1
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
2
|
|
3
|
Shao X, Lai D, Xiao W, Yang W, Yan Y, Kuang S. The botanical eurycomanone is a potent growth regulator of the diamondback moth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111647. [PMID: 33396167 DOI: 10.1016/j.ecoenv.2020.111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Eurycomanone is a quassinoid compound that is derived from Eurycoma longifolia, and it is often used as an indicator to evaluate the active ingredients of Eurycoma longifolia. However, Eurycomanone has rarely been reported to have biological activity toward pests. In this study, we evaluated the antifeedant activity of eurycomanone against the diamondback moth(Plutella xylostella), with a non-selective AFC50(the concentration that corresponds to 50% antifeedant action) value and selective AFC50 of 17.5 mg/L and 14.2 mg/L, respectively, which were 2.1-fold (36.9 mg/L) and 2-fold (28.5 mg/L) lower than that of azadirachtin, respectively. In addition, eurycomanone was used to treat the roots of Brassica chinensis L. at a concentration of 100 µg/g for 72 h. The antifeedant index was found to reach 93% by tracking the leaves. After feeding with 20 µg/g eurycomanone, no pupae or eclosion were observed. To explore this mechanism, we used scanning electron microscopy to discover that eurycomanone could prevent the development of taste receptors on the maxillary palp of diamondback moth larvae. Additional electrophysiological measurements showed that eurycomanone exhibited excitatory action to the central taste neurons of diamondback moth and significantly inhibited the GABAA receptor current. Eurycomanone exhibited significant activity as an antifeedant, inhibited growth and excelled at systemic absorption.
Collapse
Affiliation(s)
- Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiqiang Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiqun Yang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China.
| | - Shizi Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
4
|
Montenarh M, Götz C. Protein kinase CK2 and ion channels (Review). Biomed Rep 2020; 13:55. [PMID: 33082952 PMCID: PMC7560519 DOI: 10.3892/br.2020.1362] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase CK2 appears as a tetramer or higher molecular weight oligomer composed of catalytic CK2α, CK2α' subunits and non-catalytic regulatory CK2β subunits or as individual subunits. It is implicated in a variety of different regulatory processes, such as Akt signalling, splicing and DNA repair within eukaryotic cells. The present review evaluates the influence of CK2 on ion channels in the plasma membrane. CK2 phosphorylates platform proteins such as calmodulin and ankyrin G, which bind to channel proteins for a physiological transport to and positioning into the membrane. In addition, CK2 directly phosphorylates a variety of channel proteins directly to regulate opening and closing of the channels. Thus, modulation of CK2 activities by specific inhibitors, by siRNA technology or by CRISPR/Cas technology has an influence on intracellular ion concentrations and thereby on cellular signalling. The physiological regulation of the intracellular ion concentration is important for cell survival and correct intracellular signalling. Disturbance of this regulation results in a variety of different diseases including epilepsy, heart failure, cystic fibrosis and diabetes. Therefore, these effects should be considered when using CK2 inhibition as a treatment option for cancer.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| |
Collapse
|
5
|
Lazo PA, García JL, Gómez-Puertas P, Marcos-Alcalde Í, Arjona C, Villarroel A, González-Sarmiento R, Fons C. Novel Dominant KCNQ2 Exon 7 Partial In-Frame Duplication in a Complex Epileptic and Neurodevelopmental Delay Syndrome. Int J Mol Sci 2020; 21:ijms21124447. [PMID: 32585800 PMCID: PMC7352878 DOI: 10.3390/ijms21124447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Complex neurodevelopmental syndromes frequently have an unknown etiology, in which genetic factors play a pathogenic role. This study utilizes whole-exome sequencing (WES) to examine four members of a family with a son presenting, since birth, with epileptic-like crises, combined with cerebral palsy, severe neuromotor and developmental delay, dystonic tetraparexia, axonal motor affectation, and hyper-excitability of unknown origin. The WES study detected within the patient a de novo heterozygous in-frame duplication of thirty-six nucleotides within exon 7 of the human KCNQ2 gene. This insertion duplicates the first twelve amino acids of the calmodulin binding site I. Molecular dynamics simulations of this KCNQ2 peptide duplication, modelled on the 3D structure of the KCNQ2 protein, suggest that the duplication may lead to the dysregulation of calcium inhibition of this protein function.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
- Correspondence:
| | - Juan L. García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; (P.G.-P.); (Í.M.-A.)
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; (P.G.-P.); (Í.M.-A.)
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Cesar Arjona
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.A.); (C.F.)
- Instituto Pediátrico de Enfermedades Raras (IPER), Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Alvaro Villarroel
- Instituto de Biofísica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad del País Vasco, 48940 Bilbao, Spain;
| | - Rogelio González-Sarmiento
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
- Unidad de Genética Molecular, Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Carmen Fons
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.A.); (C.F.)
- Neurology Department, Hospital Sant Joan de Déu, Sant Joan de Déu Research Institute and CIBERER, Instituto de Salud Carlos III, 08950 Barcelona, Spain
| |
Collapse
|
6
|
Towers AE, Oelschlager ML, Lorenz M, Gainey SJ, McCusker RH, Krauklis SA, Freund GG. Handling stress impairs learning through a mechanism involving caspase-1 activation and adenosine signaling. Brain Behav Immun 2019; 80:763-776. [PMID: 31108171 PMCID: PMC6664453 DOI: 10.1016/j.bbi.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Acute stressors can induce fear and physiologic responses that prepare the body to protect from danger. A key component of this response is immune system readiness. In particular, inflammasome activation appears critical to linking stress to the immune system. Here, we show that a novel combination of handling procedures used regularly in mouse research impairs novel object recognition (NOR) and activates caspase-1 in the amygdala. In male mice, this handling-stress paradigm combined weighing, scruffing and sham abdominal injection once per hr. While one round of weigh/scruff/needle-stick had no impact on NOR, two rounds compromised NOR without impacting location memory or anxiety-like behaviors. Caspase-1 knockout (KO), IL-1 receptor 1 (IL-1R1) KO and IL-1 receptor antagonist (IL-RA)-administered mice were resistant to handling stress-induced loss of NOR. In addition, examination of the brain showed that handling stress increased caspase-1 activity 85% in the amygdala without impacting hippocampal caspase-1 activity. To delineate danger signals relevant to handling stress, caffeine-administered and adenosine 2A receptor (A2AR) KO mice were tested and found resistant to impaired learning and caspase-1 activation. Finally, mice treated with the β-adrenergic receptor antagonist, propranolol, were resistant to handling stress-induced loss of NOR and caspase-1 activation. Taken together, these results indicate that handling stress-induced impairment of object learning is reliant on a pathway requiring A2AR-dependent activation of caspase-1 in the amygdala that appears contingent on β-adrenergic receptor functionality.
Collapse
Affiliation(s)
- Albert E Towers
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Madelyn Lorenz
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Steven A Krauklis
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
7
|
Cadet JL, Patel R, Jayanthi S. Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacol Biochem Behav 2019; 179:98-108. [PMID: 30797763 DOI: 10.1016/j.pbb.2019.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Methamphetamine addiction is characterized by compulsive binges of drug intake despite adverse life consequences. A model of methamphetamine self-administration that includes contingent footshocks to constitute adverse consequences has helped to segregate rats that reduce or stop lever pressing for methamphetamine (sensitive) from those that continue to lever press for the drug (resistant) in the presence of negative outcomes. We have observed differential DNA hydroxymethylation and increased expression of potassium channel mRNAs in the nucleus accumbens of sensitive compared to resistant rats, suggesting a role of these channels in suppressing methamphetamine intake. There were also significant increases in nerve growth factor (NGF) expression and activation of its downstream signaling pathway (NGF-TrkA and p75NTR/MAPK signaling) in only the dorsal striatum of sensitive rats after a month of abstinence. In contrast, oxytocin mRNA expression was increased in only the nucleus accumbens of resistant rats compared to sensitive rats euthanized after that time. These results indicate that footshocks can differentiate two behavioral phenotypes with differential biochemical and epigenetic consequences in the ventral and dorsal striatum.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA.
| | - Ravish Patel
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
8
|
Zhang H, Winckler B, Cai Q. Introduction to the special issue on membrane trafficking in neurons. Dev Neurobiol 2018; 78:167-169. [PMID: 29453802 DOI: 10.1002/dneu.22573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ
| |
Collapse
|