1
|
Fang KT, Su CS, Layos JJ, Lau NYS, Cheng KH. Haploinsufficiency of Adenomatous Polyposis Coli Coupled with Kirsten Rat Sarcoma Viral Oncogene Homologue Activation and P53 Loss Provokes High-Grade Glioblastoma Formation in Mice. Cancers (Basel) 2024; 16:1046. [PMID: 38473403 DOI: 10.3390/cancers16051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.
Collapse
Affiliation(s)
- Kuan-Te Fang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chuan-Shiang Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jhoanna Jane Layos
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Nga Yin Sadonna Lau
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Sarkar S, Deyoung T, Ressler H, Chandler W. Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach. Epigenetics 2023; 18:2237761. [PMID: 37499114 PMCID: PMC10376921 DOI: 10.1080/15592294.2023.2237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours. We further discuss epigenetic switches, comprising both histone modifications and DNA methylation, and how they can differentially regulate transcription and expression of oncogenes and tumour suppressor genes. Next, we summarize the currently available therapies for both types of brain tumours, explaining the merits and failures leading to drug resistance. We analyse different mechanisms of drug resistance and the role of epigenetics in this process. We then provide a rationale for combination therapy, which includes epigenetic drugs. In the end, we postulate a concept which describes how a combination therapy could be initiated. The timing, doses, and order of individual drug regimens will depend on the individual case. This type of combination therapy will be part of a personalized medicine which will differ from patient to patient.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Division of Biotechnology, Quincy College, Quincy, MA, USA
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
- Division of Biology, STEM, RC College Boston, Boston, MA, USA
| | - Tara Deyoung
- Division of Biotechnology, Quincy College, Quincy, MA, USA
| | - Hope Ressler
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
| | | |
Collapse
|
3
|
Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022; 23:5351. [PMID: 35628161 PMCID: PMC9140894 DOI: 10.3390/ijms23105351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.
Collapse
Affiliation(s)
- Mariana Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Maria Alexandra Brito
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
4
|
Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes (Basel) 2021; 12:genes12030445. [PMID: 33804731 PMCID: PMC8003887 DOI: 10.3390/genes12030445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite the combination of novel therapeutical approaches, it remains a deadly malignancy with an abysmal prognosis. GBM is a polymorphic tumour from both molecular and histological points of view. It consists of different malignant cells and various stromal cells, contributing to tumour initiation, progression, and treatment response. GBM’s microenvironment is multifaceted and is made up of soluble factors, extracellular matrix components, tissue-resident cell types (e.g., neurons, astrocytes, endothelial cells, pericytes, and fibroblasts) together with resident (e.g., microglia) or recruited (e.g., bone marrow-derived macrophages) immune cells. These latter constitute the so-called immune microenvironment, accounting for a substantial GBM’s tumour volume. Despite the abundance of immune cells, an intense state of tumour immunosuppression is promoted and developed; this represents the significant challenge for cancer cells’ immune-mediated destruction. Though literature data suggest that distinct GBM’s subtypes harbour differences in their microenvironment, its role in treatment response remains obscure. However, an in-depth investigation of GBM’s microenvironment may lead to novel therapeutic opportunities to improve patients’ outcomes. This review will elucidate the GBM’s microenvironment composition, highlighting the current state of the art in immunotherapy approaches. We will focus on novel strategies of active and passive immunotherapies, including vaccination, gene therapy, checkpoint blockade, and adoptive T-cell therapies.
Collapse
|
5
|
Gersey Z, Osiason AD, Bloom L, Shah S, Thompson JW, Bregy A, Agarwal N, Komotar RJ. Therapeutic Targeting of the Notch Pathway in Glioblastoma Multiforme. World Neurosurg 2019; 131:252-263.e2. [PMID: 31376551 DOI: 10.1016/j.wneu.2019.07.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and deadly form of brain tumor. After standard treatment of resection, radiotherapy, and chemotherapy, the 5-year survival is <5%. In recent years, research has uncovered several potential targets within the Notch signaling pathway, which may lead to improved patient outcomes. METHODS A literature search was performed for articles containing the terms "Glioblastoma" and "Receptors, Notch" between 2003 and July 2015. Of the 62 articles retrieved, 46 met our criteria and were included in our review. Nine articles were identified from other sources and were subsequently included, leaving 55 articles reviewed. RESULTS Of the 55 articles reviewed, 47 used established human GBM cell lines. Seventeen articles used human GBM surgical samples. Forty-five of 48 articles that assessed Notch activity showed increased expression in GBM cell lines. Targeting the Notch pathway was carried out through Notch knockdown and overexpression and targeting δ-like ligand, Jagged, γ-secretase, ADAM10, ADAM17, and Mastermindlike protein 1. Arsenic trioxide, microRNAs, and several other compounds were shown to have an effect on the Notch pathway in GBM. Notch activity in GBM was also shown to be associated with hypoxia and certain cancer-related molecular pathways such as PI3K/AKT/mTOR and ERK/MAPK. Most articles concluded that Notch activity amplifies malignant characteristics in GBM and targeting this pathway can bring about amelioration of these effects. CONCLUSIONS Recent literature suggests targeting the Notch pathway has great potential for future therapies for GBM.
Collapse
Affiliation(s)
- Zachary Gersey
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam D Osiason
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Bloom
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sumedh Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Amade Bregy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nitin Agarwal
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
6
|
Ren M, Li J, Xue R, Wang Z, Coll SL, Meng Q. Liver function and energy metabolism in hepatocellular carcinoma developed in patients with hepatitis B-related cirrhosis. Medicine (Baltimore) 2019; 98:e15528. [PMID: 31083199 PMCID: PMC6531143 DOI: 10.1097/md.0000000000015528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Energy metabolism in patients with Hepatocellular carcinoma (HCC) accompanying by hepatitis B cirrhosis is unknown.To compare the differences in liver functions and energy metabolism between patients with hepatitis B-related cirrhosis and patients with HCC.This was a retrospective study of patients with hepatitis B-related cirrhosis (LC group, n = 75) and patients with HCC accompanying by hepatitis B cirrhosis (HCC group, n = 80) treated in Beijing You'an Hospital between January 2013 and June 2017. The resting energy expenditure (REE), respiratory quotient (RQ), carbohydrate oxidation rate (CHO%), fat oxidation rate (FAT%), and protein oxidation rate (PRO%) were measured using a metabolic cart. Liver function, renal function, blood coagulation, etc. were collected.Compared to the LC group, patients with HCC had normal metabolism, but RQ (0.83 ± 0.07 vs 0.85 ± 0.08, P = .073) and CHO% (35.5% vs 49%, P = .013) were lower and FAT% was higher (41% vs 33%, P = .030). Compared with patients with LC group, albumin (ALB), γ-glutamyltranspeptadase (GGT), alkaline phosphatase (AKP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and prothrombin time activity (PTA) were elevated in the HCC group, while total bilirubin (TB), total bile acid (TBA), and international normalized ratio (INR) were reduced (P < .05). Cholinesterase (CHE) was positively correlated with RQ, CHO, and CHO% (P < .05), while negatively correlated with FAT and FAT% (P < .05). AKP was negatively correlated with RQ, CHO, and CHO% (P < .05), while positively correlated with FAT and FAT% (P < .05). TBA was negatively correlated with RQ and CHO (P < .05), while positively correlated with FAT (P < .05).HCC leads to increased liver synthetic function and improve the liver functions of patients with LC, at least to some extent, but the nutritional metabolism was poor.
Collapse
Affiliation(s)
- Meixin Ren
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital
| | - Juan Li
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital
| | - Ran Xue
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhongying Wang
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital
| | - Shengli Li Coll
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital
| |
Collapse
|
7
|
Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, He JM, Xie GF, Xie X, Liang HJ. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget 2018; 7:41540-41558. [PMID: 27172794 PMCID: PMC5173077 DOI: 10.18632/oncotarget.9236] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 02/05/2023] Open
Abstract
Because colorectal cancer (CRC) stem-like cells (CCS-like cells) contribute to poor patient prognosis, these cells are a potential target for CRC therapy. However, the mechanism underlying the maintenance of CCS-like cell properties remains unclear. Here, we found that patients with advanced stage CRC expressed high levels of polycomb group protein enhancer of zeste homologue 2 (EZH2). High expression of EZH2 in tumor tissues correlated with poor patient prognosis. Conversely, silencing EZH2 reduced CRC cell proliferation. Surprisingly, EZH2 was more highly expressed in the CCS-like cell subpopulation than in the non-CCS-like cell subpopulation. EZH2 knockdown significantly reduced the CD133+/CD44+ subpopulation, suppressed mammosphere formation, and decreased the expression of self-renewal-related genes and strongly impaired tumor-initiating capacity in a re-implantation mouse model. Gene expression data from 433 human CRC specimens from TCGA database and in vitro results revealed that EZH2 helped maintain CCS-like cell properties by activating the Wnt/β-catenin pathway. We further revealed that p21cip1–mediated arrest of the cell cycle at G1/S phase is required for EZH2 activation of the Wnt/β-catenin pathway. Moreover, the specific EZH2 inhibitor EPZ-6438, a clinical trial drug, prevented CRC progression. Collectively, these findings revealed EZH2 maintaining CCS-like cell characteristics by arresting the cell cycle at the G1/S phase. These results indicate a new approach to CRC therapy.
Collapse
Affiliation(s)
- Jian-Fang Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Luo
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li-Sha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong-Tao Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ni Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Ming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gan-Feng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiong Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Zorniak M, Clark PA, Umlauf BJ, Cho Y, Shusta EV, Kuo JS. Yeast display biopanning identifies human antibodies targeting glioblastoma stem-like cells. Sci Rep 2017; 7:15840. [PMID: 29158489 PMCID: PMC5696472 DOI: 10.1038/s41598-017-16066-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma stem-like cells (GSC) are hypothesized to evade current therapies and cause tumor recurrence, contributing to poor patient survival. Existing cell surface markers for GSC are developed from embryonic or neural stem cell systems; however, currently available GSC markers are suboptimal in sensitivity and specificity. We hypothesized that the GSC cell surface proteome could be mined with a yeast display antibody library to reveal novel immunophenotypes. We isolated an extensive collection of antibodies that were differentially selective for GSC. A single domain antibody VH-9.7 showed selectivity for five distinct patient-derived GSC lines and visualized orthotopic GBM xenografts in vivo after conjugation with a near-infrared dye. These findings demonstrate a previously unexplored high-throughput strategy for GSC-selective antibody discovery, to aid in GSC isolation, diagnostic imaging, and therapeutic targeting.
Collapse
Affiliation(s)
- Michael Zorniak
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA.,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Paul A Clark
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Benjamin J Umlauf
- Department of Chemical and Biological Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Yongku Cho
- Department of Chemical and Biological Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA. .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA.
| | - John S Kuo
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA. .,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA. .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA.
| |
Collapse
|
9
|
Xue R, Meng Q, Li J, Feng J, Shi H. Worse or better?-Cirrhosis with hepatocellular carcinoma. Med Hypotheses 2016; 97:85-87. [PMID: 27876136 DOI: 10.1016/j.mehy.2016.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for about 90% of all malignant tumors of liver, ranking fifth in the worldwide incidence of malignant tumors and the third in fatality. More and more evidences suggest that cancer is a metabolic-related disease. From the analysis of recent clinical research data, we found that as the severity of the cirrhosis aggravated, patients with HCC and end-stage liver cirrhosis had a flat energy metabolism which was better than it in patients with simple end-stage liver cirrhosis. Based on these clinical phenomenon, the major aim of this study is to present a new hypothesis: "compensated liver function mechanism" for patients with HCC and liver cirrhosis, cancer cells may play a role to compensate liver function. In this study, we elaborated relevant content about this novel standpoint combined with tumor energy metabolism reprogramming mechanism and tumor cell origin as well as cell exchange mechanism.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Juan Li
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jiliang Feng
- Department of Pathology, Beijing You-An Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hanping Shi
- Aviation General Hospital of China Medical University, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, People's Republic of China
| |
Collapse
|
10
|
Gentile G, Ceccarelli M, Micheli L, Tirone F, Cavallaro S. Functional Genomics Identifies Tis21-Dependent Mechanisms and Putative Cancer Drug Targets Underlying Medulloblastoma Shh-Type Development. Front Pharmacol 2016; 7:449. [PMID: 27965576 PMCID: PMC5127835 DOI: 10.3389/fphar.2016.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
We have recently generated a novel medulloblastoma (MB) mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+/-/Tis21KO ). Its main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs). By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+/-/Tis21 wild-type vs. Ptch1+/-/Tis21 knockout), among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets. The data analysis using bioinformatic tools revealed: (i) a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; (ii) a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype, i.e., the neural cell type involved in group 3 MB; (iii) the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.
Collapse
Affiliation(s)
- Giulia Gentile
- Institute of Neurological Sciences, National Research Council Catania, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | | |
Collapse
|
11
|
Zorniak M, Clark PA, Kuo JS. Myelin-forming cell-specific cadherin-19 is a marker for minimally infiltrative glioblastoma stem-like cells. J Neurosurg 2015; 122:69-77. [PMID: 25361488 DOI: 10.3171/2014.9.jns132373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Glioblastoma stem-like cells (GSCs) exhibit stem-like properties, are highly efficient at forming tumor xenografts, and are resistant to many current therapies. Current molecular identifiers of GSCs are scarce and controversial. The authors describe differential cell-surface gene expression profiling to identify GSC-specific markers. METHODS Independent human GSC lines were isolated and maintained in standard neural stem cell (NSC) media and were validated for self-renewal, multipotent differentiation, and tumor initiation properties. Candidate upregulated GSCspecific plasma membrane markers were identified through differential Affymetrix U133 Plus 2.0 Array gene expression profiling of GSCs, human NSCs (hNSCs), normal brain tissue, and primary/recurrent glioblastoma multiforme samples. Results were validated by using comparative quantitative reverse transcription polymerase chain reaction and Western blot analysis of GSCs, hNSCs, normal human astrocytes, U87 glioma cell line, and patient-matched serum-cultured glioblastoma multiforme samples. RESULTS A candidate GSC-specific signature of 19 upregulated known and novel plasma membrane-associated genes was identified. Preferential upregulation of these plasma membrane-linked genes was validated by quantitative polymerase chain reaction. Cadherin-19 (CDH19) protein expression was enhanced in minimally infiltrative GSC lines. CONCLUSIONS Gene expression profiling of GSCs has shown CDH19 to be an exciting new target for drug development and study of GBM tumorigenesis.
Collapse
|
12
|
Wardak Z, Choe KS. Molecular pathways and potential therapeutic targets in glioblastoma multiforme. Expert Rev Anticancer Ther 2014; 13:1307-18. [DOI: 10.1586/14737140.2013.852472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
13
|
Tanase CP, Enciu AM, Mihai S, Neagu AI, Calenic B, Cruceru ML. Anti-cancer Therapies in High Grade Gliomas. CURR PROTEOMICS 2013; 10:246-260. [PMID: 24228024 PMCID: PMC3821381 DOI: 10.2174/1570164611310030007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
Abstract
High grade gliomas represent one of the most aggressive and treatment-resistant types of human cancer, with only 1–2 years median survival rate for patients with grade IV glioma. The treatment of glioblastoma is a considerable therapeutic challenge; combination therapy targeting multiple pathways is becoming a fast growing area of research. This review offers an up-to-date perspective of the literature about current molecular therapy targets in high grade glioma, that include angiogenic signals, tyrosine kinase receptors, nodal signaling proteins and cancer stem cells related approaches. Simultaneous identification of proteomic signatures could provide biomarker panels for diagnostic and personalized treatment of different subsets of glioblastoma. Personalized medicine is starting to gain importance in clinical care, already having recorded a series of successes in several types of cancer; nonetheless, in brain tumors it is still at an early stage.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- Victor Babes National Institute of Pathology, Department of Biochemistry-Proteomics, no 99-101 Splaiul Inde-pendentei, 050096 sect 5 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
14
|
Riganti C, Salaroglio IC, Caldera V, Campia I, Kopecka J, Mellai M, Annovazzi L, Bosia A, Ghigo D, Schiffer D. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/β-catenin pathway. Neuro Oncol 2013; 15:1502-17. [PMID: 23897632 DOI: 10.1093/neuonc/not104] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme stem cells display a highly chemoresistant phenotype, whose molecular basis is poorly known. We aim to clarify this issue and to investigate the effects of temozolomide on chemoresistant stem cells. METHODS A panel of human glioblastoma cultures, grown as stem cells (neurospheres) and adherent cells, was used. RESULTS Neurospheres had a multidrug resistant phenotype compared with adherent cells. Such chemoresistance was overcome by apparently noncytotoxic doses of temozolomide, which chemosensitized glioblastoma cells to doxorubicin, vinblastine, and etoposide. This effect was selective for P-glycoprotein (Pgp) substrates and for stem cells, leading to an investigation of whether there was a correlation between the expression of Pgp and the activity of typical stemness pathways. We found that Wnt3a and ABCB1, which encodes for Pgp, were both highly expressed in glioblastoma stem cells and reduced by temozolomide. Temozolomide-treated cells had increased methylation of the cytosine-phosphate-guanine islands in the Wnt3a gene promoter, decreased expression of Wnt3a, disrupted glycogen synthase-3 kinase/β-catenin axis, reduced transcriptional activation of ABCB1, and a lower amount and activity of Pgp. Wnt3a overexpression was sufficient to transform adherent cells into neurospheres and to simultaneously increase proliferation and ABCB1 expression. On the contrary, glioblastoma stem cells silenced for Wnt3a lost the ability to form neurospheres and reduced at the same time the proliferation rate and ABCB1 levels. CONCLUSIONS Our work suggests that Wnt3a is an autocrine mediator of stemness, proliferation, and chemoresistance in human glioblastoma and that temozolomide may chemosensitize the stem cell population by downregulating Wnt3a signaling.
Collapse
Affiliation(s)
- Chiara Riganti
- Corresponding Author: Chiara Riganti, MD, Department of Oncology, University of Turin, via Santena 5/bis, 10126, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nakata S, Campos B, Bageritz J, Bermejo JL, Becker N, Engel F, Acker T, Momma S, Herold-Mende C, Lichter P, Radlwimmer B, Goidts V. LGR5 is a marker of poor prognosis in glioblastoma and is required for survival of brain cancer stem-like cells. Brain Pathol 2012; 23:60-72. [PMID: 22805276 DOI: 10.1111/j.1750-3639.2012.00618.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/06/2012] [Indexed: 12/19/2022] Open
Abstract
In various types of cancers including glioblastoma, accumulating evidence show the existence of cancer stem-like cells (CSCs), characterized by stem cell marker expression, capability of differentiation and self-renewal, and high potential for tumor propagation in vivo. LGR5, whose expression is positively regulated by the Wnt signaling pathway, is a stem cell marker in intestinal mucosa and hair follicle in the skin. As Wnt signaling is also involved in brain development, the function of LGR5 in the maintenance of brain CSCs is to be assessed. Our study showed that the LGR5 transcript level was increased in CSCs. Co-immunofluorescence staining demonstrated the co-localization of CD133- and LGR5-positive cells in glioblastoma tissue sections. Functionally, silencing of LGR5 by lentiviral shRNA-mediated knockdown induced apoptosis in brain CSCs. Moreover, LGR5 depletion led to a downregulation of L1 cell adhesion molecule expression. In line with an important function in glioma tumorigenesis, LGR5 expression increased with glioma progression and correlated with an adverse outcome. Our findings suggest that LGR5 plays a role in maintenance and/or survival of brain CSCs.
Collapse
Affiliation(s)
- Susumu Nakata
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Primary brain tumours are difficult to manage clinically due to their abilities to invade adjacent tissue and infiltrate distant neuropil. These contribute to challenges in surgical management and also limit the effectiveness of radiotherapy. Despite initial responses to chemotherapy, most tumours become chemo-resistant, leading to relapse. Recent identification and isolation of brain cancer stem cells (BCSCs) have broadened our understanding of the molecular pathogenesis and potential Achilles' heel of brain tumours. BCSCs are thought to drive and propagate the tumour and therefore present an important target for further investigations. This review explores the history of the discovery of BCSCs and the evolving concept of "cancer stem cells" in neuro-oncology. We attempt to present a balanced view on the subject and also to update the readers on the molecular biology of BCSCs. Lastly, we outline the potential strategies to target BCSCs which will translate into specific and effective therapies for brain tumours.
Collapse
|
17
|
Algharabil J, Kintner DB, Wang Q, Begum G, Clark PA, Yang SS, Lin SH, Kahle KT, Kuo JS, Sun D. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells. Cell Physiol Biochem 2012; 30:33-48. [PMID: 22759954 DOI: 10.1159/000339047] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
The hallmark of apoptosis is a significant reduction in cell volume (AVD) resulting from loss of K(+)(i) and Cl(-)(i). Loss of cell volume and lowering of ionic strength of intracellular K(+) and Cl(-) occur before any other detectable characteristics of apoptosis. In the present study, temozolomide (TMZ) triggered loss of K(+)(i) and Cl(-)(i) and AVD in primary glioblastoma multiforme (GBM) cancer cells (GC) and GC cancer stem cells (GSC). We hypothesize that Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1) counteracts AVD during apoptosis in GBM cancer cells by regulating cell volume and Cl(-) homeostasis. NKCC1 protein was expressed in both GC and GSC and played an essential role in regulatory volume increase (RVI) in response to hypertonic cell shrinkage and isotonic cell shrinkage. Blocking NKCC1 activity with its potent inhibitor bumetanide abolished RVI. These cells maintained a basal [Cl(-)](i) (~ 68 mM) above the electrochemical equilibrium for Cl(-)(i). NKCC1 also functioned to replenish Cl(-)(i) levels following the loss of Cl(-)(i). TMZ-treated cells exhibited increased phosphorylation of NKCC1 and its up-stream novel Cl(-)/volume-sensitive regulatory kinase WNK1. Inhibition of NKCC1 activity with bumetanide accelerated AVD, early apoptosis, as well as activation of caspase-3 and caspase-8. Taken together, this study strongly suggests that NKCC1 is an essential mechanism in GBM cells to maintain K(+), Cl(-), and volume homeostasis to counteract TMZ-induced loss of K(+), Cl(-) and AVD. Therefore, blocking NKCC1 function augments TMZ-induced apoptosis in glioma cells.
Collapse
Affiliation(s)
- Jehad Algharabil
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zorniak M, Clark PA, Leeper HE, Tipping MD, Francis DM, Kozak KR, Salamat MS, Kuo JS. Differential expression of 2',3'-cyclic-nucleotide 3'-phosphodiesterase and neural lineage markers correlate with glioblastoma xenograft infiltration and patient survival. Clin Cancer Res 2012; 18:3628-36. [PMID: 22589395 DOI: 10.1158/1078-0432.ccr-12-0339] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a poorly treated human brain cancer with few established clinically useful molecular prognostic markers. We characterized glioblastoma stem-like cells (GSC) according to developmental neural lineage markers and correlated their expression with patient survival. EXPERIMENTAL DESIGN Immunoblot array of neural lineage markers classified five independently isolated human GSC lines into three classes exhibiting differential expression of oligodendrocyte progenitor cells (OPC), astrocyte progenitor cells (APC), and neural progenitor cells (NPC) markers. Immunodeficient mice were orthotopically implanted with each cell line to evaluate tumor infiltration and recipient survival. 2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNP) antigenic expression was used to evaluate a clinically annotated GBM tissue microarray with 115 specimens. RESULTS We report that molecular classification of patient-derived GSCs using neural lineage markers show association with differential xenograft invasiveness, and also show significant correlation to survival in both the mouse model and human patients. Orthotopic implantation into immunodeficient mice showed Ki-67 proliferative index independent xenograft infiltration: class I GSCs (OPC and NPC positive) established focal lesions, class II GSCs (NPC positive) formed minimally invasive lesions, and class III GSCs (APC positive) established highly infiltrative lesions. The OPC marker, CNP also exhibited high expression in focal xenografts versus low expression in invasive xenografts. Differential CNP expression correlated with mouse model survival, and CNP immunoassay of a large GBM tissue microarray also showed significant differential patient survival. CONCLUSIONS GSC classification with developmental neural lineage markers revealed CNP as a novel and potentially useful clinical prognosis marker, and suggests clinical importance for patient-specific GSC analysis.
Collapse
Affiliation(s)
- Michael Zorniak
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tang B, Wang J, Fang J, Jiang B, Zhang M, Wang Y, Yang Z. Expression of TNKS1 is correlated with pathologic grade and Wnt/β-catenin pathway in human astrocytomas. J Clin Neurosci 2012; 19:139-43. [DOI: 10.1016/j.jocn.2011.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 11/30/2022]
|
20
|
Huang Y, Agrawal B, Clark PA, Williams JC, Kuo JS. Evaluation of cancer stem cell migration using compartmentalizing microfluidic devices and live cell imaging. J Vis Exp 2011:e3297. [PMID: 22217858 PMCID: PMC3369664 DOI: 10.3791/3297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the last 40 years, the United States invested over 200 billion dollars on cancer research, resulting in only a 5% decrease in death rate. A major obstacle for improving patient outcomes is the poor understanding of mechanisms underlying cellular migration associated with aggressive cancer cell invasion, metastasis and therapeutic resistance. Glioblastoma Multiforme (GBM), the most prevalent primary malignant adult brain tumor, exemplifies this difficulty. Despite standard surgery, radiation and chemotherapies, patient median survival is only fifteen months, due to aggressive GBM infiltration into adjacent brain and rapid cancer recurrence. The interactions of aberrant cell migratory mechanisms and the tumor microenvironment likely differentiate cancer from normal cells. Therefore, improving therapeutic approaches for GBM require a better understanding of cancer cell migration mechanisms. Recent work suggests that a small subpopulation of cells within GBM, the brain tumor stem cell (BTSC), may be responsible for therapeutic resistance and recurrence. Mechanisms underlying BTSC migratory capacity are only starting to be characterized. Due to a limitation in visual inspection and geometrical manipulation, conventional migration assays are restricted to quantifying overall cell populations. In contrast, microfluidic devices permit single cell analysis because of compatibility with modern microscopy and control over micro-environment. We present a method for detailed characterization of BTSC migration using compartmentalizing microfluidic devices. These PDMS-made devices cast the tissue culture environment into three connected compartments: seeding chamber, receiving chamber and bridging microchannels. We tailored the device such that both chambers hold sufficient media to support viable BTSC for 4-5 days without media exchange. Highly mobile BTSCs initially introduced into the seeding chamber are isolated after migration though bridging microchannels to the parallel receiving chamber. This migration simulates cancer cellular spread through the interstitial spaces of the brain. The phase live images of cell morphology during migration are recorded over several days. Highly migratory BTSC can therefore be isolated, recultured, and analyzed further. Compartmentalizing microfluidics can be a versatile platform to study the migratory behavior of BTSCs and other cancer stem cells. By combining gradient generators, fluid handling, micro-electrodes and other microfluidic modules, these devices can also be used for drug screening and disease diagnosis. Isolation of an aggressive subpopulation of migratory cells will enable studies of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yu Huang
- Department of Biomedical Engineering, University of Wisconsin-Madison, USA
| | | | | | | | | |
Collapse
|
21
|
Pulvirenti T, Van Der Heijden M, Droms LA, Huse JT, Tabar V, Hall A. Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas. Cancer Res 2011; 71:7280-90. [PMID: 21990322 DOI: 10.1158/0008-5472.can-11-1531] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme is the most common glioma variant in adults and is highly malignant. Tumors are thought to harbor a subpopulation of stem-like cancer cells, with the bulk resembling neural progenitor-like cells that are unable to fully differentiate. Although multiple pathways are known to be involved in glioma tumorigenesis, the role of Wnt signaling has been poorly described. Here, we show that Dishevelled 2 (Dvl2), a key component of the Wnt signaling pathway, is overexpressed in human gliomas. RNA interference-mediated depletion of Dvl2 blocked proliferation and promoted the differentiation of cultured human glioma cell lines and primary, patient-derived glioma cells. In addition, Dvl2 depletion inhibited tumor formation after intracranial injection of glioblastoma cells in immunodeficient mice. Inhibition of canonical Wnt/β-catenin signaling also blocked proliferation, but unlike Dvl2 depletion, did not induce differentiation. Finally, Wnt5a, a noncanonical Wnt ligand, was also required for glioma cell proliferation. The data therefore suggest that both canonical and noncanonical Wnt signaling pathways downstream of Dvl2 cooperate to maintain the proliferative capacity of human glioblastomas.
Collapse
Affiliation(s)
- Teodoro Pulvirenti
- Cell Biology Program, Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Brain Tumor Stem-Like Cells Identified by Neural Stem Cell Marker CD15. Transl Oncol 2011; 2:247-57. [PMID: 19956386 DOI: 10.1593/tlo.09136] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/22/2009] [Accepted: 04/29/2009] [Indexed: 12/15/2022] Open
Abstract
In recent years, a small number of cells that have stem cell properties were identified in human gliomas called brain tumor stem cells (BTSCs), which were thought to mainly contribute to the initiation and development of gliomas and could be identified by the surface marker CD133. However, recent studies indicated that the expression of CD133 might be regulated by environmental conditions such as hypoxia and that there might be CD133(-) BTSCs. Genetic mouse models demonstrated that some gliomas originated from transformed neural stem cells (NSCs). Therefore, we investigated the expression of CD15, a surface marker for NSCs, in tumor spheres derived from astrocytoma and ependymoma. CD15(+) cells isolated from these tumor spheres had properties of BTSCs including self-renewal, multidifferentiation, and the ability to recapitulate the phenocopy of primary tumors. CD15 exhibited stable expression in long-term cultured tumor spheres, which sustained BTSCs properties, whereas CD133 expression decreased significantly in late passages. Furthermore, CD15(+)CD133(-) cells isolated from early or late passages of tumor spheres showed similar characteristics of BTSCs. Examination of glioma samples by immunohistochemistry showed that CD15 was expressed in a subset of human brain tumors. Therefore, CD15 can be used as a marker of stem-like cells derived from brain tumors that might contain CD133(-) BTSCs.
Collapse
|
23
|
Mimeault M, Batra SK. Complex oncogenic signaling networks regulate brain tumor-initiating cells and their progenies: pivotal roles of wild-type EGFR, EGFRvIII mutant and hedgehog cascades and novel multitargeted therapies. Brain Pathol 2011; 21:479-500. [PMID: 21615592 DOI: 10.1111/j.1750-3639.2011.00505.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complex signaling cross-talks between different growth factor cascades orchestrate the primary brain cancer development. Among the frequent deregulated oncogenic pathways, the ligand-activated wild-type epidermal growth factor receptor (EGFR), constitutively activated EGFRvIII mutant and sonic hedgehog pathways have attracted much attention because of their pivotal roles in pediatric medulloblastomas and adult glioblastoma multiformes (GBM) brain tumors. The enhanced expression levels and activation of EGFR, EGFRvIII mutant and hedgehog signaling elements can provide key roles for the sustained growth, migration and local invasion of brain tumor-initiating cells (BTICs) and their progenies, resistance to current therapies and disease relapse. These tumorigenic cascades also can cooperate with Wnt/β-catenin, Notch, platelet-derived growth factor (PDGF)/PDGF receptors (PDGFRs), hepatocyte growth factor (HGF)/c-Met receptor and vascular endothelial growth factor (VEGF)/VEGF receptors (VEGFRs) for the acquisition of a more malignant behavior and survival advantages by brain tumor cells during disease progression. Therefore, the simultaneous targeting of these oncogenic signaling components including wild-type EGFR, EGFRvIII mutant and hedgehog pathways may constitute a potential therapeutic approach of great clinical interest to eradicate BTICs and improve the efficacy of current clinical treatments by radiation and/or chemotherapy against aggressive and recurrent medulloblastomas and GBMs.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Neb. 68198-5870, USA.
| | | |
Collapse
|
24
|
Suzuki DE, Ariza CB, Porcionatto MA, Okamoto OK. Upregulation of E2F1 in cerebellar neuroprogenitor cells and cell cycle arrest during postnatal brain development. In Vitro Cell Dev Biol Anim 2011; 47:492-9. [PMID: 21614651 DOI: 10.1007/s11626-011-9426-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/11/2011] [Indexed: 12/18/2022]
Abstract
In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 ( Ink4c ), a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.
Collapse
Affiliation(s)
- Daniela E Suzuki
- Disciplina de Neurologia Experimental, Departamento de Neurologia/Neurocirurgia, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
25
|
Huang Y, Agrawal B, Sun D, Kuo JS, Williams JC. Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. BIOMICROFLUIDICS 2011; 5:13412. [PMID: 21522502 PMCID: PMC3082349 DOI: 10.1063/1.3555195] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/26/2011] [Indexed: 05/11/2023]
Abstract
Cell movement is highly sensitive to stimuli from the extracellular matrix and media. Receptors on the plasma membrane in cells can activate signal transduction pathways that change the mechanical behavior of a cell by reorganizing motion-related organelles. Cancer cells change their migration mechanisms in response to different environments more robustly than noncancer cells. Therefore, therapeutic approaches to immobilize cancer cells via inhibition of the related signal transduction pathways rely on a better understanding of cell migration mechanisms. In recent years, engineers have been working with biologists to apply microfluidics technology to study cell migration. As opposed to conventional cultures on dishes, microfluidics deals with the manipulation of fluids that are geometrically constrained to a submillimeter scale. Such small scales offer a number of advantages including cost effectiveness, low consumption of reagents, high sensitivity, high spatiotemporal resolution, and laminar flow. Therefore, microfluidics has a potential as a new platform to study cell migration. In this review, we summarized recent progress on the application of microfluidics in cancer and other cell migration researches. These studies have enhanced our understanding of cell migration and cancer invasion as well as their responses to subtle variations in their microenvironment. We hope that this review will serve as an interdisciplinary guidance for both biologists and engineers as they further develop the microfluidic toolbox toward applications in cancer research.
Collapse
|
26
|
PTEN status is related to cell proliferation and self-renewal independent of CD133 phenotype in the glioma-initiating cells. Mol Cell Biochem 2010; 349:149-57. [DOI: 10.1007/s11010-010-0669-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/15/2010] [Indexed: 12/16/2022]
|
27
|
Tumor-initiating and -propagating cells: cells that we would like to identify and control. Neoplasia 2010; 12:506-15. [PMID: 20651980 DOI: 10.1593/neo.10290] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 02/08/2023] Open
Abstract
Identification of the cell types capable of initiating and sustaining growth of the neoplastic clone in vivo is a fundamental problem in cancer research. It is likely that tumor growth can be sustained both by rare cancer stem-like cells and selected aggressive clones and that the nature of the mutations, the cell of origin, and its environment will contribute to tumor propagation. Genomic instability, suggested as a driving force in tumorigenesis, may be induced by genetic and epigenetic changes. The feature of self-renewal in stem cells is shared with tumor cells, and deviant function of the stem cell regulatory networks may, in complex ways, contribute to malignant transformation and the establishment of a cancer stem cell-like phenotype. Understanding the nature of the more quiescent cancer stem-like cells and their niches has the potential to develop novel cancer therapeutic protocols including pharmacological targeting of self-renewal pathways. Drugs that target cancer-related inflammation may have the potential to reeducate a tumor-promoting microenvironment. Because most epigenetic modifications may be reversible, DNA methylation and histone deacetylase inhibitors can be used to induce reexpression of genes that have been silenced epigenetically. Design of therapies that eliminate cancer stem-like cells without eliminating normal stem cells will be important. Further insight into the mechanisms by which pluripotency transcription factors (e.g., OCT4, SOX2, and Nanog), polycomb repressive complexes and microRNA balance selfrenewal and differentiation will be essential for our understanding of both embryonic differentiation and human carcinogenesis and for the development of new treatment strategies.
Collapse
|
28
|
Fatoo A, Nanaszko MJ, Allen BB, Mok CL, Bukanova EN, Beyene R, Moliterno JA, Boockvar JA. Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. J Neurooncol 2010; 103:397-408. [DOI: 10.1007/s11060-010-0406-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 09/06/2010] [Indexed: 02/06/2023]
|
29
|
Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS. The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opin Ther Targets 2010; 14:621-32. [PMID: 20426697 DOI: 10.1517/14712598.2010.485186] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Cancer is the second leading cause of death in the United States, and therefore remains a central focus of modern medical research. Accumulating evidence supports a 'cancer stem cell' (CSC) model - where cancer growth and/or recurrence is driven by a small subset of tumor cells that exhibit properties similar to stem cells. This model may provide a conceptual framework for developing more effective cancer therapies that target cells propelling cancer growth. AREAS COVERED IN THIS REVIEW We review evidence supporting the CSC model and associated implications for understanding cancer biology and developing novel therapeutic strategies. Current controversies and unanswered questions of the CSC model are also discussed. WHAT THE READER WILL GAIN This review aims to describe how the CSC model is key to developing novel treatments and discusses associated shortcomings and unanswered questions. TAKE HOME MESSAGE A fresh look at cancer biology and treatment is needed for many incurable cancers to improve clinical prognosis for patients. The CSC model posits a hierarchy in cancer where only a subset of cells drive malignancy, and if features of this model are correct, has implications for development of novel and hopefully more successful approaches to cancer therapy.
Collapse
Affiliation(s)
- Johnathan D Ebben
- University of Wisconsin,School of Medicine and Public Health, Department of Neurological Surgery, Brain Tumor Research Laboratory, CSC K4/879, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ge Y, Zhou F, Chen H, Cui C, Liu D, Li Q, Yang Z, Wu G, Sun S, Gu J, Wei Y, Jiang J. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochem Biophys Res Commun 2010; 397:711-7. [PMID: 20537983 DOI: 10.1016/j.bbrc.2010.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/04/2010] [Indexed: 01/27/2023]
Abstract
Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yuqing Ge
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health & Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Abstract
Since the end of the ‘no-new-neuron’ theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies.
Collapse
|
32
|
|
33
|
Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, Ahmadi R, Lohr J, Dictus C, Gdynia G, Combs SE, Goidts V, Helmke BM, Eckstein V, Roth W, Beckhove P, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende C. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 2010; 16:2715-28. [PMID: 20442299 DOI: 10.1158/1078-0432.ccr-09-1800] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Stem-like tumor cells comprise a highly tumorigenic and therapy-resistant tumor subpopulation, which is believed to substantially influence tumor initiation and therapy resistance in glioma. Currently, therapeutic, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population; retinoic acid is well known as a potent modulator of differentiation and proliferation in normal stem cells. In glioma, knowledge about the efficacy of retinoic acid-induced differentiation to target the stem-like tumor cell pool could have therapeutic implications. EXPERIMENTAL DESIGN Stem-like glioma cells (SLGC) were differentiated with all-trans retinoic acid-containing medium to study the effect of differentiation on angiogenesis, invasive growth, as well as radioresistance and chemoresistance of SLGCs. In vivo effects were studied using live microscopy in a cranial window model. RESULTS Our data suggest that in vitro differentiation of SLGCs induces therapy-sensitizing effects, impairs the secretion of angiogenic cytokines, and disrupts SLGCs motility. Further, ex vivo differentiation reduces tumorigenicity of SLGCs. Finally, we show that all-trans retinoic acid treatment alone can induce antitumor effects in vivo. CONCLUSIONS Altogether, these results highlight the potential of differentiation treatment to target the stem-like cell population in glioblastoma.
Collapse
Affiliation(s)
- Benito Campos
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The bright and the dark sides of DNA repair in stem cells. J Biomed Biotechnol 2010; 2010:845396. [PMID: 20396397 PMCID: PMC2852612 DOI: 10.1155/2010/845396] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/16/2009] [Accepted: 02/01/2010] [Indexed: 12/22/2022] Open
Abstract
DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and, consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Transformed stem cells drive growth of a number of tumours (e.g., high grade gliomas) and being particularly resistant to chemo- and radiotherapeutic agents often cause relapses. The contribution of DNA repair to resistance of these tumour-driving cells is the subject of intense research, in order to find novel agents that may sensitize them to chemotherapy and radiotherapy.
Collapse
|
35
|
Menendez P, Catalina P, Rodríguez R, Melen GJ, Bueno C, Arriero M, García-Sánchez F, Lassaletta A, García-Sanz R, García-Castro J. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med 2009; 206:3131-41. [PMID: 19995953 PMCID: PMC2806455 DOI: 10.1084/jem.20091050] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 11/09/2009] [Indexed: 01/15/2023] Open
Abstract
MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4(+) B-ALL. Unlike leukemic blasts, MLL-AF4(+) BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4(+) B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4(+) BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors.
Collapse
Affiliation(s)
- Pablo Menendez
- Andalusian Stem Cell Bank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, 18100 Granada, Spain
| | - Purificación Catalina
- Andalusian Stem Cell Bank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, 18100 Granada, Spain
| | - René Rodríguez
- Andalusian Stem Cell Bank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, 18100 Granada, Spain
| | - Gustavo J. Melen
- Andalusian Stem Cell Bank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, 18100 Granada, Spain
| | - Clara Bueno
- Andalusian Stem Cell Bank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, 18100 Granada, Spain
| | | | | | | | - Ramón García-Sanz
- University Hospital of Salamanca, Department of Haematology, Molecular Biology and HLA Typing Unit, 37007 Salamanca, Spain
| | - Javier García-Castro
- Andalusian Stem Cell Bank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, 18100 Granada, Spain
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Biología Celular y del Desarrollo, 28220 Madrid, Spain
| |
Collapse
|
36
|
Frosina G. DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 2009; 7:989-99. [PMID: 19609002 DOI: 10.1158/1541-7786.mcr-09-0030] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of DNA repair as a resistance mechanism in gliomas, the most aggressive form of brain tumor, is a clinically relevant topic. Recent studies show that not all cells are equally malignant in gliomas. Certain subpopulations are particularly prone to drive tumor progression and resist chemo- and radiotherapy. Those cells have been variably named cancer stem cells or cancer-initiating cells or tumor-propagating cells, owing to their possible (but still uncertain) origin from normal stem cells. Although DNA repair reduces the efficacy of chemotherapeutics and ionizing radiation toward bulk gliomas, its contribution to resistance of the rare glioma stem cell subpopulations is less clear. Mechanisms other than DNA repair (in particular low proliferation and activation of the DNA damage checkpoint response) are likely main players of resistance in glioma stem cells and their targeting might yield significant therapeutic gains.
Collapse
Affiliation(s)
- Guido Frosina
- Molecular Mutagenesis & DNA Repair Unit, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
37
|
Dai J, Ma D, Zang S, Guo D, Qu X, Ye J, Ji C. Cross-talk between Notch and EGFR signaling in human breast cancer cells. Cancer Invest 2009; 27:533-40. [PMID: 19219656 DOI: 10.1080/07357900802563036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Notch and epidermal growth factor receptor (EGFR) signaling play critical roles in cell proliferation, differentiation, and apoptosis, and thereby may contribute to the development of breast cancer. We constitutively overexpressed active Notch1 in human breast cancer cells to explore the consequences of Notch1 signaling on cell growth and to investigate the underlying molecular mechanisms. We found that EGFR expression was increased. Then, using EGFR inhibitor, we found it exhibited an inhibitory role on human breast cancer cells. Overexpression of Notch1 could reverse EGFR inhibitor-induced cell toxicity, suggesting that Notch and EGFR signaling may be positively cross-linked in human breast cancer.
Collapse
Affiliation(s)
- Jianjian Dai
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P R China
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhdanov VP. Kinetics of the formation of cancer metastases via induced premetastatic cancer-stem-cell niches. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:061913. [PMID: 19658530 DOI: 10.1103/physreve.79.061913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/15/2009] [Indexed: 05/28/2023]
Abstract
The author presents a kinetic model describing the formation of new metastases by cancer stem cells in premetastatic stem-cell niches induced by the factors produced by a primary tumor and already formed metastases. The corresponding kinetics is analyzed by employing mean-field kinetic equations and Monte Carlo simulations. In agreement with observations, the model predicts a long latent period with low rate of the metastase growth followed by explosive increase in the number of metastases. The duration of the latent period is found to depend on a multitude of rate constants characterizing various processes.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden.
| |
Collapse
|
39
|
McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 2009; 7:489-97. [PMID: 19372578 DOI: 10.1158/1541-7786.mcr-08-0360] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.
Collapse
|
40
|
Cheng JX, Liu BL, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 2009; 35:403-8. [PMID: 19369008 DOI: 10.1016/j.ctrv.2009.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 03/16/2009] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) have been identified in a growing number of hematopoietic and solid tissue malignancies and are typically recognized by virtue of the expression of cell surface markers. CD133, a stem cell marker, is now extensively used as a surface marker to identify and isolate brain tumor stem cells (BTSCs) in malignant brain tumors. However, CD133 as the marker to sort BTSCs suffered some controversies. In this review, we reviewed the rise of CD133, analyzed the efficiency of CD133 on identification and isolation of BTSCs, explained some controversial study results and summed up the role of CD133 and other effective CSCs markers in sorting CSCs in other tumors. We analyzed current limited reports and found that the expression of CD133 was correlated with poor clinical prognosis in brain tumors. Finally, we summarized the mechanisms of chemo- and radio- resistance of CD133+ brain tumor cell, especially emphasized that the aberrant activation of development pathways in BTSCs can be potential targets to BTSCs, and outlined current preclinical studies on killing BTSCs or sensitizing BTSCs to chemo- and radio-therapies.
Collapse
Affiliation(s)
- Jin-Xiang Cheng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, PR China
| | | | | |
Collapse
|
41
|
Mao XG, Zhang X, Zhen HN. Progress on potential strategies to target brain tumor stem cells. Cell Mol Neurobiol 2009; 29:141-55. [PMID: 18781384 PMCID: PMC11505780 DOI: 10.1007/s10571-008-9310-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/25/2008] [Indexed: 01/11/2023]
Abstract
The identification of brain tumor stem cells (BTSCs) leads to promising progress on brain tumor treatment. For some brain tumors, BTSCs are the driving force of tumor growth and the culprits that make tumor revive and resistant to radiotherapy and chemotherapy. Therefore, it is specifically significant to eliminate BTSCs for treatment of brain tumors. There are considerable similarities between BTSCs and normal neural stem cells (NSCs), and diverse aspects of BTSCs have been studied to find potential targets that can be manipulated to specifically eradicate BTSCs without damaging normal NSCs, including their surface makers, surrounding niche, and aberrant signaling pathways. Many strategies have been designed to kill BTSCs, and some of them have reached, or are approaching, effective therapeutic results. Here, we will focus on advantages in the issue of BTSCs and emphasize on potential therapeutic strategies targeting BTSCs.
Collapse
Affiliation(s)
- Xing-gang Mao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province People’s Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province People’s Republic of China
| | - Hai-ning Zhen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province People’s Republic of China
| |
Collapse
|
42
|
Abstract
The neoplastic tumour suppressors, Scribble, Dlg and Lgl, originally discovered in the vinegar fly Drosophila melanogaster, are currently being actively studied for their potential role in mammalian tumourigenesis. In Drosophila, these tumour suppressors function in a common genetic pathway to regulate apicobasal cell polarity and also play important roles in the control of cell proliferation, survival, differentiation and in cell migration/invasion. The precise mechanism by which Scribble, Dlg and Lgl function is not clear; however, they have been implicated in the regulation of signalling pathways, vesicle trafficking and in the Myosin II-actin cytoskeleton. We review the evidence for the involvement of Scribble, Dlg, and Lgl in cancer, and how the various functions ascribed to these tumour suppressors in Drosophila and mammalian systems may impact on the process of tumourigenesis.
Collapse
|
43
|
Greene LA, Lee HY, Angelastro JM. The transcription factor ATF5: role in neurodevelopment and neural tumors. J Neurochem 2008; 108:11-22. [PMID: 19046351 DOI: 10.1111/j.1471-4159.2008.05749.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We review recent findings regarding the properties of ATF5 and the major roles that this transcription factor plays in development of the nervous system and in survival of neural tumors. ATF5 is a widely expressed basic leucine zipper protein that has been subject to limited characterization. It is highly expressed in zones of neuroprogenitor cell proliferation. In vitro and in vivo studies indicate that it functions there to promote neuroprogenitor cell expansion and to suppress their differentiation into neurons or glia. ATF5 expression is down-regulated by trophic factors and this is required for their capacity to promote neuroprogenitor cell cycle exit and differentiation into either neurons, oligodendroglia or astrocytes. ATF5 is also highly expressed in a number of tumor types, including neural tumors such as neuroblastomas, medulloblastomas and glioblastomas. Examination of the role of ATF5 in glioblastoma cells indicates that interference with its expression or activity causes them to undergo apoptotic death. In contrast, normal astrocytes and neurons do not appear to require ATF5 for survival, indicating that it may be a selective target for treatment of glioblastomas and other neural neoplasias. Further studies are needed to identify the transcriptional targets of ATF5 and the mechanisms by which its expression is regulated in neuroprogenitors and tumors.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology and Cell Biology Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
44
|
Current world literature. Trauma and rehabilitation. Curr Opin Neurol 2008; 21:762-4. [PMID: 18989123 DOI: 10.1097/wco.0b013e32831cbb85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Das S, Srikanth M, Kessler JA. Cancer stem cells and glioma. ACTA ACUST UNITED AC 2008; 4:427-35. [PMID: 18628751 DOI: 10.1038/ncpneuro0862] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/05/2008] [Indexed: 12/16/2022]
Abstract
Despite continued advances in surgical and medical therapies, the outcomes for patients diagnosed with glioblastoma multiforme remain dismal. Recent data suggest that progression of these brain tumors is driven by a small subpopulation of tumor cells, which are termed cancer stem cells (CSCs) because of their capability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. According to the CSC hypothesis, current therapies that are extremely cytotoxic to the bulk of highly proliferative tumor cells fail to obliterate the relatively quiescent and resistant CSC compartment, thereby allowing these cells to survive and drive tumor recurrence. This Review summarizes current knowledge regarding neural stem cells in the normal adult brain and CSCs in glial tumors and discusses the implications of the CSC hypothesis for the development of future therapies for brain tumors.
Collapse
Affiliation(s)
- Sunit Das
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 675 North Saint Clair Street, Suite 2210, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
46
|
Zhdanov VP. Stochastic model of the formation of cancer metastases via cancer stem cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1329-34. [PMID: 18463859 DOI: 10.1007/s00249-008-0341-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/11/2008] [Accepted: 04/17/2008] [Indexed: 02/08/2023]
Abstract
The author presents Monte Carlo simulations of the temporal kinetics of the formation of cancer metastases with emphasis on cancer stem cells. The model used implies the existence of premetastatic niches. The population of cancer stem cells located outside tumors and inducing the formation of new tumors in niches is considered to be heterogeneous. If the niches are equivalent with respect to the formation of metastases, the kinetics are predicted to exhibit an induction period and then rapid growth of the number of metastases. If the niches are heterogeneous, the kinetics are found to be more gradual.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
47
|
Xie Z, Chin LS. Molecular and cell biology of brain tumor stem cells: lessons from neural progenitor/stem cells. Neurosurg Focus 2008; 24:E25. [DOI: 10.3171/foc/2008/24/3-4/e24] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
✓ The results of studies conducted in the past several years have suggested that malignant brain tumors may harbor a small fraction of tumor-initiating cells that are likely to cause tumor recurrence. These cells are known as brain tumor stem cells (BTSCs) because of their multilineage potential and their ability to self-renew in vitro and to recapitulate original tumors in vivo. The understanding of BTSCs has been greatly advanced by knowledge of neural progenitor/stem cells (NPSCs), which are multipotent and self-renewing precursor cells for neurons and glia. In this article, the authors summarize evidence that genetic mutations that deregulate asymmetric cell division by affecting cell polarity, spindle orientation, or cell fate determinants may result in the conversion of NPSCs to BTSCs. In addition, they review evidence that BTSCs and normal NPSCs may reside in similar vascularized microenvironments, where similar evolutionarily conserved signaling pathways control their proliferation. Finally, they discuss preliminary evidence that mechanisms of BTSC-associated infiltrativeness may be similar to those underlying the migration of NPSCs and neurons.
Collapse
Affiliation(s)
- Zhigang Xie
- 1Departments of Neurosurgery and
- 2Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|