1
|
Qi J, Huang W, Lu Y, Yang X, Zhou Y, Chen T, Wang X, Yu Y, Sun JQ, Chai R. Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear. Neurosci Bull 2024; 40:113-126. [PMID: 37787875 PMCID: PMC10774470 DOI: 10.1007/s12264-023-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 10/04/2023] Open
Abstract
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wenjuan Huang
- Hospital of Southeast University, Nanjing, 210096, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Tian Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
2
|
Xu S, Yang N. Research Progress on the Mechanism of Cochlear Hair Cell Regeneration. Front Cell Neurosci 2021; 15:732507. [PMID: 34489646 PMCID: PMC8417573 DOI: 10.3389/fncel.2021.732507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian inner ear hair cells do not have the ability to spontaneously regenerate, so their irreversible damage is the main cause of sensorineural hearing loss. The damage and loss of hair cells are mainly caused by factors such as aging, infection, genetic factors, hypoxia, autoimmune diseases, ototoxic drugs, or noise exposure. In recent years, research on the regeneration and functional recovery of mammalian auditory hair cells has attracted more and more attention in the field of auditory research. How to regenerate and protect hair cells or auditory neurons through biological methods and rebuild auditory circuits and functions are key scientific issues that need to be resolved in this field. This review mainly summarizes and discusses the recent research progress in gene therapy and molecular mechanisms related to hair cell regeneration in the field of sensorineural hearing loss.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Kersigo J, Gu L, Xu L, Pan N, Vijayakuma S, Jones T, Shibata SB, Fritzsch B, Hansen MR. Effects of Neurod1 Expression on Mouse and Human Schwannoma Cells. Laryngoscope 2021; 131:E259-E270. [PMID: 32438526 PMCID: PMC7772964 DOI: 10.1002/lary.28671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The objective was to explore the effect of the proneuronal transcription factor neurogenic differentiation 1 (Neurod1, ND1) on Schwann cells (SC) and schwannoma cell proliferation. METHODS Using a variety of transgenic mouse lines, we investigated how expression of Neurod1 effects medulloblastoma (MB) growth, schwannoma tumor progression, vestibular function, and SC cell proliferation. Primary human vestibular schwannoma (VS) cell cultures were transduced with adenoviral vectors expressing Neurod1. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) uptake. STUDY DESIGN Basic science investigation. RESULTS Expression of Neurod1 reduced the growth of slow-growing but not fast-growing MB models. Gene transfer of Neurod1 in human schwannoma cultures significantly reduced cell proliferation in dose-dependent way. Deletion of the neurofibromatosis type 2 (Nf2) tumor-suppressor gene via Cre expression in SCs led to increased intraganglionic SC proliferation and mildly reduced vestibular sensory-evoked potentials (VsEP) responses compared to age-matched wild-type littermates. The effect of Neurod1-induced expression on intraganglionic SC proliferation in animals lacking Nf2 was mild and highly variable. Sciatic nerve axotomy significantly increased SC proliferation in wild-type and Nf2-null animals, and expression of Neurod1 reduced the proliferative capacity of both wild-type and Nf2-null SCs following nerve injury. CONCLUSION Expression of Neurod1 reduces slow-growing MB progression and reduces human SC proliferation in primary VS cultures. In a genetic mouse model of schwannomas, we find some effects of Neurod1 expression; however, the high variability indicates that more tightly regulated Neurod1 expression levels that mimic our in vitro data are needed to fully validate Neurod1 effects on schwannoma progression. LEVEL OF EVIDENCE NA Laryngoscope, 131:E259-E270, 2021.
Collapse
Affiliation(s)
- Jennifer Kersigo
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Lintao Gu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
- Decibel Pharmaceutical, Boston, Massachusetts, U.S.A
| | - Linjing Xu
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Ning Pan
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Special Education & Communication Disorders, University of Nebraska, Lincoln, Nebraska, U.S.A
| | - Sarath Vijayakuma
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Timothy Jones
- Department of Otolaryngology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Seiji B Shibata
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Bernd Fritzsch
- Department of Biology, University of Lowa, Lowa City, Lowa, U.S.A
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| | - Marlan R Hansen
- Department of Otolaryngology, University of Lowa, Lowa City, Lowa, U.S.A
| |
Collapse
|
4
|
Wang J, Lu C, Zhao Y, Tang Z, Song J, Fan C. Transcriptome profiles of sturgeon lateral line electroreceptor and mechanoreceptor during regeneration. BMC Genomics 2020; 21:875. [PMID: 33287707 PMCID: PMC7720607 DOI: 10.1186/s12864-020-07293-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background The electrosensory ampullary organs (AOs) and mechanosensory neuromasts (NMs) found in sturgeon and some other non-neopterygian fish or amphibians are both originated from lateral line placodes. However, these two sensory organs have characteristic morphological and physiological differences. The molecular mechanisms for the specification of AOs and NMs are not clearly understood. Results We sequenced the transcriptome for neomycin treated sturgeon AOs and NMs in the early regeneration stages, and de novo assembled a sturgeon transcriptome. By comparing the gene expression differences among untreated AOs, NMs and general epithelia (EPs), we located some specific genes for these two sensory organs. In sturgeon lateral line, the voltage-gated calcium channels and voltage-gated potassium channels were predominant calcium and potassium channel subtypes, respectively. And by correlating gene expression with the regeneration process, we predicated several candidate key transcriptional regulation related genes might be involved in AOs and NMs regeneration. Conclusions Genes with specific expression in the two lateral line sensory organs suggests their important roles in mechanoreceptor and electroreceptor formation. The candidate transcriptional regulation related genes may be important for mechano- and electro- receptor specification, in a “dosage-related” manner. These results suggested the molecular basis for specification of these two sensory organs in sturgeon.
Collapse
Affiliation(s)
- Jian Wang
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Chengcheng Lu
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Yifan Zhao
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Zhijiao Tang
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Jiakun Song
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Chunxin Fan
- International Joint Center for Marine Biological Sciences Research, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. .,Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Zhang S, Qiang R, Dong Y, Zhang Y, Chen Y, Zhou H, Gao X, Chai R. Hair cell regeneration from inner ear progenitors in the mammalian cochlea. AMERICAN JOURNAL OF STEM CELLS 2020; 9:25-35. [PMID: 32699655 PMCID: PMC7364385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Cochlear hair cells (HCs) are the mechanoreceptors of the auditory system, and because these cells cannot be spontaneously regenerated in adult mammals, hearing loss due to HC damage is permanent. However, cochleae of neonatal mice harbor some progenitor cells that retain limited ability to give rise to new HCs in vivo. Here we review the regulatory factors, signaling pathways, and epigenetic factors that have been reported to play roles in HC regeneration in the neonatal mammalian cochlea.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Ruiying Qiang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Ying Dong
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong UniversityNantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of ScienceBeijing, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast UniversityNanjing 211189, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210008, China
| |
Collapse
|
6
|
Fritzsch B, Elliott KL, Pavlinkova G, Duncan JS, Hansen MR, Kersigo JM. Neuronal Migration Generates New Populations of Neurons That Develop Unique Connections, Physiological Properties and Pathologies. Front Cell Dev Biol 2019; 7:59. [PMID: 31069224 PMCID: PMC6491807 DOI: 10.3389/fcell.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Central nervous system neurons become postmitotic when radial glia cells divide to form neuroblasts. Neuroblasts may migrate away from the ventricle radially along glia fibers, in various directions or even across the midline. We present four cases of unusual migration that are variably connected to either pathology or formation of new populations of neurons with new connectivities. One of the best-known cases of radial migration involves granule cells that migrate from the external granule cell layer along radial Bergman glia fibers to become mature internal granule cells. In various medulloblastoma cases this migration does not occur and transforms the external granule cell layer into a rapidly growing tumor. Among the ocular motor neurons is one unique population that undergoes a contralateral migration and uniquely innervates the superior rectus and levator palpebrae muscles. In humans, a mutation of a single gene ubiquitously expressed in all cells, induces innervation defects only in this unique motor neuron population, leading to inability to elevate eyes or upper eyelids. One of the best-known cases for longitudinal migration is the facial branchial motor (FBM) neurons and the overlapping inner ear efferent population. We describe here molecular cues that are needed for the caudal migration of FBM to segregate these motor neurons from the differently migrating inner ear efferent population. Finally, we describe unusual migration of inner ear spiral ganglion neurons that result in aberrant connections with disruption of frequency presentation. Combined, these data identify unique migratory properties of various neuronal populations that allow them to adopt new connections but also sets them up for unique pathologies.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | | | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Marlan R Hansen
- Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
7
|
|
8
|
Higuchi S, Sugahara F, Pascual-Anaya J, Takagi W, Oisi Y, Kuratani S. Inner ear development in cyclostomes and evolution of the vertebrate semicircular canals. Nature 2018; 565:347-350. [DOI: 10.1038/s41586-018-0782-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022]
|
9
|
Chen Y, Lu X, Guo L, Ni W, Zhang Y, Zhao L, Wu L, Sun S, Zhang S, Tang M, Li W, Chai R, Li H. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea. Front Mol Neurosci 2017; 10:426. [PMID: 29311816 PMCID: PMC5742997 DOI: 10.3389/fnmol.2017.00426] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Wenli Ni
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Yanping Zhang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Lingjie Wu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, China
| |
Collapse
|