1
|
Takahashi Y, Ishida Y, Yoshida S, Shin HW, Katoh Y, Nakayama K. Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression. J Cell Sci 2025; 138:jcs263556. [PMID: 39801296 DOI: 10.1242/jcs.263556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
The GLI1, GLI2 and GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R) and in activation of GLI2. Although previous studies in mice have suggested that Gli1 expression depends on GLI2 and GLI3, coordinated roles of GLI1, GLI2 and GLI3 in osteogenic differentiation are not fully understood at the cellular level. From the MSC line C3H10T1/2, we established Gli2-knockout (KO) and Gli3-KO cells, as well as constitutively GLI3R-producing (cGLI3R) cells, and expressed GLI1, GLI2 and GLI3 constructs in these cell lines. The results demonstrate at the cellular level that GLI2 and GLI3R counterregulate osteogenic differentiation via activation and repression of Gli1 expression, respectively; GLI3R, which results from GLI3 processing requiring protein kinase A-mediated phosphorylation, downregulates expression of Gli2 as well as Gli1; and GLI1 upregulates expression of Gli1 itself and Gli2, constituting a GLI1-GLI2 positive feedback loop.
Collapse
Affiliation(s)
- Yuto Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Hwang SH, White KA, Somatilaka BN, Wang B, Mukhopadhyay S. Context-dependent ciliary regulation of hedgehog pathway repression in tissue morphogenesis. PLoS Genet 2023; 19:e1011028. [PMID: 37943875 PMCID: PMC10662714 DOI: 10.1371/journal.pgen.1011028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
A fundamental problem in tissue morphogenesis is identifying how subcellular signaling regulates mesoscale organization of tissues. The primary cilium is a paradigmatic organelle for compartmentalized subcellular signaling. How signaling emanating from cilia orchestrates tissue organization-especially, the role of cilia-generated effectors in mediating diverse morpho-phenotypic outcomes-is not well understood. In the hedgehog pathway, bifunctional GLI transcription factors generate both GLI-activators (GLI-A) and GLI-repressors (GLI-R). The formation of GLI-A/GLI-R requires cilia. However, how these counterregulatory effectors coordinate cilia-regulated morphogenetic pathways is unclear. Here we determined GLI-A/GLI-R requirements in phenotypes arising from lack of hedgehog pathway repression (derepression) during mouse neural tube and skeletal development. We studied hedgehog pathway repression by the GPCR GPR161, and the ankyrin repeat protein ANKMY2 that direct cAMP/protein kinase-A signaling by cilia in GLI-R generation. We performed genetic epistasis between Gpr161 or Ankmy2 mutants, and Gli2/Gli3 knockouts, Gli3R knock-in and knockout of Smoothened, the hedgehog pathway transducer. We also tested the role of cilia-generated signaling using a Gpr161 ciliary localization knock-in mutant that is cAMP signaling competent. We found that the cilia-dependent derepression phenotypes arose in three modes: lack of GLI-R only, excess GLI-A formation only, or dual regulation of either lack of GLI-R or excess GLI-A formation. These modes were mostly independent of Smoothened. The cAMP signaling-competent non-ciliary Gpr161 knock-in recapitulated Gpr161 loss-of-function tissue phenotypes solely from lack of GLI-R only. Our results show complex tissue-specific GLI-effector requirements in morphogenesis and point to tissue-specific GLI-R thresholds generated by cilia in hedgehog pathway repression. Broadly, our study sets up a conceptual framework for rationalization of different modes of signaling generated by the primary cilium in mediating morphogenesis in diverse tissues.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kevin Andrew White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Bandarigoda Nipunika Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Present address, Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
3
|
Wu L, Liu Z, Xiao L, Ai M, Cao Y, Mao J, Song K. The Role of Gli1 + Mesenchymal Stem Cells in Osteogenesis of Craniofacial Bone. Biomolecules 2023; 13:1351. [PMID: 37759749 PMCID: PMC10526808 DOI: 10.3390/biom13091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma-associated oncogene homolog 1 (Gli1) is a transcriptional activator of hedgehog (Hh) signaling that regulates target gene expression and several cellular biological processes. Cell lineage tracing techniques have highlighted Gli1 as an ideal marker for mesenchymal stem cells (MSCs) in vivo. Gli1+ MSCs are critical for the osteogenesis of the craniofacial bone; however, the regulatory mechanism by which Gli1+ MSCs mediate the bone development and tissue regeneration of craniofacial bone has not been systematically outlined. This review comprehensively elucidates the specific roles of Gli1+ MSCs in craniofacial bone osteogenesis. In addition to governing craniofacial bone development, Gli1+ MSCs are associated with the tissue repair of craniofacial bone under pathological conditions. Gli1+ MSCs promote intramembranous and endochondral ossification of the craniofacial bones, and assist the osteogenesis of the craniofacial bone by improving angiopoiesis. This review summarizes the novel role of Gli1+ MSCs in bone development and tissue repair in craniofacial bones, which offers new insights into bone regeneration therapy.
Collapse
Affiliation(s)
- Laidi Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Zhixin Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| |
Collapse
|
4
|
Wen Q, Xie X, Ren Q, Du Y. Polybrominated diphenyl ether congener 99 (PBDE 99) promotes adipocyte lineage commitment of C3H10T1/2 mesenchymal stem cells. CHEMOSPHERE 2022; 290:133312. [PMID: 34919914 DOI: 10.1016/j.chemosphere.2021.133312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Obesogens are defined as chemicals that trigger obesity partially by stimulating adipogenesis. Adipogenesis consists of two successive processes: the adipocyte lineage commitment of pluripotent stem cells and the differentiation of preadipocytes. Compared with the differentiation of preadipocytes, the effects of most environmental obesogens on adipocyte lineage commitment remain largely unknown. In this study, investigations are performed to explore the influences of PBDE 99 on the adipocyte lineage commitment based on C3H10T1/2, which has been widely used as a mesenchymal stem cell (MSC) model. Our results indicated that exposure to PBDE 99 during commitment stage resulted in significant up-regulation of subsequent adipogenesis in C3H10T1/2 MSCs. Interestingly, PBDE 99 did not affect the osteogenesis of C3H10T1/2 MSCs, although the adipogenesis and osteogenesis of MSCs are typically reciprocal. PBDE 99 was further demonstrated to significantly decrease the expression of Pref1, the marker of very early adipose mesenchymal precursor, and its downstream effector, Sox9. This result strongly suggested that PBDE 99 facilitated adipocyte commitment to exert adipogenic effect on C3H10T1/2 MSCs. Mechanistic studies revealed that PBDE 99 efficiently inhibited Hedgehog signaling transduction, a conserved negative regulator of the adipocyte lineage commitment. Furthermore, the effects of PBDE 99 on adipogenesis were abrogated by the co-treatment with SAG, a specific Hedgehog signaling activator, suggesting inhibition of Hedgehog signaling is responsible for the effect of PBDE 99 on adipocyte commitment. Taking together, these results strongly suggested enhanced adipocyte lineage commitment was involved in potential obesogenic effect of PBDE 99, presumably through repressing Hedgehog signalling during commitment stage. Moreover, the results of this study indicated that C3H10T1/2 can be used as a feasible MSCs cell model to evaluate the capabilities of potential obesogens on adipocyte commitment.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
On the horizon: Hedgehog signaling to heal broken bones. Bone Res 2022; 10:13. [PMID: 35165260 PMCID: PMC8844053 DOI: 10.1038/s41413-021-00184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Uncovering the molecular pathways that drive skeletal repair has been an ongoing challenge. Initial efforts have relied on in vitro assays to identify the key signaling pathways that drive cartilage and bone differentiation. While these assays can provide some clues, assessing specific pathways in animal models is critical. Furthermore, definitive proof that a pathway is required for skeletal repair is best provided using genetic tests. Stimulating the Hh (Hedgehog) pathway can promote cartilage and bone differentiation in cell culture assays. In addition, the application of HH protein or various pathway agonists in vivo has a positive influence on bone healing. Until recently, however, genetic proof that the Hh pathway is involved in bone repair has been lacking. Here, we consider both in vitro and in vivo studies that examine the role of Hh in repair and discuss some of the challenges inherent in their interpretation. We also identify needed areas of study considering a new appreciation for the role of cartilage during repair, the variety of cell types that may have differing roles in repair, and the recent availability of powerful lineage tracing techniques. We are optimistic that emerging genetic tools will make it possible to precisely define when and in which cells promoting Hh signaling can best promote skeletal repair, and thus, the clinical potential for targeting the Hh pathway can be realized.
Collapse
|
6
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
7
|
Wuelling M, Schneider S, Schröther VA, Waterkamp C, Hoffmann D, Vortkamp A. Wnt5a is a transcriptional target of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. Dev Biol 2020; 457:104-118. [DOI: 10.1016/j.ydbio.2019.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
|
8
|
Ma M, Legué E, Tian X, Somlo S, Liem KF. Cell-Autonomous Hedgehog Signaling Is Not Required for Cyst Formation in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2019; 30:2103-2111. [PMID: 31451534 DOI: 10.1681/asn.2018121274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/15/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND PKD1 or PKD2, the two main causal genes for autosomal dominant polycystic kidney disease (ADPKD), encode the multipass transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Polycystins localize to the primary cilium, an organelle essential for cell signaling, including signal transduction of the Hedgehog pathway. Mutations in ciliary genes that build and maintain the cilium also cause renal cystic disease through unknown pathways. Although recent studies have found alterations in Hedgehog signaling in ADPKD-related models and tissues, the relationship between Hedgehog and polycystic kidney disease is not known. METHODS To examine the potential role of cell-autonomous Hedgehog signaling in regulating kidney cyst formation in vivo in both early- and adult-onset mouse models of ADPKD, we used conditional inactivation of Pkd1 combined with conditional modulation of Hedgehog signaling components in renal epithelial cells, where mutations in Pkd1 initiate cyst formation. After increasing or decreasing levels of Hedgehog signaling in cells that underwent inactivation of Pkd1, we evaluated the effects of these genetic manipulations on quantitative parameters of polycystic kidney disease severity. RESULTS We found that in Pkd1 conditional mutant mouse kidneys, neither downregulation nor activation of the Hedgehog pathway in epithelial cells along the nephron significantly influenced the severity of the polycystic kidney phenotype in mouse models of developmental or adult-onset of ADPKD. CONCLUSIONS These data suggest that loss of Pkd1 function results in kidney cysts through pathways that are not affected by the activity of the Hedgehog pathway.
Collapse
Affiliation(s)
- Ming Ma
- Departments of Internal Medicine
| | - Emilie Legué
- Pediatrics, and.,Vertebrate Developmental Biology Program, Yale University, New Haven, Connecticut
| | - Xin Tian
- Departments of Internal Medicine
| | | | - Karel F Liem
- Pediatrics, and .,Vertebrate Developmental Biology Program, Yale University, New Haven, Connecticut
| |
Collapse
|
9
|
Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2019; 36:115-130. [PMID: 31250347 DOI: 10.1007/s10565-019-09483-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers and the second leading cause of cancer death among US males. When diagnosed in an early disease stage, primary tumors of PCa may be treated with surgical resection or radiation, sometimes combined with androgen deprivation therapy, with favorable outcomes. Unfortunately, the treatment efficacy of each approach decreases significantly in later stages of PCa that involve metastasis to soft tissues and bone. Metastatic PCa is a heterogeneous disease containing host cells, mature cancer cells, and subpopulation of cancer stem cells (CSC). CSCs are highly tumorigenic due to their self-renewing and differentiating potential, clinically resulting in recurrence and resistance to standard therapies. Therefore, there is a large unmet clinical need to develop therapies, which target CSC activity. In this review, we summarize the main signaling pathways that are implicated in the current pre-clinical and clinical studies of recurrent metastatic PCa within the bone microenvironment targeting CSCs and discuss the trajectory of therapeutics moving forward.
Collapse
Affiliation(s)
- Clara H Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Periodontology, University of Alabama Birmingham School of Dentistry, Birmingham, Alabama, USA.
| |
Collapse
|
10
|
Tooth agenesis-related GLI2 and GLI3 genes may contribute to craniofacial skeletal morphology in humans. Arch Oral Biol 2019; 103:12-18. [PMID: 31112935 DOI: 10.1016/j.archoralbio.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The present cross-sectional, multi-centre, genetic study aimed to determine, whether single nucleotide polymorphisms (SNPs) in tooth agenesis (TA)-associated GLI2 and GLI3 genes contribute to the development of craniofacial skeletal morphology in humans. DESIGN Orthodontic patients from an ethnically heterogeneous population were selected for the present study (n = 594). The presence or absence of TA was determined by analysis of panoramic radiography and dental records. The subjects were classified according to their skeletal malocclusion and facial growth pattern by means of digital cephalometric analysis. Genomic DNA was extracted from squamous epithelial cells of the buccal mucosa and SNPs in GLI2 (rs3738880, rs2278741) and GLI3 (rs929387, rs846266) were analysed by polymerase chain reaction using TaqMan chemistry and end-point analysis. RESULTS Class II skeletal malocclusion presented a significantly lower frequency of TA (P < 0.05). Subjects without TA showed significantly higher ANB angles (P < 0.05). Genotype and/or allele distributions of the SNPs in GLI2 (rs3738880, rs2278741) and GLI3 (rs846266) were associated with the presence of TA (P < 0.05). The SNPs rs3738880, rs2278741 and rs929387 were also associated with some type of skeletal malocclusion (P < 0.05), but not with the facial growth pattern (P > 0.05). The G allele for TA-related GLI2 rs3738880 was strongly linked to the presence of Class III skeletal malocclusion (OR = 2.03; 95% CI = 1.37-3.03; P<3125 × 10-6). GLI2 rs2278741 C allele was overrepresented in individuals without TA, suggesting it as a protective factor for this dental phenotype (OR = 0.43; 95% CI = 0.24-0.78; P<625 × 10-5). CONCLUSION The present study suggests that SNPs in TA-associated GLI2 and GLI3 genes may also play a role in the development of skeletal malocclusions. rs3738880 and rs2278741 in GLI2 seems to contribute to the genetic background for skeletal Class III and TA, respectively. TA could be an additional predictor of craniofacial morphology in some cases. Further research replicating the reported associations should be performed.
Collapse
|
11
|
Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, Wang C, Wei L. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther 2019; 21:109. [PMID: 31046827 PMCID: PMC6498579 DOI: 10.1186/s13075-019-1895-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To determine if ipriflavone, a novel and safe inhibitor of Indian hedgehog (Ihh) signaling, can attenuate cartilage degeneration by blocking the Ihh pathway. METHODS Human chondrocytes were used to evaluate Ihh signaling, cell proliferation, apoptosis, gene, and protein expression of chondrocytes by cell proliferation and apoptosis assays, real-time qPCR, and Western blotting at 48 h after ipriflavone treatment. Human cartilage explants were further used to validate the cell culture results. The effects of ipriflavone on cartilage degeneration in vivo were assessed using the rat ACLT OA model. Two-month-old male SD rats were randomized into 3 groups (n = 75): (1) sham, (2) ACLT alone, and (3) ACLT+ ipriflavone. Ipriflavone was administered intragastrically at 24 h after ACLT for 6 weeks. The extent of OA progression was evaluated by the OARSI score and immunohistochemistry at 12 weeks after surgery. The Ihh signaling pathway and OA-related genes were quantified by real-time PCR. RESULTS Cell proliferation in the cells treated with ipriflavone was increased to 36.40% ± 1.32% (5 μM) and 28.54% ± 0.74% (10 μM) from 11.99% ± 0.35% (DMSO) (P < 0.001), and apoptosis was decreased to 12.64% ± 3.7% (5 μM) and 15.18% ± 3.13% (10 μM) from 25.76% ± 5.1% (DMSO) (P < 0.05). Ipriflavone blocked Runx-2 mainly through the Smo-Gli2 pathway. A similar result was found in the cartilage explant culture. Ihh signaling in vivo was inhibited in animals treated with ipriflavone. Safranin-O staining revealed a less cartilage damage with lower OARSI scores (P < 0.05) in the ipriflavone-treated animals compared with untreated animals. The gene expression of Smo and Gli2 was inhibited significantly by ipriflavone (P < 0.05). The OA-related gene and protein type X, MMP-13, and type II collagen-C fragment were reduced, while type II collagen and Agg were increased in the ipriflavone-treated animals (P < 0.05). CONCLUSIONS Catabolic genes were disrupted by blocking the Ihh pathway. This finding suggests that disruption of Ihh signaling with ipriflavone provides chondral protection in rat posttraumatic OA.
Collapse
Affiliation(s)
- Li Guo
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Xiaochun Wei
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Zhiwei Zhang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Xiaojian Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Chunli Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Pengcui Li
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Chunfang Wang
- Shanxi Key Laboratory of Laboratory Animal and Animal Model of Human Diseases, Department of Experimental Animal Center, Shanxi Medical University, No. 56, Xinjian Southern Road, Taiyuan, 030001, China
| | - Lei Wei
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China. .,Department of Orthopedics, Warren Alpert Medical School of Brown University, Suite 402A, 1 Hoppin Street, Providence, RI, 02903, USA.
| |
Collapse
|
12
|
Hu Z, Hong S, Zhang Y, Dai H, Lin S, Yi T, Zhuang H. Down-regulated WDR35 contributes to fetal anomaly via regulation of osteogenic differentiation. Gene 2019; 697:48-56. [PMID: 30790652 DOI: 10.1016/j.gene.2019.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Autosomal recessive disorder is closely correlated with congenital fetal malformation. The mutation of WDR35 may lead to short rib-polydactyly syndrome (SRP), asphyxiating thoracic dystrophy (ATD, Jeune syndrome) and Ellis van Creveld syndrome. The purpose of this study is to investigate the role of WDR35 in fetal anomaly. RESULTS The fetuses presented malformation with abnormal head shape, cardiac dilatation, pericardial effusion, and non-displayed left pulmonary artery and left lung. After the detection of genomic DNA (gDNA) in amniotic fluid cells (AFC), chromosomal rearrangement was found in arr[hg19] 2p25.3p23.3. It was revealed through multiple PCR-DHPLC that MYCN, WDR35, LPIN1, ODC1, KLF11 and NBAS contained duplicated copy numbers in 2p25.3p23.3. AF-MSCs were mostly positive for CD44, CD105, negative for CD34 and CD14. Western Blot test showed that WDR35-encoded protein was decreased in the patients' AFC compared to that in normal pregnant women. In the patients' amniotic fluid-derived mesenchymal stem cells (AF-MSCs), WDR35 overexpression could repair cilia formation, and the overexpression of WDR35 or Gli2 could significantly enhance ALP activity and expressions of osteogenic differentiation marker genes, including RUNXE2, OCN, BSP and ALP. However, WDR35 silencing in C3H10T1/2 cells could remarkably inhibit cilia formation and osteogenic differentiation. This inhibitory effect could be attenuated by Gli2 overexpression. CONCLUSIONS The results demonstrated that copy number variation (CNV) of WDR35 may lead to skeletal dysplasia and fetal anomaly, and that down-regulated WDR35 may damage the cilia formation and sequentially indirectly regulate Gli signal, which would eventually result in negative regulation of osteogenic differentiation.
Collapse
Affiliation(s)
- Zhongren Hu
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Shurong Hong
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Yu Zhang
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Huijing Dai
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Shuzhen Lin
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Tingyu Yi
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Hongmei Zhuang
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China.
| |
Collapse
|
13
|
Li Q, Chen Y, Dong S, Liu S, Zhang X, Si X, Zhou Y. Laser irradiation promotes the proliferation of mouse pre-osteoblast cell line MC3T3-E1 through hedgehog signaling pathway. Lasers Med Sci 2017; 32:1489-1496. [PMID: 28667508 DOI: 10.1007/s10103-017-2269-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/16/2017] [Indexed: 01/19/2023]
Abstract
Low-level laser could promote osteoblast proliferation, and it has been applied in clinical practice to promote wound healing and tissue regeneration. However, the mechanism related to laser irradiation remains unclear. This study aimed to investigate the effects of low-level laser irradiation on the cell proliferation and the expressions of hedgehog signaling molecules Indian hedgehog (Ihh), Ptch, and Gli in vitro. In our present study, the MTT method was used to evaluate the effect on cell proliferation of laser irradiation on MC3T3-E1 cells. And cell cycle was examined by flow cytometry. Gene and protein expressions of hedgehog signaling molecules, including Ihh, Ptch, Smoothened (Smo), and Gli, were examined by qRT-PCR and western blot analysis. The results showed that laser irradiation at dosage of 3.75 J/cm2 enhances the proliferation of MC3T3-E1 cells compared with control groups (p = 0.00). Moreover, laser irradiation (3.75 J/cm2) increased the cell amount at S phase (p = 0.00). In addition, the expressions of Ihh, Ptch, Smo, and Gli were significantly increased compared to the control during laser irradiation (3.75 J/cm2)-induced MC3T3-E1 osteoblast proliferation. After adding the hedgehog signaling inhibitor CY (cyclopamine), cell proliferation and Ihh, Ptch, Smo, and Gli expressions were inhibited (p = 0.00), and the cell amount at S phase was reduced compared with combination groups (p = 0.00). These results indicated that laser irradiation promotes proliferation of MC3T3-E1 cells through hedgehog signaling pathway. Our findings provide insights into the mechanistic link between laser irradiation-induced osteogenesis and hedgehog signaling pathway.
Collapse
Affiliation(s)
- Qiushi Li
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yingxin Chen
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shujun Dong
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shujie Liu
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaodan Zhang
- Department of Oral Health Science, Affiliated Stomatological Hospital of Harbin Medical University, Harbin, China
| | - Xi Si
- Department of Oral Medicine, Hainan Medical University, Haikou, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
14
|
Abstract
SIGNIFICANCE Breast cancer is a unique disease characterized by heterogeneous cell populations causing roadblocks in therapeutic medicine, owing to its complex etiology and primeval understanding of the biology behind its genesis, progression, and sustenance. Globocan statistics indicate over 1.7 million new breast cancer diagnoses in 2012, accounting for 25% of all cancer morbidities. RECENT ADVANCES Despite these dismal statistics, the introduction of molecular gene signature platforms, progressive therapeutic approaches in diagnosis, and management of breast cancer has led to more effective treatment strategies and control measures concurrent with an equally reassuring decline in the mortality rate. CRITICAL ISSUES However, an enormous body of research in this area is requisite as high mortality associated with metastatic and/or drug refractory tumors continues to present a therapeutic challenge. Despite advances in systemic chemotherapy, the median survival of patients harboring metastatic breast cancers continues to be below 2 years. FUTURE DIRECTIONS Hence, a massive effort to scrutinize and evaluate chemotherapeutics on the basis of the molecular classification of these cancers is undertaken with the objective to devise more attractive and feasible approaches to treat breast cancers and improve patients' quality of life. This review aims to summarize the current understanding of the biology of breast cancer as well as challenges faced in combating breast cancer, with special emphasis on the current battery of treatment strategies. We will also try and gain perspective from recent encounters on novel findings responsible for the progression and metastatic transformation of breast cancer cells in an endeavor to develop more targeted treatment options. Antioxid. Redox Signal. 25, 337-370.
Collapse
Affiliation(s)
- Deepika Raman
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Chuan Han Jonathan Foo
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore
| | - Marie-Veronique Clement
- 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,4 National University Cancer Institute , NUHS, Singapore, Singapore .,5 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
15
|
Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage. Semin Cell Dev Biol 2016; 62:16-33. [PMID: 27180955 DOI: 10.1016/j.semcdb.2016.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022]
Abstract
Endochondral ossification, the mechanism responsible for the development of the long bones, is dependent on an extremely stringent coordination between the processes of chondrocyte maturation in the growth plate, vascular expansion in the surrounding tissues, and osteoblast differentiation and osteogenesis in the perichondrium and the developing bone center. The synchronization of these processes occurring in adjacent tissues is regulated through vigorous crosstalk between chondrocytes, endothelial cells and osteoblast lineage cells. Our knowledge about the molecular constituents of these bidirectional communications is undoubtedly incomplete, but certainly some signaling pathways effective in cartilage have been recognized to play key roles in steering vascularization and osteogenesis in the perichondrial tissues. These include hypoxia-driven signaling pathways, governed by the hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF), which are absolutely essential for the survival and functioning of chondrocytes in the avascular growth plate, at least in part by regulating the oxygenation of developing cartilage through the stimulation of angiogenesis in the surrounding tissues. A second coordinating signal emanating from cartilage and regulating developmental processes in the adjacent perichondrium is Indian Hedgehog (IHH). IHH, produced by pre-hypertrophic and early hypertrophic chondrocytes in the growth plate, induces the differentiation of adjacent perichondrial progenitor cells into osteoblasts, thereby harmonizing the site and time of bone formation with the developmental progression of chondrogenesis. Both signaling pathways represent vital mediators of the tightly organized conversion of avascular cartilage into vascularized and mineralized bone during endochondral ossification.
Collapse
|
16
|
|
17
|
|
18
|
Yoshida M, Hata K, Takashima R, Ono K, Nakamura E, Takahata Y, Murakami T, Iseki S, Takano-Yamamoto T, Nishimura R, Yoneda T. The transcription factor Foxc1 is necessary for Ihh–Gli2-regulated endochondral ossification. Nat Commun 2015; 6:6653. [DOI: 10.1038/ncomms7653] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
|
19
|
Zhou J, Wei X, Wei L. Indian Hedgehog, a critical modulator in osteoarthritis, could be a potential therapeutic target for attenuating cartilage degeneration disease. Connect Tissue Res 2014; 55:257-61. [PMID: 24844414 DOI: 10.3109/03008207.2014.925885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) family of proteins consists of Indian hedgehog (Ihh), sonic hedgehog (Shh), and desert hedgehog (Dhh). These proteins serve as essential regulators in a variety of developmental events. Ihh is mainly produced and secreted by prehypertrophic chondrocytes and regulates chondrocyte hypertrophy and endochondral bone formation during growth plate development. Tissue-specific deletion of the Ihh gene (targeted by Col2a1-Cre) causes early lethality in mice. Transgenic mice with induced Ihh expression exhibit increased chondrocyte hypertrophy and cartilage damage resembling human osteoarthritis (OA). During OA development, chondrocytes recapitulate the differentiation process that happens during the fetal status and which does not occur to an appreciable degree in adult articular cartilage. Ihh expression is up-regulated in human OA cartilage, and this upregulation correlates with OA progression and changes in chondrocyte morphology. A genetic study in mice further showed that conditional deletion of Ihh in chondrocytes attenuates OA progression, suggesting the possibility that blocking Ihh signaling can be used as a therapeutic approach to prevent or delay cartilage degeneration. However, Ihh gene deletion is currently not a therapeutic option as it is lethal in animals. RNA interference (RNAi) provides a means to knockdown Ihh without the severe side effects caused by chemical inhibitors. The currently available delivery methods for RNAi are nanoparticles and liposomes. Both have problems that need to be addressed. In the future, it will be necessary to develop a safe and effective RNAi delivery system to target Ihh signaling for preventing and treating OA.
Collapse
Affiliation(s)
- Jingming Zhou
- Department of Orthopedics, Warren Alpert Medical School of Brown University , Providence, RI , USA , and
| | | | | |
Collapse
|
20
|
González-Martín MC, Mallo M, Ros MA. Long bone development requires a threshold of Hox function. Dev Biol 2014; 392:454-65. [PMID: 24930703 DOI: 10.1016/j.ydbio.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The Hoxd(Del(11-13)) mutant is one of the animal models for human synpolydactyly, characterized by short and syndactylous digits. Here we have characterized in detail the cartilage and bone defects in these mutants. We report two distinct phenotypes: (i) a delay and change in pattern of chondrocyte maturation of metacarpals/metatarsals and (ii) formation of a poor and not centrally positioned primary ossification center in the proximal-intermediate phalanx. In the metacarpals of Hoxd(Del(11-13)) mutants, ossification occurs postnataly, in the absence of significant Ihh expression and without the establishment of growth plates, following patterns similar to those of short bones. The strong downregulation in Ihh expression is associated with a corresponding increase of the repressor form of Gli3. To evaluate the contribution of this alteration to the phenotype, we generated double Hoxd(Del(11-13));Gli3 homozygous mutants. Intriguingly, these double mutants showed a complete rescue of the phenotype in metatarsals but only partial phenotypic rescue in metacarpals. Our results support Hox genes being required in a dose-dependent manner for long bone cartilage maturation and suggest that and excess of Gli3R mediates a significant part of the Hoxd(Del(11-13)) chondrogenic phenotype.
Collapse
Affiliation(s)
- Ma Carmen González-Martín
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain; Dpto. de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
21
|
Probst S, Zeller R, Zuniga A. The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development. Differentiation 2013; 85:121-30. [PMID: 23792766 DOI: 10.1016/j.diff.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/08/2013] [Accepted: 03/05/2013] [Indexed: 10/26/2022]
Abstract
Endochondral bone development is orchestrated by the spatially and temporally coordinated differentiation of chondrocytes along the longitudinal axis of the cartilage anlage. Initially, the slowly proliferating, periarticular chondrocytes give rise to the pool of rapidly dividing columnar chondrocytes, whose expansion determines the length of the long bones. The Indian hedgehog (IHH) ligand regulates both the proliferation of columnar chondrocytes and their differentiation into post-mitotic hypertrophic chondrocytes in concert with GLI3, one of the main transcriptional effectors of HH signal transduction. In the absence of Hh signalling, the expression of Vlk (vertebrate lonesome kinase, also called Pkdcc) is increased. We now show that the shortening of limb long bones in Vlk-deficient mouse embryos is aggravated by additional inactivation of Gli3. Our analysis establishes that Vlk and Gli3 synergize to control the temporal kinetics of chondrocyte differentiation during long bone development. Whereas differentiation of limb mesenchymal progenitors into chondrocytes and the initial formation of the cartilage anlagen of the limb skeleton are not altered, Vlk and Gli3 are required for the temporally coordinated differentiation of periarticular into columnar and ultimately hypertrophic chondrocytes in long bones. In limbs lacking both Vlk and Gli3, the appearance of columnar and hypertrophic chondrocytes is severely delayed and zones of morphologically distinct chondrocytes are not established until E16.5. At the molecular level, these morphological alterations are reflected by delayed activation and lowered expression of Ihh, Pth1r and Col10a1 in long bone rudiments of double mutant limbs. In summary, our genetic analysis establishes that VLK plays a role in the IHH/GLI3 interactions and that Vlk and Gli3 cooperate to regulate long bone development by modulating the temporal kinetics of establishing columnar and hypertrophic chondrocyte domains.
Collapse
Affiliation(s)
- Simone Probst
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
22
|
Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2013; 37:1399-404. [PMID: 23645083 DOI: 10.1007/s00264-013-1902-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Hedgehog signalling plays an important role during the development of tissues and organs, including bone and limb. Dexamethasone (DEX), a synthetic and widely used glucocorticoid, affects osteogenesis of bone marrow mesenchymal stem cells (MSCs), while the signalling pathway by which DEX affects osteoblast differentiation remains obscure. This study aimed to investigate expressions of hedgehog signalling molecules Shh, Ihh and Gli1 during DEX-induced osteogenesis of rat MSCs in vitro. METHODS DEX promoted osteoblast differentiation of MSCs at 10(-8) mol/L from seven days to 21 days, demonstrated by enhancing alkaline phosphatase (ALP) activity and osteoblast-associated marker type I collagen expression during osteoblastic differentiation. Gene and protein expressions of hedgehog signalling molecules, Shh, Ihh and Gli1 were tested by RT-PCR and western blot analysis during osteoblast differentiation. RESULTS Shh expression was increased compared to the control while Ihh and Gli1 expressions were decreased on both mRNA and protein level during DEX-induced osteoblast differentiation of MSCs from seven days to 21 days. Altogether, these data demonstrate that DEX can enhance Shh expression via a Gli1-independent mechanism during osteoblast differentiation of MSCs. CONCLUSIONS These results indicate that different patterns of hedgehog signalling are involved in DEX-induced osteogenesis and these findings provide insights into the mechanistic link between glucocorticoid-induced osteogenesis and hedgehog signalling pathway.
Collapse
|
23
|
Kasaai B, Gaumond MH, Moffatt P. Regulation of the bone-restricted IFITM-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J Biol Chem 2013; 288:13278-94. [PMID: 23530031 DOI: 10.1074/jbc.m113.457010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND BRIL is a bone-specific membrane protein that is involved in osteogenesis imperfecta type V. RESULTS Bril transcription is activated by Sp1, Sp3, OSX, and GLI2 and by CpG demethylation. CONCLUSION Regulation of Bril involves trans-acting factors integrating at conserved promoter elements and epigenetic modifications. SIGNIFICANCE Identification of the mechanisms governing Bril transcription is important to understand its role in skeletal biology. Bril encodes a small membrane protein present in osteoblasts. In humans, a single recurrent mutation in the 5'-UTR of BRIL causes osteogenesis imperfecta type V. The exact function of BRIL and the mechanism by which it contributes to disease are still unknown. The goal of the current study was to characterize the mechanisms governing Bril transcription in humans, rats, and mice. In the three species, as detected by luciferase reporter assays in UMR106 cells, we found that most of the base-line regulatory activity was localized within ∼250 bp upstream of the coding ATG. Co-transfection experiments indicated that Sp1 and Sp3 were potent inducers of the promoter activity, through the binding of several GC-rich boxes. Osterix was a weak activator but acted cooperatively with Sp1 and GLI2 to synergistically induce the BRIL promoter. GLI2, a mediator of hedgehog signaling pathway, was also a potent activator of BRIL through a single GLI binding site. Correspondingly, agonists of the hedgehog pathway (purmorphamine and Indian hedgehog) in MC3T3 osteoblasts led to increased BRIL levels. The BRIL promoter activity was also found to be negatively modulated through two different mechanisms. First, the ZFP354C zinc finger protein repressed basal and Sp1-induced activity. Second, CpG methylation of the promoter region correlated with an inactive state and prevented Sp1 activation. The data provide the very first analyses of the cis- and trans-acting factors regulating Bril transcription. They revealed key roles for the Sp members and GLI2 that possibly cooperate to activate Bril when the promoter becomes demethylated.
Collapse
Affiliation(s)
- Bahar Kasaai
- Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | | | | |
Collapse
|
24
|
Ehlen HWA, Chinenkova M, Moser M, Munter HM, Krause Y, Gross S, Brachvogel B, Wuelling M, Kornak U, Vortkamp A. Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J Bone Miner Res 2013; 28:246-59. [PMID: 22936354 DOI: 10.1002/jbmr.1751] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 01/05/2023]
Abstract
During vertebrate skeletal development, osteoblasts produce a mineralized bone matrix by deposition of hydroxyapatite crystals in the extracellular matrix. Anoctamin6/Tmem16F (Ano6) belongs to a conserved family of transmembrane proteins with chloride channel properties. In addition, Ano6 has been linked to phosphatidylserine (PS) scrambling in the plasma membrane. During skeletogenesis, Ano6 mRNA is expressed in differentiating and mature osteoblasts. Deletion of Ano6 in mice results in reduced skeleton size and skeletal deformities. Molecular analysis revealed that chondrocyte and osteoblast differentiation are not disturbed. However, mutant mice display increased regions of nonmineralized, Ibsp-expressing osteoblasts in the periosteum during embryonic development and increased areas of uncalcified osteoid postnatally. In primary Ano6(-/-) osteoblasts, mineralization is delayed, indicating a cell autonomous function of Ano6. Furthermore, we demonstrate that calcium-dependent PS scrambling is impaired in osteoblasts. Our study is the first to our knowledge to reveal the requirement of Ano6 in PS scrambling in osteoblasts, supporting a function of PS exposure in the deposition of hydroxyapatite.
Collapse
Affiliation(s)
- Harald W A Ehlen
- Department of Developmental Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Joeng KS, Long F. Constitutive activation of Gli2 impairs bone formation in postnatal growing mice. PLoS One 2013; 8:e55134. [PMID: 23383082 PMCID: PMC3559391 DOI: 10.1371/journal.pone.0055134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/18/2012] [Indexed: 01/19/2023] Open
Abstract
Indian hedgehog (Ihh) signaling is indispensable for osteoblast differentiation during endochondral bone development in the mouse embryo. We have previously shown that the Gli2 transcription activator critically mediates Ihh function in osteoblastogenesis. To explore the possibility that activation of Hedgehog (Hh) signaling may enhance bone formation, we generated mice that expressed a constitutively active form of Gli2 in the Osx-lineage cells. Unexpectedly, these mice exhibited severe osteopenia due to a marked decrease in osteoblast number and function, although bone resorption was not affected. Quantitative analyses of the molecular markers indicated that osteoblast differentiation was impaired in the mutant mouse. However, the osteoblast-lineage cells isolated from these mice exhibited more robust osteoblast differentiation than normal in vitro. Similarly, pharmacological stimulation of Hh signaling enhanced osteoblast differentiation from Osx-expressing cells isolated from the wild-type mouse. Thus, even though Hh signaling directly promotes osteoblast differentiation in vitro, constitutive activation of this pathway impairs bone formation in vivo, perhaps through an indirect mechanism.
Collapse
Affiliation(s)
- Kyu Sang Joeng
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fanxin Long
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
26
|
Yang S, Wang C. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 2012; 51:407-17. [PMID: 22771375 PMCID: PMC3412883 DOI: 10.1016/j.bone.2012.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/20/2012] [Accepted: 06/23/2012] [Indexed: 12/21/2022]
Abstract
Intraflagellar transport (IFT) proteins are essential for the assembly and maintenance of cilia, which play important roles in development and homeostasis. IFT80 is a newly defined IFT protein. Partial mutation of IFT80 in humans causes diseases such as Jeune asphyxiating thoracic dystrophy (JATD) and short rib polydactyly (SRP) type III with abnormal skeletal development. However, the role and mechanism of IFT80 in osteogenesis is unknown. Here, we first detected IFT80 expression pattern and found that IFT80 was highly expressed in mouse long bone, skull, and during osteoblast differentiation. By using lentivirus-mediated RNA interference (RNAi) technology to silence IFT80 in murine mesenchymal progenitor cell line-C3H10T1/2 and bone marrow derived stromal cells, we found that silencing IFT80 led to either shortening or loss of cilia and the decrease of Arl13b expression - a small GTPase that is localized in cilia. Additionally, silencing IFT80 blocked the expression of osteoblast markers and significantly inhibited ALP activity and cell mineralization. We further found that IFT80 silencing inhibited the expression of Gli2, a critical transcriptional factor in the hedgehog signaling pathway. Overexpression of Gli2 rescued the deficiency of osteoblast differentiation from IFT80-silenced cells, and dramatically promoted osteoblast differentiation. Moreover, introduction of Smo agonist (SAG) promotes osteoblast differentiation, which was partially inhibited by IFT80 silencing. Thus, these results suggested that IFT80 plays an important role in osteogenesis through regulating Hedgehog/Gli signal pathways.
Collapse
Affiliation(s)
- Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, The State University of New York, Buffalo, NY, 14203, USA
- Address correspondence to: Dr. Shuying Yang, MD, PhD, Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, 14214, USA. Tel: 716-829-6338, Fax: 716-829-3942, . Changdong Wang, Ph.D, Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, 14214, USA. Tel: 716-829-2426, Fax: 716-829-3942,
| | - Changdong Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
| |
Collapse
|
27
|
Gruber HE, Riley FE, Hoelscher GL, Bayoumi EM, Ingram JA, Ramp WK, Bosse MJ, Kellam JF. Osteogenic and chondrogenic potential of biomembrane cells from the PMMA-segmental defect rat model. J Orthop Res 2012; 30:1198-212. [PMID: 22246998 DOI: 10.1002/jor.22047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
A layer of cells (the "biomembrane") has been identified in large segmental defects between bone and surgically placed methacrylate spacers or antibiotic-impregnated cement beads. We hypothesize that this contains a pluripotent stem cell population with potential valuable applications in orthopedic tissue engineering. Objectives using biomembranes harvested from rat segmental defects were to: (1) Culture biomembrane cells in specialized media to direct progenitor cells along bone or cartilage cell differentiation lineages; (2) evaluate harvested biomembranes for mesenchymal stem cell markers, and (3) define relevant gene expression patterns in harvested biomembranes using microarray analysis. Culture in osteogenic media produced mineralized nodules; culture in chondrogenic media produced masses containing chondroitin sulfate/sulfated proteoglycans. Molecular analysis of biomembrane cells versus control periosteum showed significant upregulation of key genes functioning in mesenchymal stem cell differentiation, development, maintenance, and proliferation. Results identified significant upregulation of WNT receptor signaling pathway genes and significant upregulation of BMP signaling pathway genes. Findings confirm that the biomembrane has a pluripotent stem cell population. The ability to heal large bone defects is clinically challenging, and novel tissue engineering uses of the biomembrane hold great promise in treating non-unions, open fractures with large bone loss and/or infections, and defects associated with tumor resection.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Das S, Tucker JA, Khullar S, Samant RS, Shevde LA. Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases. PLoS One 2012; 7:e34374. [PMID: 22479615 PMCID: PMC3315536 DOI: 10.1371/journal.pone.0034374] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/01/2012] [Indexed: 11/30/2022] Open
Abstract
The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh) pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon.
Collapse
Affiliation(s)
- Shamik Das
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - J. Allan Tucker
- Department of Pathology, University of South Alabama, Mobile, Alabama, United States of America
| | - Shikha Khullar
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
- Department of Radiology, University of South Alabama, Mobile, Alabama, United States of America
| | - Rajeev S. Samant
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Lalita A. Shevde
- Department of Oncologic Sciences, USA-Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| |
Collapse
|
29
|
Cheung CL, Sham PC, Xiao SM, Bow CH, Kung AWC. Meta-analysis of gene-based genome-wide association studies of bone mineral density in Chinese and European subjects. Osteoporos Int 2012; 23:131-42. [PMID: 21927923 PMCID: PMC3249198 DOI: 10.1007/s00198-011-1779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/05/2011] [Indexed: 12/19/2022]
Abstract
UNLABELLED Gene-based association approach could be regarded as a complementary analysis to the single SNP association analysis. We meta-analyzed the findings from the gene-based association approach using the genome-wide association studies (GWAS) data from Chinese and European subjects, confirmed several well established bone mineral density (BMD) genes, and suggested several novel BMD genes. INTRODUCTION The introduction of GWAS has greatly increased the number of genes that are known to be associated with common diseases. Nonetheless, such a single SNP GWAS has a lower power to detect genes with multiple causal variants. We aimed to assess the association of each gene with BMD variation at the spine and hip using gene-based GWAS approach. METHODS We studied 778 Hong Kong Southern Chinese (HKSC) women and 5,858 Northern Europeans (dCG); age, sex, and weight were adjusted in the model. The main outcome measure was BMD at the spine and hip. RESULTS Nine genes showed suggestive p value in HKSC, while 4 and 17 genes showed significant and suggestive p values respectively in dCG. Meta-analysis using weighted Z-transformed test confirmed several known BMD genes and suggested some novel ones at 1q21.3, 9q22, 9q33.2, 20p13, and 20q12. Top BMD genes were significantly associated with connective tissue, skeletal, and muscular system development and function (p < 0.05). Gene network inference revealed that a large number of these genes were significantly connected with each other to form a functional gene network, and several signaling pathways were strongly connected with these gene networks. CONCLUSION Our gene-based GWAS confirmed several BMD genes and suggested several novel BMD genes. Genetic contribution to BMD variation may operate through multiple genes identified in this study in functional gene networks. This finding may be useful in identifying and prioritizing candidate genes/loci for further study.
Collapse
Affiliation(s)
- C-L Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China.
| | | | | | | | | |
Collapse
|
30
|
The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer. Int J Breast Cancer 2011; 2012:298623. [PMID: 22295244 PMCID: PMC3262601 DOI: 10.1155/2012/298623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 01/29/2023] Open
Abstract
The microenvironment at the site of tumor metastasis plays a key role in determining the fate of the metastasizing tumor cells. This ultimately has a direct impact on the progression of cancer. Bone is the preferred site of metastasis of breast cancer. Painful, debilitating osteolytic lesions are formed as a result of crosstalk between breast cancer cells and cells in the bone, predominantly the osteoblasts and osteoclasts. In this paper, we have discussed the temporal and spatial role of hedgehog (Hh) signaling in influencing the fate of metastatic breast cancer cells in bone. By virtue of its secreted ligands, the Hh pathway is capable of homotypic and heterotypic signaling and consequently altering the microenvironment in the bone. We also have put into perspective the therapeutic implications of using Hh inhibitors to prevent and/or treat bone metastases of breast cancer.
Collapse
|
31
|
Qiu N, Cao L, David V, Quarles LD, Xiao Z. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PLoS One 2010; 5:e15240. [PMID: 21151991 PMCID: PMC2996304 DOI: 10.1371/journal.pone.0015240] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/02/2010] [Indexed: 11/18/2022] Open
Abstract
Pkd1 localizes to primary cilia in osteoblasts and osteocytes. Targeted deletion of Pkd1 in osteoblasts results in osteopenia and abnormalities in Runx2-mediated osteoblast development. Kif3a, an intraflagellar transport protein required for cilia function, is also expressed in osteoblasts. To assess the relationship between Pkd1 and primary cilia function on bone development, we crossed heterozygous Pkd1- and Kif3a-deficient mice to create compound Pkd1 and Kif3a-deficient mice. Pkd1 haploinsufficiency (Pkd1(+/Δ)) resulted in osteopenia, characterized by decreased bone mineral density, trabecular bone volume, and cortical thickness. In addition, deficiency of Pkd1 resulted in impaired osteoblastic differentiation and enhanced adipogenesis in both primary osteoblasts and/or bone marrow stromal cell cultures. These changes were associated with decreased Runx2 expression, increased PPARγ expression, and impaired hedgehog signaling as evidenced by decreased Gli2 expression in bone and osteoblast cultures. In contrast, heterozygous Kif3a(+/Δ) mice display no abnormalities in skeletal development or osteoblast function, but exhibited decreased adipogenic markers in bone and impaired adipogenesis in vitro in association with decreased PPARγ expression and upregulation of Gli2. Superimposed Kif3a deficiency onto Pkd1(+/Δ) mice paradoxically corrected the effects of Pkd1 deficiency on bone mass, osteoblastic differentiation, and adipogenesis. In addition, Runx2, PPARγ and Gli2 expression in bone and osteoblasts were normalized in compound double Pkd1(+/Δ) and Kif3a(+/Δ) heterozygous mice. The administration of sonic hedgehog, overexpression of Gli2, and the PC1 C-tail construct all increased Gli2 and Runx2-II expression, but decreased PPARγ2 gene expression in C3H10T1/2 cells. Our findings suggest a role for Pkd1 and Kif3a to counterbalance the regulation of osteogenesis and adipogenesis through differential regulation of Runx2 and PPARγ by Gli2.
Collapse
Affiliation(s)
- Ni Qiu
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Division of Nephrology, Department of Medicine, the University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Li Cao
- Division of Nephrology, Department of Medicine, the University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Valentin David
- Division of Nephrology, Department of Medicine, the University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - L. Darryl Quarles
- Division of Nephrology, Department of Medicine, the University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Zhousheng Xiao
- Division of Nephrology, Department of Medicine, the University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|