1
|
Dragotto J, Canterini S, Del Porto P, Bevilacqua A, Fiorenza MT. The interplay between TGF-β-stimulated TSC22 domain family proteins regulates cell-cycle dynamics in medulloblastoma cells. J Cell Physiol 2019; 234:18349-18360. [PMID: 30912127 DOI: 10.1002/jcp.28468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
Proteins belonging to the TGFβ-stimulated clone 22 domain (TSC22D) family display a repertoire of activities, regulating cell proliferation and differentiation. The tumor suppressor activity of the first identified member of the family, TSC22D1 (formerly named TSC-22), has been extensively studied, but afterward a longer isoform encoded by the same gene turned out to play an opposite role. We have previously characterized the role of TSC22D1 and TSC22D4 in cell differentiation using granule neurons (GNs) isolated from the mouse cerebellum. However, the possibility to study the role of these factors in cell proliferation was limited by the fact that GNs readily exit from the cell-cycle and differentiate upon isolation and in vitro culture. To overcome this limitation, we have now exploited DAOY medulloblastoma cells, which are ontogenetically similar to cerebellar GNs and can be efficiently transfected with interfering RNA for gene knockdown purposes. Our findings indicate that TSC22D4-TSC22D1 short isoform heterodimers are involved in the escape from cell proliferation and exit from the cell-cycle, whereas, the TSC22D1 long isoform is required for cell proliferation, acting independently from TSC22D4. We also show that the silencing of specific expression of TSC22D4 or TSC22D1 isoforms affects the cell-cycle progression. These findings add a novel insight on the function of TSC22D proteins, with particular reference to the tumor suppressor activity of the TSC22D1 short isoform, which is re-framed within the context of a functional interplay with TSC22D4 and the mutually exclusive expression with the TSC22D1 long isoform.
Collapse
Affiliation(s)
- Jessica Dragotto
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy
| | - Sonia Canterini
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
2
|
Cittaro D, Lampis V, Luchetti A, Coccurello R, Guffanti A, Felsani A, Moles A, Stupka E, D' Amato FR, Battaglia M. Histone Modifications in a Mouse Model of Early Adversities and Panic Disorder: Role for Asic1 and Neurodevelopmental Genes. Sci Rep 2016; 6:25131. [PMID: 27121911 PMCID: PMC4848503 DOI: 10.1038/srep25131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
Hyperventilation following transient, CO2-induced acidosis is ubiquitous in mammals and heritable. In humans, respiratory and emotional hypersensitivity to CO2 marks separation anxiety and panic disorders, and is enhanced by early-life adversities. Mice exposed to the repeated cross-fostering paradigm (RCF) of interference with maternal environment show heightened separation anxiety and hyperventilation to 6% CO2-enriched air. Gene-environment interactions affect CO2 hypersensitivity in both humans and mice. We therefore hypothesised that epigenetic modifications and increased expression of genes involved in pH-detection could explain these relationships. Medullae oblongata of RCF- and normally-reared female outbred mice were assessed by ChIP-seq for H3Ac, H3K4me3, H3K27me3 histone modifications, and by SAGE for differential gene expression. Integration of multiple experiments by network analysis revealed an active component of 148 genes pointing to the mTOR signalling pathway and nociception. Among these genes, Asic1 showed heightened mRNA expression, coherent with RCF-mice’s respiratory hypersensitivity to CO2 and altered nociception. Functional enrichment and mRNA transcript analyses yielded a consistent picture of enhancement for several genes affecting chemoception, neurodevelopment, and emotionality. Particularly, results with Asic1 support recent human findings with panic and CO2 responses, and provide new perspectives on how early adversities and genes interplay to affect key components of panic and related disorders.
Collapse
Affiliation(s)
- Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Lampis
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Guffanti
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Genomnia srl, Lainate, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Anna Moles
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Elia Stupka
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D' Amato
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Marco Battaglia
- Department of Psychiatry, University Of Toronto, Toronto, Canada.,Division of Child and Youth Mental Health, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
3
|
Canterini S, Carletti V, Nusca S, Mangia F, Fiorenza MT. Multiple TSC22D4 iso-/phospho-glycoforms display idiosyncratic subcellular localizations and interacting protein partners. FEBS J 2013; 280:1320-9. [PMID: 23305244 DOI: 10.1111/febs.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/02/2012] [Accepted: 01/01/2013] [Indexed: 12/26/2022]
Abstract
Proteins of the TSC22 domain (TSC22D) family, including TSC22D1 and TSC22D4, play pivotal roles in cell proliferation, differentiation and apoptosis, interacting with other factors in a still largely unknown manner. This study explores this issue by biochemically characterizing various TSC22D4 forms (both iso- and glyco-phospho-, namely the splice variants 42 and 55 kDa and the post-translationally modified 67 and 72 kDa forms) and their subcellular localization and protein partners during cerebellar granule neuron (CGN) differentiation. The TSC22D4-42 form is mostly cytosolic, and is the only TSC22D4 form that associates with TSC22D1.2 in undifferentiated but not differentiated CGNs. In contrast, TSC22D4-55 is prominently associated with the nuclear matrix in differentiated but not undifferentiated CGNs. As for TSC22D4-67, it is localized in the cytosol and nuclei of undifferentiated CGNs and enters mitochondria of differentiated CGNs, associating with apoptosis-inducing factor. TSC22D4-72 is modified by O-linked beta-N-acetylglucosamine (O-GlcNAcylated) and phosphorylated and is always associated with chromatin irrespective of CGN differentiation. The various subcellular localization patterns and interacting protein partners of TSC22D4 forms during CGN differentiation suggest the existence of form-specific function(s) and provide a novel framework to further investigate the biological functions of TSC22D proteins.
Collapse
Affiliation(s)
- Sonia Canterini
- Department of Psychology, Pasteur Institute-Cenci Bolognetti Foundation and Daniel Bovet Neurobiology Research Center, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
4
|
Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F, Fiorenza MT. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation. CEREBELLUM (LONDON, ENGLAND) 2012; 11:28-40. [PMID: 20878296 DOI: 10.1007/s12311-010-0211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.
Collapse
Affiliation(s)
- Sonia Canterini
- Department of Psychology, Section of Neuroscience, Istituto Pasteur-Fondazione Cenci Bolognetti and D. Bovet Research Center, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Canterini S, Bosco A, De Matteis V, Mangia F, Fiorenza MT. THG-1pit moves to nucleus at the onset of cerebellar granule neurons apoptosis. Mol Cell Neurosci 2009; 40:249-57. [PMID: 19084601 DOI: 10.1016/j.mcn.2008.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/28/2008] [Accepted: 10/31/2008] [Indexed: 11/23/2022] Open
Abstract
Thg-1pit (Tsc22d4), a murine gene belonging to the TGF-beta1-stimulated clone 22 domain (TSC22D) family, is expressed in developing and adult cerebellar granule neurons and mature Purkinje cells. We have studied THG-1pit function in primary cultures of mouse cerebellar granule neurons maintained in vitro in the presence of a medium containing 25 mM K+ (differentiating condition) or 5 mM K+ (pro-apoptotic condition), and determined the effect of culture medium, TGF-beta1 and IGF-1 on THG-1pit expression and intracellular localization. Thg-1pit encoded a 42 kDa MW protein and other, higher MW and developmentally-regulated forms. Cell exposure to 5 mM K+ elicited early and/or late waves of Thg-1pit transcription, depending on the presence/absence of TGF-beta1, and caused THG-1pit to massively and transiently move from cytoplasm and neurites to the nucleus. THG-1pit nuclear entrance was concomitant to that of AIF, suggesting that THG-1pit is involved in the induction of granule neuron apoptosis.
Collapse
Affiliation(s)
- Sonia Canterini
- Department of Psychology, Section of Neuroscience, Istituto Pasteur-Fondazione Cenci Bolognetti and "Daniel Bovet" Research Center, La Sapienza University of Rome, Italy
| | | | | | | | | |
Collapse
|