1
|
Sun W, Huang A, Wen S, Yang R, Liu X. Temporal Assessment of Protein Stability in Dried Blood Spots. J Proteome Res 2024; 23:3585-3597. [PMID: 38950347 DOI: 10.1021/acs.jproteome.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The use of protein biomarkers in blood for clinical settings is limited by the cost and accessibility of traditional venipuncture sampling. The dried blood spot (DBS) technique offers a less invasive and more accessible alternative. However, protein stability in DBS has not been well evaluated. Herein, we deployed a quantitative LC-MS/MS system to construct proteomic atlases of whole blood, DBSs, plasma, and blood cells. Approximately 4% of detected proteins' abundance was significantly altered during blood drying into blood spots, with overwhelming disturbances in cytoplasmic fraction. We also reported a novel finding suggesting a decrease in the level of membrane/cytoskeletal proteins (SLC4A1, RHAG, DSC1, DSP, and JUP) and an increase in the level of proteins (ATG3, SEC14L4, and NRBP1) related to intracellular trafficking. Furthermore, we identified 19 temporally dynamic proteins in DBS samples stored at room temperature for up to 6 months. There were three declined cytoskeleton-related proteins (RDX, SH3BGRL3, and MYH9) and four elevated proteins (XPO7, RAN, SLC2A1, and SLC29A1) involved in cytoplasmic transport as representatives. The instability was governed predominantly by hydrophilic proteins and enhanced significantly with an increasing storage time. Our analyses provide comprehensive knowledge of both short- and long-term storage stability of DBS proteins, forming the foundation for the widespread use of DBS in clinical proteomics and other analytical applications.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Shubo Wen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ruicong Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| |
Collapse
|
2
|
In-syringe dispersive solid phase filter extraction cleanup followed by liquid chromatography-triple quadrupole mass spectrometry for fast determination of colchicine in plasma/urine. J Pharm Biomed Anal 2023; 228:115317. [PMID: 36868026 DOI: 10.1016/j.jpba.2023.115317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
As an effective treatment for acute gouty arthritis and cardiovascular disease, colchicine is also a toxic alkaloid and may cause poisoning or even death in overdose. The study of colchicine elimination and the diagnosis of poisoning etiology need the rapid and accurate quantitative analysis method in biological matrix. An analytical method was developed for colchicine in plasma and urine by in-syringe dispersive solid phase extraction (DSPE) followed by liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS). Sample extraction and protein precipitation were proceeded with acetonitrile. The extract was cleaned by in-syringe DSPE. An XBridge™ BEH C18 column(100 mm × 2.1 mm, 2.5 µm)was used to separate colchicine by gradient elution with mobile phase of 0.01% (v/v) ammonia-methanol. The amount and filling sequence of magnesium sulfate (MgSO4) and primary secondary amine (PSA) suitable for in-syringe DSPE were studied. Scopolamine was screened as the quantitative internal standard (IS) for colchicine analysis according to the consistency of recovery rate, chromatographic retention time and matrix effects. The limits of detection for colchicine in plasma and urine were both 0.06 ng mL-1 and the limits of quantitation were both 0.2 ng mL-1. The linear range was 0.04 - 20 ng mL-1 (Equivalent to 0.2-100 ng mL-1 in plasma or urine) with a correlation coefficient r > 0.999. By IS calibration, the average recoveries at three spiking levels in plasma and urine were 95.3-102.68% and 93.9-94.8% with the relative standard deviations (RSDs) of 2.9-5.7% and 2.3-3.4%, respectively. The matrix effects, stability, dilution effects and carryover for determination of colchicine in plasma and urine were also evaluated. The elimination of colchicine within 72-384 h post-ingestion was studied for a poisoning patient with the doses of 1 mg d-1 for 39 days and then 3 mg d-1 for 15 days).
Collapse
|
3
|
Krishna R, Shivankar B. A review on liquid chromatographic analysis of colchicine in the forensic and medical perspective. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Evaluation of Dried Blood Spot Sampling for Clinical Metabolomics: Effects of Different Papers and Sample Storage Stability. Metabolites 2019; 9:metabo9110277. [PMID: 31726782 PMCID: PMC6918358 DOI: 10.3390/metabo9110277] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/01/2023] Open
Abstract
The dried blood spot (DBS) sampling has a lot of advantages in comparison with the “standard” venous blood collecting, such as small collection volume, painless and easy sample collection with minimal training required, stable and transportable at ambient temperatures, etc. The aim of this study was to determine the comparability of four different types of DBS sampling (HemaSpot™-HF Blood Collection Device, Whatman® 903 Protein Saver Snap Apart Card, card ImmunoHealth™, and glass fiber strip ImmunoHealth™) for analysis of the global metabolites profile. All the samples were collected from the same person at the same time and stored at room temperature for four weeks in order to exclude all possible deviations deriving from biological variances and to evaluate sample storage stability. Metabolome profiling by direct injection of a deproteinized capillary blood DBS sample into an electrospray ion source of a hybrid quadrupole time-of-flight mass spectrometer was used. Differences in the metabolomics profile were found between the different DBS collection materials, especially for ImmunoHealth™ card and ImmunoHealth™ glass fiber strip. However, our results indicate that the analytical performance of all tested DBS sampling materials showed consistent results overall detected metabolites and no dramatic changes between them in the metabolic composition during the storage time.
Collapse
|
5
|
Rapid identification of Gloriosa superba and Colchicum autumnale by melting curve analysis: application to a suicide case involving massive ingestion of G. superba. Int J Legal Med 2019; 133:1065-1073. [PMID: 31028469 DOI: 10.1007/s00414-019-02060-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
The plant species Gloriosa superba and Colchicum autumnale produce extremely poisonous colchicine as a major toxic metabolite. Almost all previous studies on colchicine poisoning have focused on drug analysis and clinical and pathological aspects. In this study, we developed a rapid, highly sensitive method to identify G. superba and C. autumnale. This method, which can distinguish between G. superba and C. autumnale using even minute amounts of plant material, is based on duplex real-time PCR in combination with melting curve analysis. To discriminate between the two genera of colchicine-containing plants, we designed new primer pairs targeting the region of the ycf15 gene, which is present in C. autumnale but not G. superba. By producing PCR amplicons with easily distinguishable melting temperatures, we were able to rapidly and accurately distinguish G. superba from C. autumnale. The new primer pairs generated no PCR amplicons from commercially available human DNA or various plant DNAs except for G. superba and C. autumnale. Sensitivity testing indicated that this assay can accurately detect less than 0.031 ng of DNA. Using our method in conjunction with colchicine drug analysis, we successfully identified G. superba in the stomach contents of a suicide victim who ingested massive quantities of a colchicine-containing plant. According to these results, duplex real-time PCR analysis is very appropriate for testing forensic samples, such as stomach contents harboring a variety of vegetables, and enables discrimination between G. superba and C. autumnale in forensic and emergency medical fields.
Collapse
|
6
|
Zvereva EA, Zherdev AV, Formanovsky AA, Abuknesha RA, Eremin SA, Dzantiev BB. Fluorescence polarization immunoassay of colchicine. J Pharm Biomed Anal 2018; 159:326-330. [DOI: 10.1016/j.jpba.2018.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 11/27/2022]
|
7
|
Alexovič M, Dotsikas Y, Bober P, Sabo J. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:402-421. [DOI: 10.1016/j.jchromb.2018.06.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 12/27/2022]
|
8
|
Integrated Metabolomics Assessment of Human Dried Blood Spots and Urine Strips. Metabolites 2017; 7:metabo7030035. [PMID: 28714878 PMCID: PMC5618320 DOI: 10.3390/metabo7030035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Interest in the application of metabolomics toward clinical diagnostics development and population health monitoring has grown significantly in recent years. In spite of several advances in analytical and computational tools, obtaining a sufficient number of samples from patients remains an obstacle. The dried blood spot (DBS) and dried urine strip (DUS) methodologies are a minimally invasive sample collection method allowing for the relative simplicity of sample collection and minimal cost. (2) Methods: In the current report, we compared results of targeted metabolomics analyses of four types of human blood sample collection methods (with and without DBS) and two types of urine sample collection (DUS and urine) across several parameters including the metabolite coverage of each matrix and the sample stability for DBS/DUS using commercially available Whatman 903TM paper. The DBS/DUS metabolomics protocols were further applied to examine the temporal metabolite level fluctuations within hours and days of sample collection. (3) Results: Several hundred polar metabolites were monitored using DBS/DUS. Temporal analysis of the polar metabolites at various times of the day and across days identified several species that fluctuate as a function of day and time. In addition, a subset of metabolites were identified to be significantly altered across hours within a day and within successive days of the week. (4) Conclusion: A comprehensive DBS/DUS metabolomics protocol was developed for human blood and urine analyses. The described methodology demonstrates the potential for enabling patients to contribute to the expanding bioanalytical demands of precision medicine and population health studies.
Collapse
|
9
|
Bévalot F, Cartiser N, Bottinelli C, Fanton L, Guitton J. État de l’art de l’analyse de la bile en toxicologie médicolégale. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2016.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Gao F, McDaniel J, Chen EY, Rockwell HE, Drolet J, Vishnudas VK, Tolstikov V, Sarangarajan R, Narain NR, Kiebish MA. Dynamic and temporal assessment of human dried blood spot MS/MS ALL shotgun lipidomics analysis. Nutr Metab (Lond) 2017; 14:28. [PMID: 28344632 PMCID: PMC5360027 DOI: 10.1186/s12986-017-0182-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Real-time and dynamic assessment of an individual's lipid homeostatic state in blood is complicated due to the need to collect samples in a clinical environment. In the context of precision medicine and population health, tools that facilitate sample collection and empower the individual to participate in the process are necessary to complement advanced bioanalytical analysis. The dried blood spot (DBS) methodology via finger prick or heel prick is a minimally invasive sample collection method that allows the relative ease and low cost of sample collection as well as transport. However, it has yet to be integrated into broad scale personalized lipidomic analysis. Therefore, in this study we report the development of a novel DBS high resolution MS/MSALL lipidomics workflow. METHODS In this report we compared lipidomic analysis of four types of blood sample collection methods (DBS, venous whole blood, serum, and plasma) across several parameters, which include lipidomics coverage of each matrix and the effects of temperature and time on the coverage and stability of different lipid classes and molecular species. The novel DBS-MS/MSALL lipidomics platform developed in this report was then applied to examine postprandial effects on the blood lipidome and further to explore the temporal fluctuation of the lipidome across hours and days. RESULTS More than 1,200 lipid molecular species from a single DBS sample were identified and quantified. The lipidomics profile of the DBS samples is comparable to whole blood matrix. DBS-MS/MSALL lipidomic analysis in postprandial experiments revealed significant alterations in triacylglyceride species. Temporal analysis of the lipidome at various times in the day and across days identified several lipid species that fluctuate as a function of time, and a subset of lipid species were identified to be significantly altered across hours within a day and within successive days of the week. CONCLUSIONS A novel DBS-MS/MSALL lipidomics method has been established for human blood. The feasibility and application of this method demonstrate the potential utility for lipidomics analysis in both healthy and diverse diseases states. This DBS MS-based lipidomics analysis represents a formidable approach for empowering patients and individuals in the era of precision medicine to uncover novel biomarkers and to monitor lipid homeostasis.
Collapse
Affiliation(s)
- Fei Gao
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | - Justice McDaniel
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | - Emily Y. Chen
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | - Hannah E. Rockwell
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | - Jeremy Drolet
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | - Vivek K. Vishnudas
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | - Vladimir Tolstikov
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | | | - Niven R. Narain
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| | - Michael A. Kiebish
- BERG, LLC, 500 Old Connecticut Path, Bldg B, 3rd Floor, Framingham, MA 01701 USA
| |
Collapse
|
11
|
Ali A, Qadir A, Khan MA, Al-Otaibi FO, Khan S, Abdin MZ. A Simple Validated HPTLC Method for Simultaneous Analysis of Colchicine and Gallic Acid in Polyherbal Formulation: Habb-E-Irqun-Nisha. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0835-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Colchicine et intoxication pédiatrique : à propos d’un décès accidentel et revue de la littérature. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2016. [DOI: 10.1016/j.toxac.2015.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bévalot F, Cartiser N, Bottinelli C, Guitton J, Fanton L. State of the art in bile analysis in forensic toxicology. Forensic Sci Int 2016; 259:133-54. [PMID: 26773224 DOI: 10.1016/j.forsciint.2015.10.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/17/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
|
14
|
Bévalot F, Cartiser N, Bottinelli C, Fanton L, Guitton J. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review. Forensic Toxicol 2015; 34:12-40. [PMID: 26793276 PMCID: PMC4705140 DOI: 10.1007/s11419-015-0294-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023]
Abstract
Vitreous humor (VH) is a gelatinous substance contained in the posterior chamber of the eye, playing a mechanical role in the eyeball. It has been the subject of numerous studies in various forensic applications, primarily for the assessment of postmortem interval and for postmortem chemical analysis. Since most of the xenobiotics present in the bloodstream are detected in VH after crossing the selective blood-retinal barrier, VH is an alternative matrix useful for forensic toxicology. VH analysis offers particular advantages over other biological matrices: it is less prone to postmortem redistribution, is easy to collect, has relatively few interfering compounds for the analytical process, and shows sample stability over time after death. The present study is an overview of VH physiology, drug transport and elimination. Collection, storage, analytical techniques and interpretation of results from qualitative and quantitative points of view are dealt with. The distribution of xenobiotics in VH samples is thus discussed and illustrated by a table reporting the concentrations of 106 drugs from more than 300 case reports. For this purpose, a survey was conducted of publications found in the MEDLINE database from 1969 through April 30, 2015.
Collapse
Affiliation(s)
- Fabien Bévalot
- Laboratoire LAT LUMTOX, 71 Avenue Rockefeller, 69003 Lyon, France.,Institut de Médecine Légale, Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - Nathalie Cartiser
- Laboratoire de Toxicologie, ISPB-Faculté de Pharmacie, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | | | - Laurent Fanton
- Département de Médecine Légale, Hôpital Edouard-Herriot, Hospices Civils de Lyon, Place D'Arsonval, 69437 Lyon Cedex 03, France.,CREATIS CNRS UMR 5220, INSERM U1044, Université de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex, France
| | - Jérôme Guitton
- Laboratoire de Toxicologie, ISPB-Faculté de Pharmacie, Université de Lyon, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France.,Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, 165 Chemin Grand Revoyet, 69495 Pierre Bénite Cedex, France
| |
Collapse
|
15
|
Quantitative bioanalytical validation of fosfomycin in human whole blood with volumetric absorptive microsampling. Bioanalysis 2015; 7:2585-95. [DOI: 10.4155/bio.15.173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Fosfomycin is an antibiotic of considerable interest for the treatment of infection by multidrug-resistant bacteria. Translating microsampling techniques into clinical PK studies may provide effective dosing information to improve patient outcomes and minimize the potential development of resistance. Results: Accuracy and precision results were within ±15%; the method was validated across the range of 5–2000 µg/ml of fosfomycin using volumetric absorptive microsampling (VAMS) devices. Conclusion: The VAMS techniques provide acceptable validation data as assessed for lower limit of quantification, linearity, intra- and interday precision and accuracy, selectivity and matrix effects. Results from the recovery and stability studies suggest challenges remain for the analysis of fosfomycin in whole blood using VAMS.
Collapse
|
16
|
Tylutki Z, Polak S. Plasma vs heart tissue concentration in humans - literature data analysis of drugs distribution. Biopharm Drug Dispos 2015; 36:337-351. [PMID: 25765563 DOI: 10.1002/bdd.1944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/05/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022]
Abstract
Little is known about the uptake of drugs into the human heart, although it is of great importance nowadays, when science desires to predict tissue level behavior rather than to measure it. Although the drug concentration in cardiac tissue seems a better predictor for physiological and electrophysiological changes than its level in plasma, knowledge of this value is very limited. Tissue to plasma partition coefficients (Kp) come to rescue since they characterize the distribution of a drug among tissues as being one of the input parameters in physiologically based pharmacokinetic (PBPK) models. The article reviews cardiac surgery and forensic medical studies to provide a reference for drug concentrations in human cardiac tissue. Firstly, the focus is on whether a drug penetrates into heart tissue at a therapeutic level; the provided values refer to antibiotics, antifungals and anticancer drugs. Drugs that directly affect cardiomyocyte electrophysiology are another group of interest. Measured levels of amiodarone, digoxin, perhexiline and verapamil in different sites in human cardiac tissue where the compounds might meet ion channels, gives an insight into how these more lipophilic drugs penetrate the heart. Much data are derived from postmortem studies and they provide insight to the cardiac distribution of more than 200 drugs. The analysis depicts potential problems in defining the active concentration location, what may indirectly suggest multiple mechanisms involved in the drug distribution within the heart. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str, , 30-688, Cracow, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str, , 30-688, Cracow, Poland
| |
Collapse
|
17
|
Kojima A, Nishitani Y, Sato M, Kageyama S, Dohi M, Okano M. Comparison of urine analysis and dried blood spot analysis for the detection of ephedrine and methylephedrine in doping control. Drug Test Anal 2015; 8:189-98. [DOI: 10.1002/dta.1803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Asami Kojima
- Anti-Doping Laboratory; LSI Medience Corporation; Tokyo Japan
| | | | - Mitsuhiko Sato
- Anti-Doping Laboratory; LSI Medience Corporation; Tokyo Japan
| | - Shinji Kageyama
- Anti-Doping Laboratory; LSI Medience Corporation; Tokyo Japan
| | - Michiko Dohi
- Medical Centre; Japan Institute of Sports Sciences; Tokyo Japan
| | - Masato Okano
- Anti-Doping Laboratory; LSI Medience Corporation; Tokyo Japan
| |
Collapse
|