morris Water Maze test, co-exposed animals showed significant (P≤0.05) impaired learning and memory capacity in both the spatial acquisition task and the relearning test compared with controls and single agent exposed mice. Furthermore, in co-exposed mice a significantly (P≤0.05) elevated level of tau protein in cerebral cortex was observed. Single agent exposure did not cause any significant effects on the investigated endpoints. CONCLUSION Co-exposure to IR and ketamine can aggravate developmental neurotoxic effects at doses where the single agent exposure does not impact on the measured variables. These findings show that estimation of risk after paediatric low-dose IR exposure, based upon radiation dose alone, may underestimate the consequences for this vulnerable population.
Collapse
|
11
|
Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats. Neurotoxicol Teratol 2017; 63:1-8. [PMID: 28782587 DOI: 10.1016/j.ntt.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis.
Collapse
|
12
|
Lisek M, Ferenc B, Studzian M, Pulaski L, Guo F, Zylinska L, Boczek T. Glutamate Deregulation in Ketamine-Induced Psychosis-A Potential Role of PSD95, NMDA Receptor and PMCA Interaction. Front Cell Neurosci 2017; 11:181. [PMID: 28701926 PMCID: PMC5487377 DOI: 10.3389/fncel.2017.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Ketamine causes psychotic episodes and is often used as pharmacological model of psychotic-like behavior in animals. There is increasing evidence that molecular mechanism of its action is more complicated than just N-methyl-D-aspartic acid (NMDA) receptor antagonism and involves interaction with the components of calcium homeostatic machinery, in particular plasma membrane calcium pump (PMCA). Therefore, in this study we aimed to characterize brain region-specific effects of ketamine on PMCA activity, interaction with NMDA receptor through postsynaptic density protein 95 (PSD95) scaffolding proteins and glutamate release from nerve endings. In our study, ketamine induced behavioral changes in healthy male rats consistent with psychotic effects. In the same animals, we were able to demonstrate significant inhibition of plasma membrane calcium ATPase (PMCA) activity in cerebellum, hippocampus and striatum. The expression level and isoform composition of PMCAs were also affected in some of these brain compartments, with possible compensatory effects of PMCA1 substituting for decreased expression of PMCA3. Expression of the PDZ domain-containing scaffold protein PSD95 was induced and its association with PMCA4 was higher in most brain compartments upon ketamine treatment. Moreover, increased PSD95/NMDA receptor direct interaction was also reported, strongly suggesting the formation of multiprotein complexes potentially mediating the effect of ketamine on calcium signaling. We further support this molecular mechanism by showing brain region-specific changes in PSD95/PMCA4 spatial colocalization. We also show that ketamine significantly increases synaptic glutamate release in cortex and striatum (without affecting total tissue glutamate content), inducing the expression of vesicular glutamate transporters and decreasing the expression of membrane glutamate reuptake pump excitatory amino acid transporters 2 (EAAT2). Thus, ketamine-mediated PMCA inhibition, by decreasing total Ca2+ clearing potency, may locally raise cytosolic Ca2+ promoting excessive glutamate release. Regional alterations in glutamate secretion can be further driven by PSD95-mediated spatial recruitment of signaling complexes including glutamate receptors and calcium pumps, representing a novel mechanism of psychogenic action of ketamine.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland.,Laboratory of Transcriptional Regulation, Institute of Medical BiologyLodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland.,Boston Children's Hospital and Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
13
|
Shen H, Li Z. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders. Clin Sci (Lond) 2016; 130:1137-46. [PMID: 27252401 PMCID: PMC5582542 DOI: 10.1042/cs20160046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
The identification and functional delineation of miRNAs (a class of small non-coding RNAs) have added a new layer of complexity to our understanding of the molecular mechanisms underlying synaptic plasticity. Genome-wide association studies in conjunction with investigations in cellular and animal models, moreover, provide evidence that miRNAs are involved in psychiatric disorders. In the present review, we examine the current knowledge about the roles played by miRNAs in NMDA (N-methyl-D-aspartate) receptor-dependent synaptic plasticity and psychiatric disorders.
Collapse
Affiliation(s)
- Hongmei Shen
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, U.S.A.
| |
Collapse
|
14
|
Célia Moreira Borella V, Seeman MV, Carneiro Cordeiro R, Vieira dos Santos J, Romário Matos de Souza M, Nunes de Sousa Fernandes E, Santos Monte A, Maria Mendes Vasconcelos S, Quinn JP, de Lucena DF, Carvalho AF, Macêdo D. Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine. Dev Neurobiol 2016; 76:519-532. [PMID: 26215537 DOI: 10.1002/dneu.22329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/09/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
Neonatal N-methyl-D-aspartate (NMDA) receptor blockade in rodents triggers schizophrenia (SCZ)-like alterations during adult life. SCZ is influenced by gender in age of onset, premorbid functioning, and course. Estrogen, the hormone potentially driving the gender differences in SCZ, is known to present neuroprotective effects such as regulate oxidative pathways and the expression of brain-derived neurotrophic factor (BDNF). Thus, the aim of this study was to verify if differences in gender and/or estrous cycle phase during adulthood would influence the development of behavioral and neurochemical alterations in animals neonatally administered ketamine. The results showed that ketamine-treated male (KT-male) and female-in-diestrus (KTF-diestrus, the low estrogen phase) presented significant deficits in prepulse inhibition of the startle reflex and spatial working memory, two behavioral SCZ endophenotypes. On the contrary, female ketamine-treated rats during proestrus (KTF-proestrus, the high estradiol phase) had no behavioral alterations. This correlated with an oxidative imbalance in the hippocampus (HC) of both male and KTF-diestrus female rats, that is, decreased levels of GSH and increased levels of lipid peroxidation and nitrite. Similarly, BDNF was decreased in the KTF-diestrus rats while no alterations were observed in KTF-proestrus and male animals. The changes in the HC were in contrast to those in the prefrontal cortex in which only increased levels of nitrite in all groups studied were observed. Thus, there is a gender difference in the adult rat HC in response to ketamine neonatal administration, which is based on the estrous cycle. This is discussed in relation to neuropsychiatric conditions and in particular SCZ.
Collapse
Affiliation(s)
- Vládia Célia Moreira Borella
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rafaela Carneiro Cordeiro
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Júnia Vieira dos Santos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marcos Romário Matos de Souza
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Ethel Nunes de Sousa Fernandes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Aline Santos Monte
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - David F de Lucena
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| | - André F Carvalho
- Department of Clinical Medicine, Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Neuropharmacology Laboratory, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
15
|
Sinclair D, Cesare J, McMullen M, Carlson GC, Hahn CG, Borgmann-Winter KE. Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus. J Neurodev Disord 2016; 8:14. [PMID: 27134685 PMCID: PMC4852102 DOI: 10.1186/s11689-016-9148-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia differentially impact males and females and are highly heritable. The ways in which sex and genetic vulnerability influence the pathogenesis of these disorders are not clearly understood. The n-methyl-d-aspartate (NMDA) receptor pathway has been implicated in schizophrenia and autism spectrum disorders and changes dramatically across postnatal development at the level of the GluN2B-GluN2A subunit "switch" (a shift from reliance on GluN2B-containing receptors to reliance on GluN2A-containing receptors). We investigated whether sex and genetic vulnerability (specifically, null mutation of DTNBP1 [dysbindin; a possible susceptibility gene for schizophrenia]) influence the developmental GluN2B-GluN2A switch. METHODS Subcellular fractionation to enrich for postsynaptic density (PSD), together with Western blotting and kinase assay, were used to investigate the GluN2B-GluN2A switch in the cortex and hippocampus of male and female DTNBP1 null mutant mice and their wild-type littermates. Main effects of sex and DTNBP1 genotype, and interactions with age, were assessed using factorial ANOVA. RESULTS Sex differences in the GluN2B-GluN2A switch emerged across development at the frontal cortical synapse, in parameters related to GluN2B. Males across genotypes displayed higher GluN2B:GluN2A and GluN2B:GluN1 ratios (p < 0.05 and p < 0.01, respectively), higher GluN2B phosphorylation at Y1472 (p < 0.01), and greater abundance of PLCγ (p < 0.01) and Fyn (p = 0.055) relative to females. In contrast, effects of DTNBP1 were evident exclusively in the hippocampus. The developmental trajectory of GluN2B was disrupted in DTNBP1 null mice (genotype × age interaction p < 0.05), which also displayed an increased synaptic GluN2A:GluN1 ratio (p < 0.05) and decreased PLCγ (p < 0.05) and Fyn (only in females; p < 0.0005) compared to wild-types. CONCLUSIONS Sex and DTNBP1 mutation influence the GluN2B-GluN2A switch at the synapse in a brain-region-specific fashion involving pY1472-GluN2B, Fyn, and PLCγ. This highlights the possible mechanisms through which risk factors may mediate their effects on vulnerability to disorders of NMDA receptor dysfunction.
Collapse
Affiliation(s)
- Duncan Sinclair
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA ; Present address: Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales Australia
| | - Joseph Cesare
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA
| | | | | | - Chang-Gyu Hahn
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA
| | - Karin E Borgmann-Winter
- Department of Psychiatry, Neuropsychiatric Signaling Program, University of Pennsylvania, Philadelphia, PA USA ; Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|
16
|
Stein LR, Zorumski CF, Imai SI, Izumi Y. Nampt is required for long-term depression and the function of GluN2B subunit-containing NMDA receptors. Brain Res Bull 2015; 119:41-51. [PMID: 26481044 DOI: 10.1016/j.brainresbull.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/13/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential coenzyme/cosubstrate for many biological processes in cellular metabolism. The rate-limiting step in the major pathway of mammalian NAD(+) biosynthesis is mediated by nicotinamide phosphoribosyltransferase (Nampt). Previously, we showed that mice lacking Nampt in forebrain excitatory neurons (CamKIIαNampt(-/-) mice) exhibited hyperactivity, impaired learning and memory, and reduced anxiety-like behaviors. However, it remained unclear if these functional effects were accompanied by synaptic changes. Here, we show that CamKIIαNampt(-/-) mice have impaired induction of long-term depression (LTD) in the Schaffer collateral pathway, but normal induction of long-term potentiation (LTP), at postnatal day 30. Pharmacological assessments demonstrated that CamKIIαNampt(-/-) mice also display dysfunction of synaptic GluN2B (NR2B)-containing N-methyl-d-aspartate receptors (NMDARs) prior to changes in NMDAR subunit expression. These results support a novel, important role for Nampt-mediated NAD(+) biosynthesis in LTD and in the function of GluN2B-containing NMDARs.
Collapse
Affiliation(s)
- Liana Roberts Stein
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Charles F Zorumski
- Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Anatomy and Neurobiology, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Yukitoshi Izumi
- Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|