1
|
Golombek S, Hoffmann T, Hann L, Mandler M, Schmidhuber S, Weber J, Chang YT, Mehling R, Ladinig A, Knecht C, Leyens J, Schlensak C, Wendel HP, Schneeberger A, Avci-Adali M. Improved tropoelastin synthesis in the skin by codon optimization and nucleotide modification of tropoelastin-encoding synthetic mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:642-654. [PMID: 37650117 PMCID: PMC10462787 DOI: 10.1016/j.omtn.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Loss of elastin due to aging, disease, or injury can lead to impaired tissue function. In this study, de novo tropoelastin (TE) synthesis is investigated in vitro and in vivo using different TE-encoding synthetic mRNA variants after codon optimization and nucleotide modification. Codon optimization shows a strong effect on protein synthesis without affecting cell viability in vitro, whereas nucleotide modifications strongly modulate translation and reduce cell toxicity. Selected TE mRNA variants (3, 10, and 30 μg) are then analyzed in vivo in porcine skin after intradermal application. Administration of 30 μg of native TE mRNA with a me1 Ψ modification or 10 and 30 μg of unmodified codon-optimized TE mRNA is required to increase TE protein expression in vivo. In contrast, just 3 μg of a codon-optimized TE mRNA variant with the me1 Ψ modification is able to increase protein expression. Furthermore, skin toxicity is investigated in vitro by injecting 30 μg of mRNA of selected TE mRNA variants into a human full-thickness skin model, and no toxic effects are observed. Thereby, for the first time, an increased dermal TE synthesis by exogenous administration of synthetic mRNA is demonstrated in vivo. Codon optimization of a synthetic mRNA can significantly increase protein expression and therapeutic outcome.
Collapse
Affiliation(s)
- Sonia Golombek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | | | - Ludmilla Hann
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Markus Mandler
- Accanis Biotech, Karl-Farkas-Gasse 22, Vienna 1030, Austria
| | | | - Josefin Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Roman Mehling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Röntgenweg 13, 72076 Tübingen, Germany
| | - Andrea Ladinig
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
| | - Christian Knecht
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
| | - Johanna Leyens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
3
|
Citartan M, Kaur H, Presela R, Tang TH. Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 2019; 567:118483. [PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Harleen Kaur
- Aurobindo Biologics, Biologics R&D Center, Unit-17, Industrial Area, Survey No: 77 & 78, Indrakaran Village, Kandi(Mandal), Sangareddy (District), Hyderabad 502329, India
| | - Ravinderan Presela
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
4
|
Therapeutic aptamers in discovery, preclinical and clinical stages. Adv Drug Deliv Rev 2018; 134:51-64. [PMID: 30125605 DOI: 10.1016/j.addr.2018.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/11/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
The aptamer field witnessed steady growth during the past 28 years as evident from the exponentially increasing number of related publications. The field is "coming of age", but like other biomedical research areas facing a global push towards translational research to carry ideas from bench- to bedside, there is pressure to show impact for aptamers at the clinical end. Being easy-to-make, non-immunogenic, stable and high-affinity nano-ligands, aptamers are perfectly poised to move in this direction. They can specifically bind targets ranging from small molecules to complex multimeric structures, making them potentially useful in a limitless variety of therapeutic approaches. This review will summarize efforts made to accomplish the therapeutic promise of aptamers, with a focus on aptamers directly acting as therapeutic molecules, rather than those used in targeted delivery of other drugs. The review will showcase representative examples at various stages of development, covering different disease categories.
Collapse
|
5
|
Bruno JG. Potential Inherent Stimulation of the Innate Immune System by Nucleic Acid Aptamers and Possible Corrective Approaches. Pharmaceuticals (Basel) 2018; 11:ph11030062. [PMID: 29937498 PMCID: PMC6161019 DOI: 10.3390/ph11030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/25/2023] Open
Abstract
It is well known that unmethylated 2′-deoxycytidine-phosphate-2′-guanine (CpG) sequences alone or in longer DNA and RNA oligonucleotides can act like pathogen-associated molecular patterns (PAMPs) and trigger the innate immune response leading to deleterious cytokine production via Toll-like receptors (TLRs). Clearly, such CpG or CpG-containing sequences in aptamers intended for therapy could present very damaging side effects to patients. Previous antisense oligonucleotide developers were faced with the same basic CpG dilemma and devised not only avoidance, but other effective strategies from which current aptamer developers can learn to ameliorate or eliminate damaging CpG effects. These strategies include obvious methylation of cytosines in the aptamer structure, as long as it does not affect aptamer binding in vivo, truncation of the aptamer to its essential binding site, backbone modifications, co-administration of antagonistic or suppressive oligonucleotides, or other novel drugs under development to lessen the toxic CpG effect on innate immunity.
Collapse
Affiliation(s)
- John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite 100, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Ohuchi S, Suess B. Altered stoichiometry of an evolved RNA aptamer. RNA (NEW YORK, N.Y.) 2018; 24:480-485. [PMID: 29284756 PMCID: PMC5855949 DOI: 10.1261/rna.063610.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Inhibitory aptamers against a protein are promising as antagonistic reagents and repressive genetic components. Typically, improvement of such aptamers is achieved by acquiring higher binding affinity. Here, we report an alternative mechanism for the improvement of aptamer activity. Recently, we reported a transcriptional activator based on an inhibitory RNA aptamer against lambda cI repressor. We improved the aptamer through in vitro selection (SELEX) from a randomly mutagenized aptamer pool, followed by in vivo screening and truncation. Biochemical analyses indicated that the activity improvement was achieved by alteration of the complex formation stoichiometry, rather than by higher affinity or expression. Our results suggest an alternative strategy for improving aptamer activity.
Collapse
Affiliation(s)
- Shoji Ohuchi
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Stoll H, Steinle H, Wilhelm N, Hann L, Kunnakattu SJ, Narita M, Schlensak C, Wendel HP, Avci-Adali M. Rapid Complexation of Aptamers by Their Specific Antidotes. Molecules 2017; 22:molecules22060954. [PMID: 28594360 PMCID: PMC6152687 DOI: 10.3390/molecules22060954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 11/06/2022] Open
Abstract
Nucleic acid ligands, aptamers, harbor the unique characteristics of small molecules and antibodies. The specificity and high affinity of aptamers enable their binding to different targets, such as small molecules, proteins, or cells. Chemical modifications of aptamers allow increased bioavailability. A further great benefit of aptamers is the antidote (AD)-mediated controllability of their effect. In this study, the AD-mediated complexation and neutralization of the thrombin binding aptamer NU172 and Toll-like receptor 9 (TLR9) binding R10-60 aptamer were determined. Thereby, the required time for the generation of aptamer/AD-complexes was analyzed at 37 °C in human serum using gel electrophoresis. Afterwards, the blocking of aptamers’ effects was analyzed by determining the activated clotting time (ACT) in the case of the NU172 aptamer, or the expression of immune activation related genes IFN-1β, IL-6, CXCL-10, and IL-1β in the case of the R10-60 aptamer. Gel electrophoresis analyses demonstrated the rapid complexation of the NU172 and R10-60 aptamers by complementary AD binding after just 2 min of incubation in human serum. A rapid neutralization of anticoagulant activity of NU172 was also demonstrated in fresh human whole blood 5 min after addition of AD. Furthermore, the TLR9-mediated activation of PMDC05 cells was interrupted after the addition of the R10-60 AD. Using these two different aptamers, the rapid antagonizability of the aptamers was demonstrated in different environments; whole blood containing numerous proteins, cells, and different small molecules, serum, or cell culture media. Thus, nucleic acid ADs are promising molecules, which offer several possibilities for different in vivo applications, such as antagonizing aptamer-based drugs, immobilization, or delivery of oligonucleotides to defined locations.
Collapse
Affiliation(s)
- Heidi Stoll
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Nadja Wilhelm
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Ludmilla Hann
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Silju-John Kunnakattu
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518, Japan.
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Hans P Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|