1
|
He L, Sun Z, Li J, Zhu R, Niu B, Tam KL, Xiao Q, Li J, Wang W, Tsui CY, Hong Lee VW, So KF, Xu Y, Ramakrishna S, Zhou Q, Chiu K. Electrical stimulation at nanoscale topography boosts neural stem cell neurogenesis through the enhancement of autophagy signaling. Biomaterials 2020; 268:120585. [PMID: 33307364 DOI: 10.1016/j.biomaterials.2020.120585] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Neural stem cells (NSCs) transplantation at the injury site of central nerve system (CNS) makes it possible for neuroregeneration. Long-term cell survival and low proliferation, differentiation, and migration rates of NSCs-graft have been the most challenging aspect on NSCs application. New multichannel electrical stimulation (ES) device was designed to enhance neural stem cells (NSCs) differentiation into mature neurons. Compared to controls, ES at nanoscale topography enhanced the expression of mature neuronal marker, growth of the neurites, concentration of BDNF and electrophysiological activity. RNA sequencing analysis validated that ES promoted NSC-derived neuronal differentiation through enhancing autophagy signaling. Emerging evidences showed that insufficient or excessive autophagy contributes to neurite degeneration. Excessive ES current were able to enhance neuronal autophagy, the neuronal cells showed poor viability, reduced neurite outgrowth and electrophysiological activity. Well-controlled autophagy not only protects against neurodegeneration, but also regulates neurogenesis. Current NSC treatment protocol efficiently enhanced NSC differentiation, maturation and survival through combination of proper ES condition followed by balance of autophagy level in the cell culture system. The successful rate of such protreated NSC at injured CNS site should be significantly improved after transplantation.
Collapse
Affiliation(s)
- Liumin He
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, PR China; College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| | - Zhongqing Sun
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Jianshuang Li
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, PR China; The First Affiliated Hospital, The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Rong Zhu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Ben Niu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ka Long Tam
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | - Qiao Xiao
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Jun Li
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Wenjun Wang
- The First Affiliated Hospital, The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Chi Ying Tsui
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | - Vincent Wing Hong Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ying Xu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Seeram Ramakrishna
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China; Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Qinghua Zhou
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, PR China; The First Affiliated Hospital, The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| | - Kin Chiu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
2
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
3
|
Stifter J, Ulbrich F, Goebel U, Böhringer D, Lagrèze WA, Biermann J. Neuroprotection and neuroregeneration of retinal ganglion cells after intravitreal carbon monoxide release. PLoS One 2017; 12:e0188444. [PMID: 29176876 PMCID: PMC5703485 DOI: 10.1371/journal.pone.0188444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Retinal ischemia induces apoptosis leading to neurodegeneration and vision impairment. Carbon monoxide (CO) in gaseous form showed cell-protective and anti-inflammatory effects after retinal ischemia-reperfusion-injury (IRI). These effects were also demonstrated for the intravenously administered CO-releasing molecule (CORM) ALF-186. This article summarizes the results of intravitreally released CO to assess its suitability as a neuroprotective and neuroregenerative agent. METHODS Water-soluble CORM ALF-186 (25 μg), PBS, or inactivated ALF (iALF) (all 5 μl) were intravitreally applied into the left eyes of rats directly after retinal IRI for 1 h. Their right eyes remained unaffected and were used for comparison. Retinal tissue was harvested 24 h after intervention to analyze mRNA or protein expression of Caspase-3, pERK1/2, p38, HSP70/90, NF-kappaB, AIF-1 (allograft inflammatory factor), TNF-α, and GAP-43. Densities of fluorogold-prelabeled retinal ganglion cells (RGC) were examined in flat-mounted retinae seven days after IRI and were expressed as mean/mm2. The ability of RGC to regenerate their axon was evaluated two and seven days after IRI using retinal explants in laminin-1-coated cultures. Immunohistochemistry was used to analyze the different cell types growing out of the retinal explants. RESULTS Compared to the RGC-density in the contralateral right eyes (2804±214 RGC/mm2; data are mean±SD), IRI+PBS injection resulted in a remarkable loss of RGC (1554±159 RGC/mm2), p<0.001. Intravitreally injected ALF-186 immediately after IRI provided RGC protection and reduced the extent of RGC-damage (IRI+PBS 1554±159 vs. IRI+ALF 2179±286, p<0.001). ALF-186 increased the IRI-mediated phosphorylation of MAP-kinase p38. Anti-apoptotic and anti-inflammatory effects were detectable as Caspase-3, NF-kappaB, TNF-α, and AIF-1 expression were significantly reduced after IRI+ALF in comparison to IRI+PBS or IRI+iALF. Gap-43 expression was significantly increased after IRI+ALF. iALF showed effects similar to PBS. The intrinsic regenerative potential of RGC-axons was induced to nearly identical levels after IRI and ALF or iALF-treatment under growth-permissive conditions, although RGC viability differed significantly in both groups. Intravitreal CO further increased the IRI-induced migration of GFAP-positive cells out of retinal explants and their transdifferentiation, which was detected by re-expression of beta-III tubulin and nestin. CONCLUSION Intravitreal CORM ALF-186 protected RGC after IRI and stimulated their axons to regenerate in vitro. ALF conveyed anti-apoptotic, anti-inflammatory, and growth-associated signaling after IRI. CO's role in neuroregeneration and its effect on retinal glial cells needs further investigation.
Collapse
Affiliation(s)
- Julia Stifter
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Ulbrich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Ulrich Goebel
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf Alexander Lagrèze
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Biermann
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Ophthalmology, University of Muenster Medical Center, Domagkstrasse 15, Muenster, Germany
| |
Collapse
|