1
|
Shah MA, Xie X, Rodina M, Stundl J, Braasch I, Šindelka R, Rzepkowska M, Saito T, Pšenička M. Sturgeon gut development: a unique yolk utilization strategy among vertebrates. Front Cell Dev Biol 2024; 12:1358702. [PMID: 38872929 PMCID: PMC11169612 DOI: 10.3389/fcell.2024.1358702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.e., the primitive gut) dorsally, the floor of the archenteron is uniquely composed of extraembryonic yolk cells (YCs). As development progresses, during neurulation, the archenteric cavity inflates, expands laterally, and roofs a semicircle of YCs. By the pharyngula stage, the cavity fully encompasses the YC mass, which begins to be digested at the hatching stage. This suggests a notable deviation in sturgeon gut development from that in other vertebrates, as their digestive tract initiates its function by processing endogenous nutrition even before external feeding begins. Our findings highlight the evolutionary diversity of gut development strategies among vertebrates and provide new insights into the developmental biology of sturgeons.
Collapse
Affiliation(s)
- Mujahid Ali Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Marek Rodina
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Jan Stundl
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ingo Braasch
- Department of Integrative Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Małgorzata Rzepkowska
- Department of Ichthyology and Biotechnology in Aquaculture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
- South Ehime Fisheries Research Centre, Ehime University, Matsuyama, Japan
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| |
Collapse
|
2
|
Westrick SE, Laslo M, Fischer E. Natural History of Model Organisms: The big potential of the small frog Eleutherodactylus coqui. eLife 2022; 11:73401. [PMID: 35029143 PMCID: PMC8824473 DOI: 10.7554/elife.73401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
The Puerto Rican coquí frog Eleutherodactylus coqui is both a cultural icon and a species with an unusual natural history that has attracted attention from researchers in a number of different fields within biology. Unlike most frogs, the coquí frog skips the tadpole stage, which makes it of interest to developmental biologists. The frog is best known in Puerto Rico for its notoriously loud mating call, which has allowed researchers to study aspects of social behavior such as vocal communication and courtship, while the ability of coquí to colonize new habitats has been used to explore the biology of invasive species. This article reviews existing studies on the natural history of E. coqui and discusses opportunities for future research.
Collapse
Affiliation(s)
- Sarah E Westrick
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, United States
| | - Mara Laslo
- Curriculum Fellow Program, Harvard University, Cambridge, United States
| | - Eva Fischer
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana and Champaign, United States
| |
Collapse
|
3
|
Starck JM, Stewart JR, Blackburn DG. Phylogeny and evolutionary history of the amniote egg. J Morphol 2021; 282:1080-1122. [PMID: 33991358 DOI: 10.1002/jmor.21380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
We review morphological features of the amniote egg and embryos in a comparative phylogenetic framework, including all major clades of extant vertebrates. We discuss 40 characters that are relevant for an analysis of the evolutionary history of the vertebrate egg. Special attention is given to the morphology of the cellular yolk sac, the eggshell, and extraembryonic membranes. Many features that are typically assigned to amniotes, such as a large yolk sac, delayed egg deposition, and terrestrial reproduction have evolved independently and convergently in numerous clades of vertebrates. We use phylogenetic character mapping and ancestral character state reconstruction as tools to recognize sequence, order, and patterns of morphological evolution and deduce a hypothesis of the evolutionary history of the amniote egg. Besides amnion and chorioallantois, amniotes ancestrally possess copulatory organs (secondarily reduced in most birds), internal fertilization, and delayed deposition of eggs that contain an embryo in the primitive streak or early somite stage. Except for the amnion, chorioallantois, and amniote type of eggshell, these features evolved convergently in almost all major clades of aquatic vertebrates possibly in response to selective factors such as egg predation, hostile environmental conditions for egg development, or to adjust hatching of young to favorable season. A functionally important feature of the amnion membrane is its myogenic contractility that moves the (early) embryo and prevents adhering of the growing embryo to extraembryonic materials. This function of the amnion membrane and the liquid-filled amnion cavity may have evolved under the requirements of delayed deposition of eggs that contain developing embryos. The chorioallantois is a temporary embryonic exchange organ that supports embryonic development. A possible evolutionary scenario is that the amniote egg presents an exaptation that paved the evolutionary pathway for reproduction on land. As shown by numerous examples from anamniotes, reproduction on land has occurred multiple times among vertebrates-the amniote egg presenting one "solution" that enabled the conquest of land for reproduction.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - James R Stewart
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | | |
Collapse
|
4
|
Del Pino EM. Embryogenesis of Marsupial Frogs (Hemiphractidae), and the Changes that Accompany Terrestrial Development in Frogs. Results Probl Cell Differ 2019; 68:379-418. [PMID: 31598865 DOI: 10.1007/978-3-030-23459-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The developmental adaptations of the marsupial frogs Gastrotheca riobambae and Flectonotus pygmaeus (Hemiphractidae) are described and compared with frogs belonging to seven additional families. Incubation of embryos by the mother in marsupial frogs is associated with changes in the anatomy and physiology of the female, modifications of oogenesis, and extraordinary changes in embryonic development. The comparison of early development reveals that gene expression is highly conserved. However, the timing of gene expression varies between frog species. There are two modes of gastrulation according to the onset of convergent extension. In gastrulation mode 1, convergent extension is an intrinsic mechanism of gastrulation. This gastrulation mode occurs in frogs with aquatic reproduction, such as Xenopus laevis. In gastrulation mode 2, convergent extension occurs after the completion of gastrulation movements. Gastrulation mode 2 occurs in frogs with terrestrial reproduction, such as the marsupial frog, G. riobambae. The two modes of frog gastrulation resemble the two transitions toward meroblastic cleavage of ray-finned fishes (Actinopterygii). The comparison indicates that a major event in the evolution of frog terrestrial development is the separation of convergent extension from gastrulation.
Collapse
Affiliation(s)
- Eugenia M Del Pino
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
5
|
The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals. Mech Dev 2018; 154:2-11. [DOI: 10.1016/j.mod.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 11/20/2022]
|
6
|
Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F. Vertebrate Embryonic Cleavage Pattern Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:117-171. [PMID: 27975272 PMCID: PMC6500441 DOI: 10.1007/978-3-319-46095-6_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.
Collapse
Affiliation(s)
- Andrew Hasley
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Shawn Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Michael Danilchik
- Department of Integrative Biosciences, L499, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Martin Wühr
- Department of Molecular Biology & The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Icahn Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs. Proc Natl Acad Sci U S A 2016; 113:5628-33. [PMID: 27140624 DOI: 10.1073/pnas.1605547113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin-insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs.
Collapse
|
8
|
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. Semin Cell Dev Biol 2016; 51:92-105. [PMID: 26851628 PMCID: PMC4798877 DOI: 10.1016/j.semcdb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Melissa Pickett
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States.
| |
Collapse
|
9
|
Saito T, Psenicka M. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso). Biol Reprod 2015; 93:96. [PMID: 26134864 DOI: 10.1095/biolreprod.115.128314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/03/2015] [Indexed: 11/01/2022] Open
Abstract
Primordial germ cells (PGCs) are the origin of all germ cells in developing embryos. In the sturgeon embryo, PGCs develop from the vegetal hemisphere, which mainly acts as an extraembryonic source of nutrition. Current methods for studying sturgeon PGCs require either killing the fish or using costly and time-consuming histological procedures. Here, we demonstrate that visualization of sterlet (Acipenser ruthenus>) PGCs in vivo is feasible by simply labeling the vegetal hemisphere with fluorescein isothiocyanate (FITC)-dextran. We injected FITC-dextrans, with molecular weights varying between 10 000 and 2 000 000, into the vegetal pole of 1- to 4-cell stage embryos. At the neurula to tail-bud developmental stages, FITC-positive PGC-like cells appeared ventrally around the developing tail bud in the experimental group that received a high-molecular-weight FITC-dextran. The highest average number of FITC-positive PGC-like cells was observed in embryos injected with FITC-dextran having a molecular weight of 500 000 (FD-500). The pattern of migration of the labeled cells was identical to that of PGCs, clearly indicating that the FITC-positive PGC-like cells were PGCs. Labeled vegetal cells, except for the PGCs, were digested and excreted before the embryos starting feeding. FITC-labeled PGCs were observed in the developing gonads of fish for at least 3 mo after injection. We also found that FD-500 could be used to visualize PGCs in other sturgeon species. To the best of our knowledge, this report is the first to demonstrate in any animal species that PGCs can be visualized in vivo for a long period by the injection of a simple reagent.
Collapse
Affiliation(s)
- Taiju Saito
- Laboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Psenicka
- Laboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
10
|
Ziermann JM, Diogo R. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J Morphol 2014; 275:398-413. [PMID: 24877162 DOI: 10.1002/jmor.20223] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Normal development in anurans includes a free swimming larva that goes through metamorphosis to develop into the adult frog. We have investigated cranial muscle development and adult cranial muscle morphology in three different anuran species. Xenopus laevis is obligate aquatic throughout lifetime, Rana(Lithobates) pipiens has an aquatic larvae and a terrestrial adult form, and Eleutherodactylus coqui has direct developing juveniles that hatch from eggs deposited on leaves (terrestrial). The adult morphology shows hardly any differences between the investigated species. Cranial muscle development of E. coqui shows many similarities and only few differences to the development of Rana (Lithobates) and Xenopus. The differences are missing muscles of the branchial arches (which disappear during metamorphosis of biphasic anurans) and a few heterochronic changes. The development of the mandibular arch (adductor mandibulae) and hyoid arch (depressor mandibulae) muscles is similar to that observed in Xenopus and Rana (Lithobates), although the first appearance of these muscles displays a midmetamorphic pattern in E. coqui. We show that the mix of characters observed in E. coqui indicates that the larval stage is not completely lost even without a free swimming larval stage. Cryptic metamorphosis is the process in which morphological changes in the larva/embryo take place that are not as obvious as in normal metamorphosing anurans with a clear biphasic lifestyle. During cryptic metamorphosis, a normal adult frog develops, indicating that the majority of developmental mechanisms towards the functional adult cranial muscles are preserved.
Collapse
|
11
|
Saito T, Pšenička M, Goto R, Adachi S, Inoue K, Arai K, Yamaha E. The origin and migration of primordial germ cells in sturgeons. PLoS One 2014; 9:e86861. [PMID: 24505272 PMCID: PMC3914811 DOI: 10.1371/journal.pone.0086861] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts.
Collapse
Affiliation(s)
- Taiju Saito
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan ; Laboratory of Aquaculture Genetics & Genomics, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan ; Laboratory of Reproductive Physiology, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - Martin Pšenička
- Laboratory of Reproductive Physiology, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - Rie Goto
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan
| | - Shinji Adachi
- Laboratory of Aquaculture Biology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Kunio Inoue
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Katsutoshi Arai
- Laboratory of Aquaculture Genetics & Genomics, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Etsuro Yamaha
- Nanae Fresh Water Laboratory, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan
| |
Collapse
|
12
|
Elinson RP, Stewart JR. The corn snake yolk sac becomes a solid tissue filled with blood vessels and yolk-rich endodermal cells. Biol Lett 2014; 10:20130870. [PMID: 24402715 DOI: 10.1098/rsbl.2013.0870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The amniote egg was a key innovation in vertebrate evolution because it supports an independent existence in terrestrial environments. The egg is provisioned with yolk, and development depends on the yolk sac for the mobilization of nutrients. We have examined the yolk sac of the corn snake Pantherophis guttatus by the dissection of living eggs. In contrast to the familiar fluid-filled sac of birds, the corn snake yolk sac invades the yolk mass to become a solid tissue. There is extensive proliferation of yolk-filled endodermal cells, which associate with a meshwork of blood vessels. These novel attributes of the yolk sac of corn snakes compared with birds suggest new pathways for the evolution of the amniote egg.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, , Pittsburgh, PA 15282, USA
| | | |
Collapse
|
13
|
Chatterjee S, Elinson RP. Commitment to nutritional endoderm in Eleutherodactylus coqui involves altered nodal signaling and global transcriptional repression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:27-44. [PMID: 24323742 DOI: 10.1002/jez.b.22543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 01/01/2023]
Abstract
The vegetal cells of a Xenopus laevis embryo commit to mesendoderm via the Nodal-signaling pathway. In the direct developing frog Eleutherodactylus coqui, mesendoderm is specified at the marginal zone of the early gastrula, and vegetal core cells transform into nutritional endoderm. Nutritional endoderm, a novel tissue, consists of transient, yolky cells that provide nutrition but remain undifferentiated. We report a dual regulation for the generation of nutritional endoderm. First, differential expressions of the Nodal-signal transducers Smad2 and Smad4 were observed during early gastrulation between the marginal zone and the vegetal core cells. Although EcSmad2 RNA as well as total and activated Smad2 protein were detected in the vegetal core, Smad4 protein was expressed less in vegetal core during early gastrulation. Only 12% and 50% of vegetal core cells were positive for nuclear Smad2 and Smad4 signals respectively compared to 100% of marginal zone cells. These results suggest a signaling disruption in the vegetal core. Second, vegetal core cells were transcriptionally repressed. At the blastula stage, both marginal zone and vegetal core cells were transcriptionally silent, but during early gastrulation, only marginal zone cells became transcriptionally active. This indicates the occurrence of a mid-blastula transition in the marginal zone by early gastrulation, but global transcriptional repression persisted in the vegetal core and its derivative, nutritional endoderm, throughout development. We have described a novel mechanism, which prevents differentiation of the vegetal core through differential Nodal-signaling and global transcriptional repression.
Collapse
Affiliation(s)
- Suman Chatterjee
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | | |
Collapse
|
14
|
Landberg T. Embryonic yolk removal affects a suite of larval salamander life history traits. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:45-53. [PMID: 24323743 DOI: 10.1002/jez.b.22544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/29/2013] [Accepted: 09/23/2013] [Indexed: 11/09/2022]
Abstract
Egg size is a key life history trait affecting fitness, and it varies abundantly. The value of egg size to a mother and her offspring is often determined by a trade-off between investing more yolk in a few large eggs or less yolk into many more, smaller eggs. Smaller eggs are generally expected to be phenotypically inferior or females could increase their fitness by making more smaller eggs. However, many females produce a mix of egg sizes and natural yolk variation induces normal developmental responses which may persist into subsequent stages of a complex life history. Since sources of phenotypic variation are easily confounded, I surgically removed yolk from embryonic spotted salamanders (Ambystoma maculatum) using a sham surgery as a control and a split-clutch design to isolate the effects of yolk reserve variation from genetic sources of variation. Yolk removal induced early hatching, reduced developmental stage and hatchling body size. Small hatchlings stayed relatively small through the early larval period, but 17 weeks later the correlation with early larval body size was lost. When the experiment ended, larger individuals were further along in metamorphic development but mortality was independent of early larval body size. Variation in spotted salamander yolk reserves affects a suite of hatchling life history traits that persists into the larval period. Outside the laboratory, egg size effects may cascade throughout complex amphibian life histories. Applied experimentally and comparatively, this simple yolk removal technique may help identify how traits increase or decrease their response to maternal yolk investment.
Collapse
Affiliation(s)
- Tobias Landberg
- University of Connecticut, Ecology & Evolutionary Biology, Storrs, Connecticut
| |
Collapse
|
15
|
Karadge U, Elinson RP. Characterization of the nutritional endoderm in the direct developing frog Eleutherodactylus coqui. Dev Genes Evol 2013; 223:351-62. [PMID: 24043604 DOI: 10.1007/s00427-013-0451-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Unlike Xenopus laevis, Eleutherodactylus coqui develops without a tadpole. The yolk-rich vegetal region of the embryo forms a transient nutritive tissue, the nutritional endoderm (NE). The definitive endoderm (DE) in E. coqui comes from cells closer to the animal pole in contrast to its vegetal origin in X. laevis. RNA important for initiating the endoderm specification network is absent in presumptive NE cells, raising the question whether signaling occurs in them. We explored the nature of NE and asked how differences between NE and DE cells arise. We identified differences between NE and DE that first become evident at gastrula, when NE cells become multinucleated. Nuclear β-catenin, an essential cofactor of sox 17, important for endoderm formation in X. laevis, is present in NE and DE at gastrula but remains in NE long after it is not seen in DE. We cloned E. coqui homologs of TGFβs activin b and derriere and provide evidence for their maternal expression. We also detected activin b and derriere RNAs in NE at gastrula and show that NE possesses some mesoderm-inducing activity, but it is delayed with respect to DE. Our findings indicate that altered development of NE begins at gastrula. RNAs important for mesendoderm induction and some mesoderm-inducing activity are present in NE.
Collapse
Affiliation(s)
- Uma Karadge
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA,
| | | |
Collapse
|
16
|
Abstract
The evolutionary removal of the tadpole from the frog life history is a very successful strategy, particularly in the tropics. These direct developers form limbs and a frog-like head early in embryogenesis, and they have reduced or lost tadpole-specific structures, like gills, a long, coiled intestine, and tadpole teeth and jaws. Despite the apparently continuous development to the frog morphology, the direct developer, Eleutherodactylus coqui, undergoes a cryptic metamorphosis requiring thyroid hormone. As in Xenopus laevis, there is a stimulation by corticotrophin-releasing factor (CRF) and an upregulation of thyroid hormone receptor β (thrb). In addition to changes in skin and muscle, thyroid hormone stimulates yolk utilization for froglet growth from a novel tissue, the nutritional endoderm. The activities of CRF and corticosterone (CORT) in metamorphosis may provide the basis for the multiple evolutionary origins of direct development in anuran amphibians. Potential roles for maternally supplied thyroid hormone and its receptor and for deiodinases in regulating tissue sensitivity to thyroid hormone should be the subjects of future investigations.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
17
|
|
18
|
A mean field Ising model for cortical rotation in amphibian one-cell stage embryos. Biosystems 2012; 109:381-9. [DOI: 10.1016/j.biosystems.2012.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/12/2022]
|
19
|
Development of yolk sac and chorioallantoic membranes in the Lord Howe Island skink, Oligosoma lichenigerum. J Morphol 2012; 273:1163-84. [DOI: 10.1002/jmor.20052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/30/2012] [Accepted: 05/20/2012] [Indexed: 12/16/2022]
|
20
|
Elinson RP, del Pino EM. Developmental diversity of amphibians. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:345-69. [PMID: 22662314 PMCID: PMC3364608 DOI: 10.1002/wdev.23] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother's back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| | | |
Collapse
|
21
|
Elinson RP, Sabo MC, Fisher C, Yamaguchi T, Orii H, Nath K. Germ plasm in Eleutherodactylus coqui, a direct developing frog with large eggs. EvoDevo 2011; 2:20. [PMID: 21978790 PMCID: PMC3196704 DOI: 10.1186/2041-9139-2-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/06/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND RNAs for embryo patterning and for germ cell specification are localized to the vegetal cortex of the oocyte of Xenopus laevis. In oocytes of the direct developing frog Eleutherodactylus coqui, orthologous RNAs for patterning are not localized, raising the question as to whether RNAs and other components of germ plasm are localized in this species. METHODS To identify germ plasm, E. coqui embryos were stained with DiOC6(3) or examined by in situ hybridization for dazl and DEADSouth RNAs. The cDNAs for the E. coqui orthologues were cloned by RT-PCR using degenerate primers. To examine activity of the E. coqui orthologues, RNAs, made from constructs of their 3'UTRs with mCherry, were injected into X. laevis embryos. RESULTS Both DiOC6(3) and dazl and DEADSouth in situs identified many small islands at the vegetal surface of cleaving E. coqui embryos, indicative of germ plasm. Dazl was also expressed in primordial germ cells in the genital ridge. The 3'UTRs of E. coqui dazl and DEADSouth directed primordial germ cell specific protein synthesis in X. laevis. CONCLUSIONS E. coqui utilizes germ plasm with RNAs localized to the vegetal cortex to specify primordial germ cells. The large number of germ plasm islands suggests that an increase in the amount of germ plasm was important in the evolution of the large E. coqui egg.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Michelle C Sabo
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Cara Fisher
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| | - Takeshi Yamaguchi
- Laboratory of Regeneration Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Hidefumi Orii
- Laboratory of Regeneration Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | - Kimberly Nath
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh PA 15282, USA
| |
Collapse
|
22
|
Jaroszewska M, Dabrowski K. The Nature of Exocytosis in the Yolk Trophoblastic Layer of Silver Arowana (Osteoglossum bicirrhosum) Juvenile, the Representative of Ancient Teleost Fishes. Anat Rec (Hoboken) 2009; 292:1745-55. [DOI: 10.1002/ar.20996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Elinson RP. Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:526-32. [DOI: 10.1002/jez.b.21218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Takeuchi M, Takahashi M, Okabe M, Aizawa S. Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 2009; 332:90-102. [PMID: 19433081 DOI: 10.1016/j.ydbio.2009.05.543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 11/30/2022]
Abstract
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
25
|
Elinson RP, Walton Z, Nath K. Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:588-95. [PMID: 18668545 DOI: 10.1002/jez.b.21229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Embryos of the direct developing frog, Eleutherodactylus coqui, provide opportunities to examine frog early limb development that are not available in species with tadpoles. We cloned two retinaldehyde dehydrogenase genes, EcRaldh1 and EcRaldh2, to see which enzyme likely supplies retinoic acid for limb development. EcRaldh1 is expressed in the dorsal retina, otic vesicle, pronephros, and pronephric duct, but not in the limb. EcRaldh2 is expressed early at the blastoporal lip and then in the mesoderm in the neurula, so this expression could function in forelimb initiation. Later EcRaldh2 is expressed in the mesoderm at the base of the limbs and in the ventral spinal cord where motor neurons innervating the limbs emerge. These observations on a frog support the functional conservation of EcRaldh2 in forelimb initiation in Osteichthyans and in limb patterning and motor neuron specification in tetrapods.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|