1
|
Moseley SM, Meliza CD. A Complex Acoustical Environment During Development Enhances Auditory Perception and Coding Efficiency in the Zebra Finch. J Neurosci 2025; 45:e1269242024. [PMID: 39730206 PMCID: PMC11823350 DOI: 10.1523/jneurosci.1269-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (Taeniopygia guttata), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song. Compared to birds raised by pairs in acoustic isolation, male and female birds raised in a breeding colony were better in an operant discrimination task at recognizing conspecific songs with and without masking colony noise. Neurons in colony-reared birds had higher average firing rates, selectivity, and discriminability, especially in the narrow-spiking, putatively inhibitory neurons of a higher-order auditory area, the caudomedial nidopallium (NCM). Neurons in colony-reared birds were also less correlated in their tuning, more efficient at encoding the spectrotemporal structure of conspecific song, and better at filtering out masking noise. These results suggest that the auditory cortex adapts to noisy, complex acoustical environments by strengthening inhibitory circuitry, functionally decoupling excitatory neurons while maintaining overall excitatory-inhibitory balance.
Collapse
Affiliation(s)
- Samantha M Moseley
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - C Daniel Meliza
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
2
|
Schroeder KM, Remage-Healey L. Social and auditory experience shapes forebrain responsiveness in zebra finches before the sensitive period of vocal learning. J Exp Biol 2024; 227:jeb247956. [PMID: 39263850 PMCID: PMC11529884 DOI: 10.1242/jeb.247956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Early-life experiences with signals used in communication are instrumental in shaping an animal's social interactions. In songbirds, which use vocalizations for guiding social interactions and mate choice, recent studies show that sensory effects on development occur earlier than previously expected, even in embryos and nestlings. Here, we explored the neural dynamics underlying experience-dependent song categorization in young birds prior to the traditionally studied sensitive period of vocal learning that begins around 3 weeks post-hatch. We raised zebra finches either with their biological parents, cross-fostered by Bengalese finches beginning at embryonic day 9, or with only the non-singing mother from 2 days post-hatch. Then, 1-5 days after fledging, we conducted behavioral experiments and extracellular recordings in the auditory forebrain to test responses to zebra finch and Bengalese finch songs. Auditory forebrain neurons in cross-fostered and isolated birds showed increases in firing rate and decreases in responsiveness and selectivity. In cross-fostered birds, decreases in responsiveness and selectivity relative to white noise were specific to conspecific song stimuli, which paralleled behavioral attentiveness to conspecific songs in those same birds. This study shows that auditory and social experience can already impact song 'type' processing in the brains of nestlings, and that brain changes at this age can portend the effects of natal experience in adults.
Collapse
Affiliation(s)
- Katie M. Schroeder
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Luke Remage-Healey
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Moseley SM, Meliza CD. A complex acoustical environment during development enhances auditory perception and coding efficiency in the zebra finch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600670. [PMID: 38979160 PMCID: PMC11230381 DOI: 10.1101/2024.06.25.600670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (Taeniopygia guttata), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song. Compared to birds raised by pairs in acoustic isolation, male and female birds raised in a breeding colony were better in an operant discrimination task at recognizing conspecific songs with and without masking colony noise. Neurons in colony-reared birds had higher average firing rates, selectivity, and discriminability, especially in the narrow-spiking, putatively inhibitory neurons of a higher-order auditory area, the caudomedial nidopallium (NCM). Neurons in colony-reared birds were also less correlated in their tuning and more efficient at encoding the spectrotemporal structure of conspecific song, and better at filtering out masking noise. These results suggest that the auditory cortex adapts to noisy, complex acoustical environments by strengthening inhibitory circuitry, functionally decoupling excitatory neurons while maintaining overall excitatory-inhibitory balance.
Collapse
Affiliation(s)
- Samantha M Moseley
- Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
| | - C Daniel Meliza
- Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville VA 22904, USA
| |
Collapse
|
4
|
Shibata Y, Toji N, Wang H, Go Y, Wada K. Expansion of learning capacity elicited by interspecific hybridization. SCIENCE ADVANCES 2024; 10:eadn3409. [PMID: 38896617 PMCID: PMC11186503 DOI: 10.1126/sciadv.adn3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Learned behavior, a fundamental adaptive trait in fluctuating environments, is shaped by species-specific constraints. This phenomenon is evident in songbirds, which acquire their species-specific songs through vocal learning. To explore the neurogenetic mechanisms underlying species-specific song learning, we generated F1 hybrid songbirds by crossing Taeniopygia guttata with Aidemosyne modesta. These F1 hybrids demonstrate expanded learning capacities, adeptly mimicking songs from both parental species and other heterospecific songs more extensively than their parental counterparts. Despite the conserved size of brain regions and neuron numbers in the neural circuits for song learning and production, single-cell transcriptomics reveals distinctive transcriptional characteristics in the F1 hybrids, especially in vocal-motor projection neurons. These neurons exhibit enrichment for nonadditively expressed genes, particularly those related to ion channel activity and cell adhesion, which are associated with the degree of song learning among F1 individuals. Our findings provide insights into the emergence of altered learning capabilities through hybridization, linked to cell type-specific transcriptional changes.
Collapse
Affiliation(s)
- Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
| | - Noriyuki Toji
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hongdi Wang
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0497, Japan
| | - Yasuhiro Go
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
5
|
Fernández-Vargas M, Macedo-Lima M, Remage-Healey L. Acute Aromatase Inhibition Impairs Neural and Behavioral Auditory Scene Analysis in Zebra Finches. eNeuro 2024; 11:ENEURO.0423-23.2024. [PMID: 38467426 PMCID: PMC10960633 DOI: 10.1523/eneuro.0423-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 03/13/2024] Open
Abstract
Auditory perception can be significantly disrupted by noise. To discriminate sounds from noise, auditory scene analysis (ASA) extracts the functionally relevant sounds from acoustic input. The zebra finch communicates in noisy environments. Neurons in their secondary auditory pallial cortex (caudomedial nidopallium, NCM) can encode song from background chorus, or scenes, and this capacity may aid behavioral ASA. Furthermore, song processing is modulated by the rapid synthesis of neuroestrogens when hearing conspecific song. To examine whether neuroestrogens support neural and behavioral ASA in both sexes, we retrodialyzed fadrozole (aromatase inhibitor, FAD) and recorded in vivo awake extracellular NCM responses to songs and scenes. We found that FAD affected neural encoding of songs by decreasing responsiveness and timing reliability in inhibitory (narrow-spiking), but not in excitatory (broad-spiking) neurons. Congruently, FAD decreased neural encoding of songs in scenes for both cell types, particularly in females. Behaviorally, we trained birds using operant conditioning and tested their ability to detect songs in scenes after administering FAD orally or injected bilaterally into NCM. Oral FAD increased response bias and decreased correct rejections in females, but not in males. FAD in NCM did not affect performance. Thus, FAD in the NCM impaired neuronal ASA but that did not lead to behavioral disruption suggesting the existence of resilience or compensatory responses. Moreover, impaired performance after systemic FAD suggests involvement of other aromatase-rich networks outside the auditory pathway in ASA. This work highlights how transient estrogen synthesis disruption can modulate higher-order processing in an animal model of vocal communication.
Collapse
Affiliation(s)
- Marcela Fernández-Vargas
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
6
|
Kleindorfer S, Brouwer L, Hauber ME, Teunissen N, Peters A, Louter M, Webster MS, Katsis AC, Sulloway FJ, Common LK, Austin VI, Colombelli-Négrel D. Nestling Begging Calls Resemble Maternal Vocal Signatures When Mothers Call Slowly to Embryos. Am Nat 2024; 203:267-283. [PMID: 38306283 DOI: 10.1086/728105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractVocal production learning (the capacity to learn to produce vocalizations) is a multidimensional trait that involves different learning mechanisms during different temporal and socioecological contexts. Key outstanding questions are whether vocal production learning begins during the embryonic stage and whether mothers play an active role in this through pupil-directed vocalization behaviors. We examined variation in vocal copy similarity (an indicator of learning) in eight species from the songbird family Maluridae, using comparative and experimental approaches. We found that (1) incubating females from all species vocalized inside the nest and produced call types including a signature "B element" that was structurally similar to their nestlings' begging call; (2) in a prenatal playback experiment using superb fairy wrens (Malurus cyaneus), embryos showed a stronger heart rate response to playbacks of the B element than to another call element (A); and (3) mothers that produced slower calls had offspring with greater similarity between their begging call and the mother's B element vocalization. We conclude that malurid mothers display behaviors concordant with pupil-directed vocalizations and may actively influence their offspring's early life through sound learning shaped by maternal call tempo.
Collapse
|
7
|
Huge AC, Adreani NM, Colombelli-Négrel D, Akçay Ç, Common LK, Kleindorfer S. Age effects in Darwin's finches: older males build more concealed nests in areas with more heterospecific singing neighbors. JOURNAL OF ORNITHOLOGY 2023; 165:179-191. [PMID: 38225937 PMCID: PMC10787676 DOI: 10.1007/s10336-023-02093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 01/17/2024]
Abstract
Nesting success tends to increase with age in birds, in part because older birds select more concealed nest sites based on experience and/or an assessment of prevailing predation risk. In general, greater plant diversity is associated with more biodiversity and more vegetation cover. Here, we ask if older Darwin's finch males nest in areas with greater vegetation cover and if these nest sites also have greater avian species diversity assessed using song. We compared patterns in Darwin's Small Tree Finch (Camarhynchus parvulus) and Darwin's Small Ground Finch (Geospiza fuliginosa) as males build the nest in both systems. We measured vegetation cover, nesting height, and con- vs. heterospecific songs per minute at 55 nests (22 C. parvulus, 33 G. fuliginosa). As expected, in both species, older males built nests in areas with more vegetation cover and these nests had less predation. A novel finding is that nests of older males also had more heterospecific singing neighbors. Future research could test whether older males outcompete younger males for access to preferred nest sites that are more concealed and sustain a greater local biodiversity. The findings also raise questions about the ontogenetic and fitness consequences of different acoustical experiences for developing nestlings inside the nest. Supplementary Information The online version contains supplementary material available at 10.1007/s10336-023-02093-5.
Collapse
Affiliation(s)
- Antonia C. Huge
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | - Nicolas M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | | | - Çağlar Akçay
- Department of Psychology, Koç University, Istanbul, Turkey
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Lauren K. Common
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| | - Sonia Kleindorfer
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| |
Collapse
|
8
|
Fujii TG, Coulter A, Lawley KS, Prather JF, Okanoya K. Song Preference in Female and Juvenile Songbirds: Proximate and Ultimate Questions. Front Physiol 2022; 13:876205. [PMID: 35492616 PMCID: PMC9047784 DOI: 10.3389/fphys.2022.876205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Birdsong has long been a subject of extensive research in the fields of ethology as well as neuroscience. Neural and behavioral mechanisms underlying song acquisition and production in male songbirds are particularly well studied, mainly because birdsong shares some important features with human speech such as critical dependence on vocal learning. However, birdsong, like human speech, primarily functions as communication signals. The mechanisms of song perception and recognition should also be investigated to attain a deeper understanding of the nature of complex vocal signals. Although relatively less attention has been paid to song receivers compared to signalers, recent studies on female songbirds have begun to reveal the neural basis of song preference. Moreover, there are other studies of song preference in juvenile birds which suggest possible functions of preference in social context including the sensory phase of song learning. Understanding the behavioral and neural mechanisms underlying the formation, maintenance, expression, and alteration of such song preference in birds will potentially give insight into the mechanisms of speech communication in humans. To pursue this line of research, however, it is necessary to understand current methodological challenges in defining and measuring song preference. In addition, consideration of ultimate questions can also be important for laboratory researchers in designing experiments and interpreting results. Here we summarize the current understanding of song preference in female and juvenile songbirds in the context of Tinbergen's four questions, incorporating results ranging from ethological field research to the latest neuroscience findings. We also discuss problems and remaining questions in this field and suggest some possible solutions and future directions.
Collapse
Affiliation(s)
- Tomoko G. Fujii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Austin Coulter
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, United States
| | - Koedi S. Lawley
- Department of Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jonathan F. Prather
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, United States
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|