1
|
Hostrup M, Jacobson GA, Eibye K, Narkowicz CK, Nichols DS, Jessen S. Beta 2-adrenergic agonist salbutamol exhibits enantioselective disposition in skeletal muscle of lean young men following oral administration. Drug Test Anal 2024. [PMID: 39148405 DOI: 10.1002/dta.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Salbutamol is a common short-acting beta2-adrenergic agonist used in treatment of asthma and exercise-induced bronchoconstriction but also possesses anabolic and metabolic actions in skeletal muscle. As a chiral compound, salbutamol is a racemic 1:1 mixture of two enantiomers, (R)-salbutamol and (S)-salbutamol, which exhibit divergent pharmacokinetic and pharmacodynamic actions. Despite salbutamol being available for decades, information on the enantioselective disposition of salbutamol enantiomers in human skeletal muscle is absent. In this study, we determined concentrations of (R)-salbutamol and (S)-salbutamol by UHPLC-MS/MS in arterial plasma and vastus lateralis muscle samples from 12 lean young men 2½ and 7 h following ingestion of 24 mg oral salbutamol. Mean (range) arterial plasma concentrations were 10-fold higher (p < 0.001) for (S)-salbutamol than (R)-salbutamol, being 33(9-62) and 49(30-84) ng·mL-1 for (S)-salbutamol and 4 (1-6) and 4 (2-5) ng·mL-1 for (R)-salbutamol 2½ and 7 h following administration, respectively, reflecting faster elimination of the (R)-enantiomer. Mean (range) muscle concentrations were higher (p < 0.001) for (S)-salbutamol than (R)-salbutamol 2½ h (0.17 [0.1-0.26] vs. 0.04 [0.02-0.06]) and 7 h (0.31 [0.21-0.46] vs. 0.06 [0.04-0.12] ng·mgd.w. -1) after administration. However, muscle:plasma partition coefficient was two-fold higher (p < 0.001) for (R)-salbutamol than (S)-salbutamol 7 h following administration. These observations demonstrate that oral salbutamol exhibits enantioselective disposition in systemic circulation and muscle favoring the (S)-enantiomer but with higher relative partitioning of the (R)-enantiomer in skeletal muscle. Furthermore, the concentration-time profiles of salbutamol enantiomers are different in skeletal muscle and systemic circulation following oral ingestion. These findings have implications for the application of chiral switch (R)-salbutamol in doping control.
Collapse
Affiliation(s)
- Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Glenn A Jacobson
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Kasper Eibye
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christian K Narkowicz
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Søren Jessen
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Harps LC, Jendretzki AL, Wolf CA, Girreser U, Wolber G, Parr MK. Development of an HPLC-MS/MS Method for Chiral Separation and Quantitation of ( R)- and ( S)-Salbutamol and Their Sulfoconjugated Metabolites in Urine to Investigate Stereoselective Sulfonation. Molecules 2023; 28:7206. [PMID: 37894685 PMCID: PMC10609612 DOI: 10.3390/molecules28207206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4'-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings.
Collapse
Affiliation(s)
- Lukas Corbinian Harps
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Annika Lisa Jendretzki
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| | - Clemens Alexander Wolf
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Ulrich Girreser
- Institute of Pharmacy, Christian-Albrechts University Kiel, Gutenbergstr. 76, 24118 Kiel, Germany;
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (C.A.W.); (G.W.)
| | - Maria Kristina Parr
- Pharmaceutical Analysis, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (L.C.H.); (A.L.J.)
| |
Collapse
|
3
|
Saeed H, Harb HS, Madney YM, Abdelrahim MEA. Aerosol delivery via noninvasive ventilation: role of models and bioanalysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:589. [PMID: 33987287 DOI: 10.21037/atm-20-1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Non-invasive ventilation (NIV) is external support for respiration to assist breathing in case of respiratory failure (either hypercapnic or hypoxemic) without patient intubation. Nowadays, medicated aerosols are normally delivered to mechanically ventilated patients by nebulizers and pressurized metered-dose inhaler (pMDI) attached to adapter or spacer that fit into the ventilated circuit. Studies with obstructive lung disease patients have shown that aerosol delivery during mechanical ventilation is possible and of benefit. There are several models for investigating the aerosol delivery and deposition during mechanical ventilation such as in vitro, in vivo, and ex vivo models, these models depend on the technique used for quantitative or qualitative measurement of the deposited aerosol. In vitro models could be used for calculating the total emitted doses from different aerosol-generating devices or for aerodynamic characterization of the deposited inhaled medications. In vivo models dependents of extracting drugs from biological samples for measuring its concentration and bioavailability (pharmacokinetic model) or be dependent on the imaging technique of the radioactive aerosol. Applying different methods to predict aerosol efficiency before starting NIV and to quantify aerosol delivery during NIV are promising approaches that guide clinicians to avoid treatment failure before and during patient therapy.
Collapse
Affiliation(s)
- Haitham Saeed
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hadeer S Harb
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M Madney
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E A Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Impact of SULT1A3/SULT1A4 genetic polymorphisms on the sulfation of phenylephrine and salbutamol by human SULT1A3 allozymes. Pharmacogenet Genomics 2020; 29:99-105. [PMID: 31145702 DOI: 10.1097/fpc.0000000000000371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Phenylephrine and salbutamol are drugs that are used widely to treat diseases/disorders, such as nasal congestion, hypotension, and asthma, in individuals of different age groups. Human cytosolic sulfotransferase (SULT) SULT1A3 has been shown to be critically involved in the metabolism of these therapeutic agents. This study was carried out to investigate the effects of single nucleotide polymorphisms of human SULT1A3 and SULT1A4 genes on the sulfation of phenylephrine and salbutamol by SULT1A3 allozymes. MATERIALS AND METHODS Wild-type and SULT1A3 allozymes, prepared previously by site-directed mutagenesis in conjunction with bacterial expression and affinity purification, were analyzed for sulfating activity using an established assay procedure. RESULTS Purified SULT1A3 allozymes, in comparison with the wild-type enzyme, showed differential sulfating activities toward phenylephrine and salbutamol. Kinetic studies showed further significant variations in their substrate-binding affinity and catalytic activity toward phenylephrine and salbutamol. CONCLUSION The results obtained showed clearly the differential enzymatic characteristics of SULT1A3 allozymes in mediating the sulfation of phenylephrine and salbutamol. This information may contribute toward a better understanding of the pharmacokinetics of these two drugs in individuals with distinct SULT1A3 and/or SULT1A4 genotypes.
Collapse
|
5
|
Hostrup M, Jacobson GA, Jessen S, Lemminger AK. Anabolic and lipolytic actions of beta
2
‐agonists in humans and antidoping challenges. Drug Test Anal 2020; 12:597-609. [DOI: 10.1002/dta.2728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| | - Glenn A. Jacobson
- School of Pharmacy and Pharmacology, College of Health and MedicineUniversity of Tasmania Hobart Australia
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| | - Anders Krogh Lemminger
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
6
|
Jessen S, Solheim SA, Jacobson GA, Eibye K, Bangsbo J, Nordsborg NB, Hostrup M. Beta 2 -adrenergic agonist clenbuterol increases energy expenditure and fat oxidation, and induces mTOR phosphorylation in skeletal muscle of young healthy men. Drug Test Anal 2020; 12:610-618. [PMID: 31887249 DOI: 10.1002/dta.2755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/07/2022]
Abstract
Clenbuterol is a beta2 -adrenoceptor agonist marketed as an asthma reliever but is not approved for human use in most countries due to concerns of adverse cardiac effects. Given its demonstrated hypertrophic and lipolytic actions in rodents, clenbuterol is one of the most widely abused doping substances amongt athletes and recreational body-builders seeking leanness. Herein, we examined the effect of clenbuterol ingestion on metabolic rate as well as skeletal muscle mammalian target of rapamycin (mTOR) phosphorylation and protein kinase A (PKA)-signaling in six young men. Before and 140 min after ingestion of 80 μg clenbuterol, resting metabolic rate and contractile function of the quadriceps muscle were measured, and blood samples as well as vastus lateralis muscle biopsies were collected. Clenbuterol increased resting energy expenditure by 21% (P < 0.001), and fat oxidation by 39% (P = 0.006), whereas carbohydrate oxidation was unchanged. Phosphorylation of mTORSer2448 and PKA substrates increased by 121% (P = 0.004) and 35% (P = 0.006), respectively, with clenbuterol. Maximal voluntary contraction torque decreased by 4% (P = 0.026) and the half-relaxation time shortened by 9% (P = 0.046), while voluntary activation, time to peak twitch, and peak twitch torque did not change significantly with clenbuterol. Glycogen content of the vastus lateralis muscle did not change with clenbuterol. Clenbuterol increased circulating levels of glucose (+30%; P < 0.001), lactate (+90%; P = 0.004), insulin (+130%; P = 0.009), and fatty acids (+180%; P = 0.001). Collectively, these findings indicate that clenbuterol is an efficient thermogenic substance that possibly also exerts muscle hypertrophic actions in humans. For these reasons, the restrictions imposed against clenbuterol in competitive sports seem warranted.
Collapse
Affiliation(s)
- Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Sara A Solheim
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | | | - Kasper Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Nikolai B Nordsborg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Jensen O, Rafehi M, Tzvetkov MV, Brockmöller J. Stereoselective cell uptake of adrenergic agonists and antagonists by organic cation transporters. Biochem Pharmacol 2020; 171:113731. [DOI: 10.1016/j.bcp.2019.113731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
8
|
Obukhova EN, Buryak AK. Determination of Isomers in Doping Control by Chromatography–Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Frank E, Ishau S, Maier A, Reutman S, Reichard JF. An occupational exposure limit (OEL) approach to protect home healthcare workers exposed to common nebulized drugs. Regul Toxicol Pharmacol 2019; 106:251-261. [PMID: 31047944 DOI: 10.1016/j.yrtph.2019.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
Abstract
Home healthcare is a growing area of employment. Assessment of occupational health risks to home health care workers (HHCWs) is important because in many cases the unique characteristics of the home environment do not facilitate the level of exposure control afforded to caregivers in hospitals and other fixed patient care sites. This assessment is focused on health risks to HHCWs from exposure to pharmaceutical drugs used to treat asthma and other respiratory diseases, which are commonly administered to patients in aerosolized form via nebulizers. We developed risk-based exposure limits for workers in the form of occupational exposure limits (OEL) values for exposure to nebulized forms of the three most common drugs administered by this method: albuterol, ipratropium, and budesonide. The derived OEL for albuterol was 2 μg/day, for ipratropium was 30 μg/day, and for budesonide was 11 μg/day. These OELs were derived based on human effect data and adjusted for pharmacokinetic variability and areas of uncertainty relevant to the underlying data (human and non-human) available for each drug. The resulting OEL values provide an input to the occupational risk assessment process to allow for comparisons to HHCW exposure that will guide risk management and exposure control decisions.
Collapse
Affiliation(s)
- Evan Frank
- University of Cincinnati, College of Medicine, Department of Environmental Health, USA
| | - Simileoluwa Ishau
- University of Cincinnati, College of Medicine, Department of Environmental Health, USA
| | - Andrew Maier
- University of Cincinnati, College of Medicine, Department of Environmental Health, and Cardno ChemRisk, USA
| | | | - John F Reichard
- University of Cincinnati, College of Medicine, Department of Environmental Health, USA.
| |
Collapse
|
10
|
Jacobson GA, Hostrup M, Narkowicz CK, Nichols DS, Walters EH. Enantioselective disposition of (R,R)-formoterol, (S,S)-formoterol and their respective glucuronides in urine following single inhaled dosing and application to doping control. Drug Test Anal 2019; 11:950-956. [PMID: 30865387 DOI: 10.1002/dta.2587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022]
Abstract
Formoterol is a long-acting beta2-adrenoceptor agonist (LABA) used for the treatment of asthma and exercise-induced bronchoconstriction. Formoterol is usually administered as a racemic (rac-) mixture of (R,R)- and (S,S)-enantiomers. While formoterol is restricted by the World Anti-Doping Agency (WADA), inhalation of formoterol is permitted to a predetermined dose (54 μg/24 hours) and a urine threshold of 40 ng/mL. However, chiral switch enantiopure (R,R)-formoterol is available, effectively doubling the therapeutic advantage for the same threshold. The aim of this study was to investigate whether formoterol exhibits enantioselective urinary pharmacokinetics following inhalation. Six healthy volunteers were administered a 12 μg inhaled dose of rac-formoterol. Urine was collected over 24 hours and analyzed by enantioselective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay. Total (free drug plus conjugated metabolite) median (min-max) rac-formoterol urine levels following inhalation were 1.96 (1.05-13.4) ng/mL, 1.67 (0.16-9.67) ng/mL, 0.45 (0.16-1.51) ng/mL, 0.61 (0.33-0.78) ng/mL, and 0.17 (0.08-1.06) ng/mL at 2, 4, 8, 12, and 24 hours, respectively, well below the 2019 urine threshold. The proportion of conjugation differed between enantiomers with glucuronide conjugation much greater for (R,R)-formoterol (around 30%-60% of total) compared to (S,S)-formoterol (0%-30%). There was clear evidence of inter-individual enantioselectivity observed in the ratios of (R,R):(S,S)-formoterol, where (S,S)- was predominant in free formoterol, and (R,R)- predominant in the conjugated metabolite. In conclusion, rac-formoterol delivered by inhalation exhibits enantioselective elimination in urine following single-dose administration. Enantioselective assays should be employed in doping control to screen for banned beta2-agonist chiral switch products such as (R,R)-formoterol, and total hydrolyzed rac-formoterol is warranted to account for inter-individual differences in enantioselective glucuronidation.
Collapse
Affiliation(s)
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Denmark
| | | | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - E Haydn Walters
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
11
|
Hostrup M, Narkowicz CK, Habib S, Nichols DS, Jacobson GA. Beta
2
‐adrenergic ligand racemic formoterol exhibits enantioselective disposition in blood and skeletal muscle of humans, and elicits myocellular PKA signaling at therapeutic inhaled doses. Drug Test Anal 2019; 11:1048-1056. [DOI: 10.1002/dta.2580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and SportsUniversity of Copenhagen Copenhagen Denmark
| | | | - Sajad Habib
- Section of Integrative Physiology, Department of Nutrition, Exercise and SportsUniversity of Copenhagen Copenhagen Denmark
| | - David S. Nichols
- Central Science LaboratoryUniversity of Tasmania Hobart Australia
| | - Glenn A. Jacobson
- Discipline of Pharmacy, School of MedicineUniversity of Tasmania Hobart Australia
| |
Collapse
|
12
|
Jacobson GA, Raidal S, Hostrup M, Calzetta L, Wood-Baker R, Farber MO, Page CP, Walters EH. Long-Acting β2-Agonists in Asthma: Enantioselective Safety Studies are Needed. Drug Saf 2018; 41:441-449. [PMID: 29332144 DOI: 10.1007/s40264-017-0631-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-acting β2-agonists (LABAs) such as formoterol and salmeterol are used for prolonged bronchodilatation in asthma, usually in combination with inhaled corticosteroids (ICSs). Unexplained paradoxical asthma exacerbations and deaths have been associated with LABAs, particularly when used without ICS. LABAs clearly demonstrate effective bronchodilatation and steroid-sparing activity, but long-term treatment can lead to tolerance of their bronchodilator effects. There are also concerns with regard to the effects of LABAs on bronchial hyperresponsiveness (BHR), where long-term use is associated with increased BHR and loss of bronchoprotection. A complicating factor is that formoterol and salmeterol are both chiral compounds, usually administered as 50:50 racemic (rac-) mixtures of two enantiomers. The chiral nature of these compounds has been largely forgotten in the debate regarding LABA safety and effects on BHR, particularly that (S)-enantiomers of β2-agonists may be deleterious to asthma control. LABAs display enantioselective pharmacokinetics and pharmacodynamics. Biological plausibility of the deleterious effects of β2-agonists (S)-enantiomers is provided by in vitro and in vivo studies from the short-acting β2-agonist (SABA) salbutamol. Supportive clinical findings include the fact that patients in emergency departments who demonstrate a blunted response to salbutamol are more likely to benefit from (R)-salbutamol than rac-salbutamol, and resistance to salbutamol appears to be a contributory mechanism in rapid asthma deaths. More effort should therefore be applied to investigating potential enantiospecific effects of LABAs on safety, specifically bronchoprotection. Safety studies directly assessing the effects of LABA (S)-enantiomers on BHR are long overdue.
Collapse
Affiliation(s)
- Glenn A Jacobson
- School of Medicine, University of Tasmania, Private Bag 26, Hobart, TAS, 7001, Australia.
| | - Sharanne Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Morten Hostrup
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Luigino Calzetta
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Richard Wood-Baker
- School of Medicine, University of Tasmania, Private Bag 26, Hobart, TAS, 7001, Australia
| | - Mark O Farber
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Kings College London, London, UK
| | - E Haydn Walters
- School of Medicine, University of Tasmania, Private Bag 26, Hobart, TAS, 7001, Australia
| |
Collapse
|
13
|
Hostrup M, Reitelseder S, Jessen S, Kalsen A, Nyberg M, Egelund J, Kreiberg M, Kristensen CM, Thomassen M, Pilegaard H, Backer V, Jacobson GA, Holm L, Bangsbo J. Beta 2 -adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men. J Physiol 2018; 596:4121-4139. [PMID: 29968301 DOI: 10.1113/jp275560] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Animal models have shown that beta2 -adrenoceptor stimulation increases protein synthesis and attenuates breakdown processes in skeletal muscle. Thus, the beta2 -adrenoceptor is a potential target in the treatment of disuse-, disease- and age-related muscle atrophy. In the present study, we show that a few days of oral treatment with the commonly prescribed beta2 -adrenoceptor agonist, salbutamol, increased skeletal muscle protein synthesis and breakdown during the first 5 h after resistance exercise in young men. Salbutamol also counteracted a negative net protein balance in skeletal muscle after resistance exercise. Changes in protein turnover rates induced by salbutamol were associated with protein kinase A-signalling, activation of Akt2 and modulation of mRNA levels of growth-regulating proteins in skeletal muscle. These findings indicate that protein turnover rates can be augmented by beta2 -adrenoceptor agonist treatment during recovery from resistance exercise in humans. ABSTRACT The effect of beta2 -adrenoceptor stimulation on skeletal muscle protein turnover and intracellular signalling is insufficiently explored in humans, particularly in association with exercise. In a randomized, placebo-controlled, cross-over study investigating 12 trained men, the effects of beta2 -agonist (6 × 4 mg oral salbutamol) on protein turnover rates, intracellular signalling and mRNA response in skeletal muscle were investigated 0.5-5 h after quadriceps resistance exercise. Each trial was preceded by a 4-day lead-in treatment period. Leg protein turnover rates were assessed by infusion of [13 C6 ]-phenylalanine and sampling of arterial and venous blood, as well as vastus lateralis muscle biopsies 0.5 and 5 h after exercise. Furthermore, myofibrillar fractional synthesis rate, intracellular signalling and mRNA response were measured in muscle biopsies. The mean (95% confidence interval) myofibrillar fractional synthesis rate was higher for salbutamol than placebo [0.079 (95% CI, 0.064 to 0.093) vs. 0.066 (95% CI, 0.056 to 0.075%) × h-1 ] (P < 0.05). Mean net leg phenylalanine balance 0.5-5 h after exercise was higher for salbutamol than placebo [3.6 (95% CI, 1.0 to 6.2 nmol) × min-1 × 100 gLeg Lean Mass-1 ] (P < 0.01). Phosphorylation of Akt2, cAMP response element binding protein and PKA substrate 0.5 and 5 h after exercise, as well as phosphorylation of eEF2 5 h after exercise, was higher (P < 0.05) for salbutamol than placebo. Calpain-1, Forkhead box protein O1, myostatin and Smad3 mRNA content was higher (P < 0.01) for salbutamol than placebo 0.5 h after exercise, as well as Forkhead box protein O1 and myostatin mRNA content 5 h after exercise, whereas ActivinRIIB mRNA content was lower (P < 0.01) for salbutamol 5 h after exercise. These observations suggest that beta2 -agonist increases protein turnover rates in skeletal muscle after resistance exercise in humans, with concomitant cAMP/PKA and Akt2 signalling, as well as modulation of mRNA response of growth-regulating proteins.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Anders Kalsen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Michael Nyberg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kreiberg
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Martin Thomassen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Department of Biology, University of Copenhagen, Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Glenn A Jacobson
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Abstract
The World Anti-Doping Agency (WADA) currently allows therapeutic use of the beta2-agonists salbutamol, formoterol and salmeterol when delivered via inhalation despite some evidence suggesting these anti-asthma drugs may be performance enhancing. Beta2-agonists are usually administered as 50:50 racemic mixtures of two enantiomers (non-superimposable mirror images), one of which demonstrates significant beta2-adrenoceptor-mediated bronchodilation while the other appears to have little or no pharmacological activity. For salbutamol and formoterol, urine thresholds have been adopted to limit supratherapeutic dosing and to discriminate between inhaled (permitted) and oral (prohibited) use. However, chiral switches have led to the availability of enantiopure (active enantiomer only) preparations of salbutamol and formoterol, which effectively doubles their urine thresholds and provides a means for athletes to take supratherapeutic doses for doping purposes. Given the availability of these enantiopure beta2-agonists, the analysis of these drugs using enantioselective assays should now become routine. For salmeterol, there is currently only a therapeutic dose threshold and adoption of a urinary threshold should be a high priority for doping control.
Collapse
|
15
|
Chung JE, Choi SA, Hwang HS, Park JY, Lee KE, Yee J, Kim YJ, Gwak HS. Association between ß2-adrenergic receptor gene polymorphisms and adverse events of ritodrine in the treatment of preterm labor: a prospective observational study. BMC Genet 2017; 18:96. [PMID: 29132297 PMCID: PMC5683230 DOI: 10.1186/s12863-017-0565-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ritodrine, a tocolytic β2-agonist, has been used extensively in Europe and Asia despite its safety concerns. This study was designed to identify associations between β2-adrenergic receptor (ADRB2) polymorphisms and adverse drug events (ADEs) in patients with preterm labor treated with ritodrine. RESULTS This follow-up study was prospectively conducted at Ewha Womans University Mokdong Hospital in Korea. Five single nucleotide polymorphisms (SNPs) of the ADRB2 gene (rs1042713, rs1042714, rs1042717, rs1042718, and rs1042719) were analyzed in 186 pregnant women with preterm labor. Patients with the AA genotype of rs1042717 had significantly lower incidence of ADEs compared to those with the G allele (p = 0.009). In multivariate analysis, one of the predictors of ADEs was the maximum infusion rate of ritodrine (AOR 4.47, 95% CI 1.31-15.25). Rs1042719 was also a significant factor for ritodrine-induced ADEs. The CC genotype carriers had 78% decreased risk of ADEs compared to those with other genotypes. CONCLUSIONS This study demonstrates that ADEs induced by ritodrine are associated with ADRB2 gene polymorphisms, as well as the infusion rate of ritodrine in pregnant women with preterm labor.
Collapse
Affiliation(s)
- Jee Eun Chung
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Korea
| | - Soo An Choi
- College of Pharmacy, Korea University, Sejong-Si, 30019, Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, 05030, Korea
| | - Jin Young Park
- College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheonju, Chungbuk, 28644, Korea
| | - Jeong Yee
- College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| | - Hye Sun Gwak
- College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
16
|
Onslev J, Jacobson G, Narkowicz C, Backer V, Kalsen A, Kreiberg M, Jessen S, Bangsbo J, Hostrup M. Beta 2-adrenergic stimulation increases energy expenditure at rest, but not during submaximal exercise in active overweight men. Eur J Appl Physiol 2017; 117:1907-1915. [PMID: 28702809 DOI: 10.1007/s00421-017-3679-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/05/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE β2-Agonists have been proposed as weight-loss treatment, because they elevate energy expenditure. However, it is unknown what effect β2-agonists have on energy expenditure in overweight individuals. Furthermore, the influence of β2-agonist R- and S-enantiomer ratio for the increased energy expenditure is insufficiently explored. METHODS Nineteen males were included in the study of which 14 completed. Subjects were 31.6 (±3.5) years [mean (±95% CI)] and had a fat percentage of 22.7 (±2.1)%. On separate days, subjects received either placebo or inhaled racemic (rac-) formoterol (2 × 27 µg). After an overnight fast, energy expenditure and substrate oxidation were estimated by indirect calorimetry at rest and during submaximal exercise. Plasma (R,R)- and (S,S)-formoterol enantiomer levels were measured by ultra-performance liquid chromatograph-mass spectrometry. RESULTS At rest, energy expenditure and fat oxidation were 12% (P ≤ 0.001) and 38% (P = 0.006) higher for rac-formoterol than placebo. Systemic (R,R):(S,S) formoterol ratio was correlated with change in energy expenditure at rest in response to rac-formoterol (r = 0.63, P = 0.028), whereas no association was observed between fat percentage and rac-formoterol-induced change in energy expenditure. During exercise, energy expenditure was not different between treatments, although carbohydrate oxidation was 15% higher (P = 0.021) for rac-formoterol than placebo. Rac-formoterol-induced shift in substrate choice from rest to exercise was related to plasma ln-rac-formoterol concentrations (r = 0.75, P = 0.005). CONCLUSION Selective β2-adrenoceptor agonism effectively increases metabolic rate and fat oxidation in overweight individuals. The potential for weight loss induced by β2-agonists may be greater for R-enantiopure formulations.
Collapse
Affiliation(s)
- Johan Onslev
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Glenn Jacobson
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Christian Narkowicz
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Vibeke Backer
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
- IOC Research Center Copenhagen, Copenhagen, Denmark
| | - Anders Kalsen
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Michael Kreiberg
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Jessen
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark.
- IOC Research Center Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Jacobson GA, Raidal S, Robson K, Narkowicz CK, Nichols DS, Haydn Walters E. Bronchopulmonary pharmacokinetics of (R)-salbutamol and (S)-salbutamol enantiomers in pulmonary epithelial lining fluid and lung tissue of horses. Br J Clin Pharmacol 2017; 83:1436-1445. [PMID: 28061018 DOI: 10.1111/bcp.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 01/11/2023] Open
Abstract
AIMS Salbutamol is usually administered as a racemic mixture but little is known about the enantioselectivity of salbutamol pharmacokinetics in the lung. This study was designed to investigate enantiomer concentrations in lung tissue after inhaled dosing. METHODS Horses (n = 12) received racemic salbutamol 1000 μg via inhalation. Enantioselective ultra performance liquid chromatography-tandem mass spectrometry was used to determine salbutamol concentrations in pulmonary epithelial lining fluid (PELF) sampled 2, 5, 10 and 15 min after administration, in central lung (endoscopic bronchial biopsy) and peripheral lung (percutaneous pulmonary biopsy) tissues (at 20 and 25 min respectively), and in plasma samples. RESULTS Mean ± 95% confidence interval (CI) yield of PELF was 57 ± 10 mg. Initial mean ± 95%CI (R)- and (S)-salbutamol PELF concentrations were 389 ± 189 ng g-1 and 378 ± 177 ng g-1 respectively, and both reduced approximately 50% by 15 min. Mean ± 95%CI central lung levels of drug were higher than peripheral lung tissue for both (R)-salbutamol (875 ± 945 vs. 49.5 ± 12 ng g-1 ) and (S)-salbutamol (877 ± 955 vs. 50.9 ± 12 ng g-1 ) respectively. There was no evidence of enantioselectivity in PELF or central lung but minor (~2%) enantioselectivity was observed in the peripheral lung. Enantioselectivity was clearly evident in plasma with (S):(R) ratio of 1.25 and 1.14 for both area under the concentration-time curve (0-25 min) and Cmax respectively. CONCLUSIONS PELF sampling in horses offers sufficient yield allowing direct detection of drug and, combined with tissue sampling, is a valuable model to investigate bronchopulmonary pharmacokinetics. Salbutamol did not demonstrate enantioselectivity in PELF or central lung tissue uptake following acute dosing, however, enantioselective plasma concentrations were demonstrated, with minor enantioselectivity in the peripheral lung.
Collapse
Affiliation(s)
- Glenn A Jacobson
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Sharanne Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Kate Robson
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | | | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - E Haydn Walters
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
18
|
Jacobson GA, Hostrup M, Narkowicz CK, Nichols DS, Haydn Walters E. Enantioselective disposition of (R)-salmeterol and (S)-salmeterol in urine following inhaled dosing and application to doping control. Drug Test Anal 2016; 9:1262-1266. [PMID: 28033454 DOI: 10.1002/dta.2131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Salmeterol (USAN, INN, BAN) is a long-acting beta2-adrenoceptor agonist (LABA) widely used in the treatment of airways disease. Although salmeterol is permitted via inhalation by athletes and supratherapeutic dosing may enhance performance, no urine threshold has been established by the World Anti-Doping Agency (WADA). Salmeterol is a chiral compound consisting of (R)- and (S)-enantiomers, normally administered as racemic (rac-) mixture via inhalation. Levels of rac-salmeterol in urine are often below detectable levels and there is surprisingly little information regarding the enantioselectivity of salmeterol pharmacokinetics. In this study, subjects inhaled either 50 (n = 6) or 200 µg (n = 4; generally regarded as maximum therapeutic dose) of salmeterol and urine was then collected for 24 h and analyzed by enantioselective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Maximum rac-salmeterol urine concentrations were obtained at 2 h for both doses with medians of 0.084 ng/mL after the 50 µg dose and 2.1 ng/mL after the 200 µg dose, with an individual maximum of 5.7 ng/mL. Levels were detectable at 24 h for both doses. Salmeterol displayed enantioselective pharmacokinetics, with a mean ± SD log (S):(R) = 0.055 ± 0.025 (P < 0.0001) equivalent to (S):(R) of 1.13. In conclusion, rac-salmeterol by inhalation exhibits modest enantioselectivity in urine following single dose administration and can be detected following a single 50 µg dose for up to 24 h after inhalation. The present findings are of relevance if a urine threshold limit is to be introduced for salmeterol on the list of prohibited substances. The application of an enantiomer ratio analysis may offer improved discriminatory detection capability for doping control analysis applications. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition Exercise and Sports, University of Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg University Hospital, Denmark
| | | | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - E Haydn Walters
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
19
|
Thevis M, Kuuranne T, Walpurgis K, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2016; 8:7-29. [PMID: 26767774 DOI: 10.1002/dta.1928] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
The aim of improving anti-doping efforts is predicated on several different pillars, including, amongst others, optimized analytical methods. These commonly result from exploiting most recent developments in analytical instrumentation as well as research data on elite athletes' physiology in general, and pharmacology, metabolism, elimination, and downstream effects of prohibited substances and methods of doping, in particular. The need for frequent and adequate adaptations of sports drug testing procedures has been incessant, largely due to the uninterrupted emergence of new chemical entities but also due to the apparent use of established or even obsolete drugs for reasons other than therapeutic means, such as assumed beneficial effects on endurance, strength, and regeneration capacities. Continuing the series of annual banned-substance reviews, literature concerning human sports drug testing published between October 2014 and September 2015 is summarized and reviewed in reference to the content of the 2015 Prohibited List as issued by the World Anti-Doping Agency (WADA), with particular emphasis on analytical approaches and their contribution to enhanced doping controls.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories, Höyläämötie 14, 00380, Helsinki, Finland
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
20
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2014; 7:1-20. [DOI: 10.1002/dta.1769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Doping Control Laboratory; United Medix Laboratories; Höyläämötie 14 00380 Helsinki Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| |
Collapse
|