1
|
Ampey BC, Morschauser TJ, Lampe PD, Magness RR. Gap junction regulation of vascular tone: implications of modulatory intercellular communication during gestation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:117-32. [PMID: 25015806 DOI: 10.1007/978-1-4939-1031-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the vasculature, gap junctions (GJ) play a multifaceted role by serving as direct conduits for cell-cell intercellular communication via the facilitated diffusion of signaling molecules. GJs are essential for the control of gene expression and coordinated vascular development in addition to vascular function. The coupling of endothelial cells to each other, as well as with vascular smooth muscle cells via GJs, plays a relevant role in the control of vasomotor tone, tissue perfusion and arterial blood pressure. The regulation of cell-signaling is paramount to cardiovascular adaptations of pregnancy. Pregnancy requires highly developed cell-to-cell coupling, which is affected partly through the formation of intercellular GJs by Cx43, a gap junction protein, within adjacent cell membranes to help facilitate the increase of uterine blood flow (UBF) in order to ensure adequate perfusion for nutrient and oxygen delivery to the placenta and thus the fetus. One mode of communication that plays a critical role in regulating Cx43 is the release of endothelial-derived vasodilators such as prostacyclin (PGI2) and nitric oxide (NO) and their respective signaling mechanisms involving second messengers (cAMP and cGMP, respectively) that are likely to be important in maintaining UBF. Therefore, the assertion we present in this review is that GJs play an integral if not a central role in maintaining UBF by controlling rises in vasodilators (PGI2 and NO) via cyclic nucleotides. In this review, we discuss: (1) GJ structure and regulation; (2) second messenger regulation of GJ phosphorylation and formation; (3) pregnancy-induced changes in cell-signaling; and (4) the role of uterine arterial endothelial GJs during gestation. These topics integrate the current knowledge of this scientific field with interpretations and hypotheses regarding the vascular effects that are mediated by GJs and their relationship with vasodilatory vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion and blood flow observed during normal pregnancy.
Collapse
Affiliation(s)
- Bryan C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, School Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | | | | | | |
Collapse
|
2
|
D'Souza A, Howarth FC, Yanni J, Dobrzynski H, Boyett MR, Adeghate E, Bidasee KR, Singh J. Chronic effects of mild hyperglycaemia on left ventricle transcriptional profile and structural remodelling in the spontaneously type 2 diabetic Goto-Kakizaki rat. Heart Fail Rev 2014; 19:65-74. [PMID: 23430124 DOI: 10.1007/s10741-013-9376-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heart failure in chronic type 2 diabetes mellitus is partly attributable to adverse structural remodelling of the left ventricle (LV), but the contribution of hyperglycaemia (HG) per se in remodelling processes is debated. In this study, we examined the molecular signature of LV remodelling in 18-month-old spontaneously diabetic male Goto-Kakizaki (GK) rats that represent a long-term mildly diabetic phenotype, using histological, immunoblotting and quantitative gene expression approaches. Relative to age-matched Wistar controls, mildly diabetic GK rats presented with LV hypertrophy, increased expression of natriuretic peptides and phosphorylation of pro-hypertrophic Akt. Fibrosis proliferation in the GK LV paralleled increased transcriptional and biologically active pro-fibrogenic transforming growth factor-β1 (TGFβ1) in the LV with upregulated mRNA abundance for key extracellular matrix (ECM) components such as fibronectin, collagen type(s) 1 and 3α and regulators including matrix metalloproteinases 2 and 9, and their tissue inhibitor (TIMP) 4, connexin 43 and α5-integrin. GK rats also presented with altered mRNA expression for cardiac sarcoplasmic reticulum Ca(2+)ATPase, Na(+)/Ca(2+) exchanger and the L-type Ca(2+) channels which may contribute to the altered Ca(2+) transient kinetics previously observed in this model at 18 months of age (t test, p < 0.05 vs. age-matched Wistar control for all parameters). The results indicate that chronic mild HG can produce the molecular and structural correlates of a hypertrophic myopathy. Diffuse ECM proliferation in this model is possibly a product of HG-induced TGFβ1 upregulation and altered transcriptional profile of the ECM.
Collapse
Affiliation(s)
- Alicia D'Souza
- Cardiovascular Research Group, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera). Genet Res (Camb) 2009; 91:101-9. [DOI: 10.1017/s0016672309000032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryGap junction protein connexin43 (Cx43), encoded by the GJA1 gene, is the most abundant connexin in the cardiovascular system and was reported as a crucial factor maintaining cardiac electrical conduction, as well as having a very important function in facilitating the recycling of potassium ions from hair cells in the cochlea back into the cochlear endolymph during auditory transduction processes. In mammals, bats are the only taxon possessing powered flight, placing exceptional demand on many organismal processes. To meet the demands of flying, the hearts of bats show many specialties. Moreover, ultrasonic echolocation allows bat species to orientate and often detect and locate food in darkness. In this study, we cloned the full-length coding region of GJA1 gene from 12 different species of bats and obtained orthologous sequences from other mammals. We used the maximum likelihood method to analyse the evolution of GJA1 gene in mammals and the lineage of bats. Our results showed this gene is much conserved in mammals, as well as in bats' lineage. Compared with other mammals, we found one private amino acid substitution shared by bats, which is located on the inner loop domain, as well as some species-specific amino acid substitutions. The evolution rate analyses showed the signature of purifying selection on not only different classification level lineages but also the different domains and amino acid residue sites of this gene. Also, we suggested that GJA1 gene could be used as a good molecular marker to do the phylogenetic reconstruction.
Collapse
|
4
|
Ke Y, Lei M, Solaro RJ. Regulation of cardiac excitation and contraction by p21 activated kinase-1. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:238-50. [PMID: 19351515 DOI: 10.1016/j.pbiomolbio.2009.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of beta-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of beta-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.
Collapse
Affiliation(s)
- Yunbo Ke
- The Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Room 202, COMRB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|
5
|
Effects of streptozotocin-induced diabetes on connexin43 mRNA and protein expression in ventricular muscle. Mol Cell Biochem 2008; 319:105-14. [PMID: 18629610 DOI: 10.1007/s11010-008-9883-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
Abnormal QT prolongation with the associated arrhythmias is a significant predictor of mortality in diabetic patients. Gap junctional intercellular communication allows electrical coupling between heart muscle cells. The effects of streptozotocin (STZ)-induced diabetes mellitus on the expression and distribution of connexin 43 (Cx43) in ventricular muscle have been investigated. Cx43 mRNA expression was measured in ventricular muscle by quantitative PCR. The distribution of total Cx43, phosphorylated Cx43 (at serine 368) and non-phosphorylated Cx43 was measured in ventricular myocytes and ventricular muscle by immunocytochemistry and confocal microscopy. There was no significant difference in Cx43 mRNA between diabetic rat ventricle and controls. Total and phosphorylated Cx43 were significantly increased in ventricular myocytes and ventricular muscle and dephosphorylated Cx43 was not significantly altered in ventricular muscle from diabetic rat hearts compared to controls. Disturbances in gap junctional intercellular communication, which in turn may be attributed to alterations in balance between total, phosphorylated and dephosporylated Cx43, might partly underlie prolongation of QRS and QT intervals in diabetic heart.
Collapse
|
6
|
Lellouche N, Buch E, Celigoj A, Siegerman C, Cesario D, De Diego C, Mahajan A, Boyle NG, Wiener I, Garfinkel A, Shivkumar K. Functional characterization of atrial electrograms in sinus rhythm delineates sites of parasympathetic innervation in patients with paroxysmal atrial fibrillation. J Am Coll Cardiol 2007; 50:1324-31. [PMID: 17903630 DOI: 10.1016/j.jacc.2007.03.069] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/05/2007] [Accepted: 03/14/2007] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study sought to characterize left atrial (LA) sinus rhythm electrogram (EGM) patterns and their relationship to parasympathetic responses during atrial fibrillation (AF) ablation. BACKGROUND The mechanistic basis of fractionated LA EGMs in patients with paroxysmal AF is not well understood. METHODS We analyzed 1,662 LA ablation sites from 30 patients who underwent catheter ablation for paroxysmal AF. Pre-ablation EGM characteristics (number of deflections, amplitude, and duration) were measured in sinus rhythm. Parasympathetic responses during radiofrequency application (increase of atrial-His interval by > or =10 ms or decrease of sinus rate by > or =20%) were assessed at all sites. We also prospectively studied the effect of adenosine, a pharmacological agent mimicking acetylcholine signaling in myocytes, on LA EGMs. Finally, we performed mathematical simulations of atrial tissue to delineate possible mechanisms of fractionated EGMs in sinus rhythm. RESULTS A specific pattern of pre-ablation sinus rhythm EGM (deflections > or =4, amplitude > or =0.7 mV, and duration > or =40 ms) was strongly associated with parasympathetic responses (sensitivity 72%, specificity 91%). The sites associated with these responses were found to be located mainly in the posterior wall of the LA. Adenosine administration and mathematical simulation of the effect of acetylcholine were able to reproduce a similar EGM pattern. CONCLUSIONS Parasympathetic activation during AF ablation is associated with the presence of pre-ablation high-amplitude fractionated EGMs in sinus rhythm. Local acetylcholine release could potentially explain this phenomenon.
Collapse
Affiliation(s)
- Nicolas Lellouche
- UCLA Cardiac Arrhythmia Center, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1679, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Moreno AP, Lau AF. Gap junction channel gating modulated through protein phosphorylation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:107-19. [PMID: 17507079 PMCID: PMC1973155 DOI: 10.1016/j.pbiomolbio.2007.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a ubiquitous post-translation modification process, protein phosphorylation has proven to be a key mechanism in regulating the function of several membrane proteins, including transporters and channels. Connexins, pannexins, and innexins are protein families that form gap junction channels essential for intercellular communication. Connexins have been intensely studied, and most of their isoforms are known to be phosphorylated by protein kinases that lead to modifications in tyrosine, serine, and threonine residues, which have been reported to affect, in one way or another, intercellular communication. Despite the abundant reports on changes in intercellular communication due to the activation or inactivation of numerous kinases, the molecular mechanisms by which phosphorylation alters channel gating properties have not been elucidated completely. Hence, this chapter will cover some of the current, relevant research that attempt to explain how phosphorylation triggers and/or modulates gap junction channel gating.
Collapse
Affiliation(s)
- Alonso P Moreno
- Department of Internal Medicine, University of Utah, Nora Eccles Cardiovascular Research and Training Institute, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
8
|
Affiliation(s)
- Rahul J Anand
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
9
|
Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N. Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res 2005; 97:655-62. [PMID: 16123333 DOI: 10.1161/01.res.0000183880.49270.f9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gap junctions (GJs) constituted by neighboring cardiac myocytes are essential for gating ions and small molecules to coordinate cardiac contractions. cAMP is suggested to be a potent stimulus for enhancement of GJ function. However, it remains elusive how cAMP potentiates the GJ of cardiomyocytes. Here we demonstrated that the gating function of GJ is enhanced by the protein kinase A (PKA)-dependent signal, and that the accumulation of connexin43 (Cx43), the most abundant Cx in myocytes, is enhanced by an exchange protein directly activated by cAMP (Epac) (Rap1 activator)-dependent signal. The gating function of GJs was analyzed by microinjected dye transfer method. The accumulation of Cx43 was analyzed by quantitative immunostaining. Using the PKA-specific activator N6-benzoyladenosine-3',5'-cyclic monophosphate (6Bnz) and Epac-specific activator 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT), we could delineate the two important downstream signals of cAMP for enhanced GJ neoformation. Whereas 6Bnz potentiated gating function of GJs with slight accumulation of Cx43 at cell-cell contacts, 8CPT remarkably enhanced the accumulation of Cx43 with a slight effect on gating. We further noticed that adherens junctions (AJs) were maturated by 8CPT, as marked by increased neural-cadherin immunostaining. Because AJ formation precedes the GJ formation, AJ formation accelerated by Epac-Rap1 signal may result in enhanced GJ formation. The involvement of Epac-Rap1 signal in GJ neoformation was further confirmed by evidence that inactivation of Rap1 by overexpression of Rap1GAP1b perturbed the accumulation of Cx43 at cell-cell contacts. Collectively, PKA and Epac cooperatively enhance functional GJ neoformation in cardiomyocytes.
Collapse
Affiliation(s)
- Satoshi Somekawa
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
10
|
King TJ, Lampe PD. Temporal regulation of connexin phosphorylation in embryonic and adult tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:24-35. [PMID: 16137642 PMCID: PMC1760550 DOI: 10.1016/j.bbamem.2005.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/14/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.
Collapse
Affiliation(s)
- Timothy J King
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5C800, Box 19024, Seattle, WA 98109, USA
| | | |
Collapse
|
11
|
Moreno AP. Connexin phosphorylation as a regulatory event linked to channel gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:164-71. [PMID: 15955301 DOI: 10.1016/j.bbamem.2005.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 01/09/2023]
Abstract
The main proteins required for functional gap junction channels are known as connexins and most of their isoforms indicate that they can become phosphorylated. Connexin phosphorylation has been reported to participate in modifying junctional communication and the mechanisms involved apparently depend on which kinase becomes involved. Although multiple reports have suggested a strong influence of phosphorylation on channel gating, not enough physiological studies have been performed to determine precisely the gating mechanisms implicated. Moreover, gap junction channels follow other various gating mechanisms, including voltage gating and chemical gating, where phosphorylation could act as a modulator. The quest for this chapter has been to discriminate those instances where phosphorylation acts directly as a gating trigger and where it acts indirectly or only as a modulator. Despite recent efforts, the mechanisms involved in all these cases are barely understood.
Collapse
Affiliation(s)
- Alonso P Moreno
- Krannert Institute of Cardiology, Indiana University School of Medicine, 1800 N. Capitol Ave. Suite 310, Indianapolis, IN 46202, United States.
| |
Collapse
|
12
|
Sarre A, Lange N, Kucera P, Raddatz E. mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways. Am J Physiol Heart Circ Physiol 2005; 288:H1611-9. [PMID: 15550517 DOI: 10.1152/ajpheart.00942.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K+ (mitoKATP) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2′,7′-dichlorofluorescin (DCFH). Effects of the specific mitoKATP channel opener diazoxide (Diazo, 50 μM) or the blocker 5-hydroxydecanoate (5-HD, 500 μM), the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 50 μM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 μM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or l-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, l-NAME, or Chel, whereas protection of the PR interval was abolished by l-NAME exclusively. Thus pharmacological opening of the mitoKATP channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.
Collapse
Affiliation(s)
- Alexandre Sarre
- Dept. of Physiology, Faculty of Biology and Medicine, University of Lausanne, 7 rue du Bugnon, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
13
|
Lin MT, Longo LD, Pearce WJ, Hessinger DA. Ca2+-activated K+ channel-associated phosphatase and kinase activities during development. Am J Physiol Heart Circ Physiol 2005; 289:H414-25. [PMID: 15708961 DOI: 10.1152/ajpheart.01079.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ovine basilar arterial smooth muscle cells (SMCs), the fetal "big" Ca2+-activated K+ (BK) channel activity is significantly greater and has a lower Ca2+ setpoint than BK channels from adult cells. In the present study, we tested the hypothesis that these differences result from developmentally regulated phosphorylation of these channels. Using the patch-clamp technique and a novel in situ enzymological approach, we measured the rates and extents of changes in BK channel voltage activation from SMC inside-out patch preparations in response to selective activation and inhibition of channel-associated protein phosphatases and kinases (CAPAKs). We show that BK channel activity is modulated during development by differential phosphorylation and that the activities of CAPAKs change substantially during development. In particular, excised membrane patches from adult SMCs exhibited greater protein kinase A activity than those from a fetus. In contrast, fetal SMCs exhibited greater protein kinase G activity and phosphatase activity than adult SMCs. These findings extend our previous observation that the BK channel Ca2+ setpoint differs significantly in adult and fetal cerebrovascular myocytes and suggest a biochemical mechanism for this difference. In addition, these findings suggest that the functional stoichiometry of CAPAKs varies significantly during development and that such variation may be a hitherto unrecognized mechanism of ion channel regulation.
Collapse
Affiliation(s)
- Mike T Lin
- Center for Perinatal Biology, School of Medicine, Loma Linda Univ., Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
14
|
Shah MM, Martinez AM, Fletcher WH. The connexin43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies. Mol Cell Biochem 2002; 238:57-68. [PMID: 12349910 DOI: 10.1023/a:1019902920693] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3',5'-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.
Collapse
Affiliation(s)
- Maithili M Shah
- Department of Physiology, Loma Linda University School of Medicine, CA, USA
| | | | | |
Collapse
|