1
|
Priyanka G, Singiri JR, Novoplansky N, Grafi G. Short Exposure to Full Moonlight Has a Long-Term Impact on Brassica juncea Cell Activity and Growth. PLANT, CELL & ENVIRONMENT 2025; 48:3038-3051. [PMID: 39679718 PMCID: PMC11963477 DOI: 10.1111/pce.15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Lunar farming, often regarded as a myth, is regularly practiced in many places around the world (e.g., India) where framers organized their agricultural activities according to moon phases. Early and recent work showed that exposure to moonlight affects the life cycle of plants, from seed germination and vegetative growth to fruit maturation and dispersal. Here we addressed the long-term effect of short exposure to full moonlight (FML) on cellular activities in Brassica juncea by analyzing protein and metabolite profiles immediately after 3-night-exposure (3NE) or 7 and 15 days after exposure (DAE) to FML. This study shows an increase in nuclear size following 3NE to FML, which was accompanied by changes in protein and metabolite profiles. We identified significant alterations in protein and metabolite profiles between FML and dark-treated plants in conjunction with developmental stages, which persisted long after exposure to FML. Most notable are the changes in composition of metabolite interconversion enzymes (MIEs) at various developmental stages which were intensified in FML-treated plants. Changes in MIEs were accompanied by significant alterations in metabolite composition and level, particularly at 15DAE, including branched-chain amino acids (e.g., valine, leucine), multiple sugars (raffinose, glucose, sucrose) as well as the tricarboxylic acid (TCA) cycle intermediates malic acid and citric acid. Thus, our results show that short-term exposure to FML triggers a developmental switch resulting in a long-term impact on plant performance that brings about an increase in cell activities and consequently enhanced growth. Our results call for meticulous research on this lunar phenomenon and its potential to enhance crop plant growth and development.
Collapse
Affiliation(s)
- Govindegowda Priyanka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben GurionIsrael
| | - Jeevan R. Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben GurionIsrael
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben GurionIsrael
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben GurionIsrael
| |
Collapse
|
2
|
Singiri JR, Priyanka G, Trishla VS, Adler-Agmon Z, Grafi G. Moonlight Is Perceived as a Signal Promoting Genome Reorganization, Changes in Protein and Metabolite Profiles and Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:1121. [PMID: 36903981 PMCID: PMC10004791 DOI: 10.3390/plants12051121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Rhythmic exposure to moonlight has been shown to affect animal behavior, but its effects on plants, often observed in lunar agriculture, have been doubted and often regarded as myth. Consequently, lunar farming practices are not well scientifically supported, and the influence of this conspicuous environmental factor, the moon, on plant cell biology has hardly been investigated. We studied the effect of full moonlight (FML) on plant cell biology and examined changes in genome organization, protein and primary metabolite profiles in tobacco and mustard plants and the effect of FML on the post-germination growth of mustard seedlings. Exposure to FML was accompanied by a significant increase in nuclear size, changes in DNA methylation and cleavage of the histone H3 C-terminal region. Primary metabolites associated with stress were significantly increased along with the expression of stress-associated proteins and the photoreceptors phytochrome B and phototropin 2; new moon experiments disproved the light pollution effect. Exposure of mustard seedlings to FML enhanced growth. Thus, our data show that despite the low-intensity light emitted by the moon, it is an important environmental factor perceived by plants as a signal, leading to alteration in cellular activities and enhancement of plant growth.
Collapse
|
3
|
Vats S, Kumar V, Mandlik R, Patil G, Sonah H, Roy J, Sharma TR, Deshmukh R. Reference Guided De Novo Genome Assembly of Transformation Pliable Solanum lycopersicum cv. Pusa Ruby. Genes (Basel) 2023; 14:570. [PMID: 36980842 PMCID: PMC10047940 DOI: 10.3390/genes14030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Solanum lycopersicum cv. Pusa Ruby (PR) is a superior tomato cultivar routinely used as a model tomato variety. Here, we report a reference-guided genome assembly for PR, covering 97.6% of the total single-copy genes in the solanales order. The PR genome contains 34,075 genes and 423,288 variants, out of which 127,131 are intragenic and 1232 are of high impact. The assembly was packaged according to PanSol guidelines (N50 = 60,396,827) with the largest scaffold measuring 85 megabases. The similarity of the PR genome assembly to Heinz1706, M82, and Fla.8924 was measured and the results suggest PR has the lowest affinity towards the hybrid Fla.8924. We then analyzed the regeneration efficiency of PR in comparison to another variety, Pusa Early Dwarf (PED). PR was found to have a high regeneration rate (45.51%) and therefore, we performed allele mining for genes associated with regeneration and found that only AGAMOUS-LIKE15 has a null mutation. Further, allele mining for fruit quality-related genes was also executed. The PR genome has an Ovate mutation leading to round fruit shape, causing economically undesirable fruit cracking. This genomic data can be potentially used for large scale crop improvement programs as well as functional annotation studies.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh 160014, Punjab, India
| | - Gunvant Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79410, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India
| | - Tilak Raj Sharma
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi 110001, Delhi, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| |
Collapse
|
4
|
Hernández-Coronado M, Dias Araujo PC, Ip PL, Nunes CO, Rahni R, Wudick MM, Lizzio MA, Feijó JA, Birnbaum KD. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev Cell 2022; 57:451-465.e6. [PMID: 35148835 PMCID: PMC8891089 DOI: 10.1016/j.devcel.2022.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Wounding is a trigger for both regeneration and defense in plants, but it is not clear whether the two responses are linked by common activation or regulated as trade-offs. Although plant glutamate-receptor-like proteins (GLRs) are known to mediate defense responses, here, we implicate GLRs in regeneration through dynamic changes in chromatin and transcription in reprogramming cells near wound sites. We show that genetic and pharmacological inhibition of GLR activity increases regeneration efficiency in multiple organ repair systems in Arabidopsis and maize. We show that the GLRs work through salicylic acid (SA) signaling in their effects on regeneration, and mutants in the SA receptor NPR1 are hyper-regenerative and partially resistant to GLR perturbation. These findings reveal a conserved mechanism that regulates a trade-off between defense and regeneration, and they also offer a strategy to improve regeneration in agriculture and conservation.
Collapse
Affiliation(s)
- Marcela Hernández-Coronado
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Poliana Coqueiro Dias Araujo
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Pui-Leng Ip
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Custódio O Nunes
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - Ramin Rahni
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA
| | - Michael M Wudick
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - Michael A Lizzio
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - José A Feijó
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742, USA
| | - Kenneth D Birnbaum
- New York University, Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
5
|
Dełeńko K, Nuc P, Kubiak D, Bielewicz D, Dolata J, Niedojadło K, Górka S, Jarmołowski A, Szweykowska-Kulińska Z, Niedojadło J. MicroRNA biogenesis and activity in plant cell dedifferentiation stimulated by cell wall removal. BMC PLANT BIOLOGY 2022; 22:9. [PMID: 34979922 PMCID: PMC8722089 DOI: 10.1186/s12870-021-03323-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Despite the frequent use of protoplast-to-plant system in in vitro cultures of plants, the molecular mechanisms regulating the first and most limiting stages of this process, i.e., protoplast dedifferentiation and the first divisions leading to the formation of a microcallus, have not been elucidated. RESULTS In this study, we investigated the function of miRNAs in the dedifferentiation of A. thaliana mesophyll cells in a process stimulated by the enzymatic removal of the cell wall. Leaf cells, protoplasts and CDPs (cells derived from protoplasts) cultured for 24, 72 and 120 h (first cell division). In protoplasts, a strong decrease in the amount of AGO1 in both the nucleus and the cytoplasm, as well as dicing bodies (DBs), which are considered to be sites of miRNA biogenesis, was shown. However during CDPs division, the amounts of AGO1 and DBs strongly increased. MicroRNA transcriptome studies demonstrated that lower amount of differentially expressed miRNAs are present in protoplasts than in CDPs cultured for 120 h. Then analysis of differentially expressed miRNAs, selected pri-miRNA and mRNA targets were performed. CONCLUSION This result indicates that miRNA function is not a major regulation of gene expression in the initial but in later steps of dedifferentiation during CDPs divisions. miRNAs participate in organogenesis, oxidative stress, nutrient deficiencies and cell cycle regulation in protoplasts and CDPs. The important role played by miRNAs in the process of dedifferentiation of mesophyll cells was confirmed by the increased mortality and reduced cell division of CDPs derived from mutants with defective miRNA biogenesis and miR319b expression.
Collapse
Affiliation(s)
- Konrad Dełeńko
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Przemysław Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Dawid Kubiak
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Dawid Bielewicz
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Sylwia Górka
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Artur Jarmołowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Zofia Szweykowska-Kulińska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.
| |
Collapse
|
6
|
Transcriptomic Changes in Internode Explants of Stinging Nettle during Callogenesis. Int J Mol Sci 2021; 22:ijms222212319. [PMID: 34830202 PMCID: PMC8618292 DOI: 10.3390/ijms222212319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Callogenesis, the process during which explants derived from differentiated plant tissues are subjected to a trans-differentiation step characterized by the proliferation of a mass of cells, is fundamental to indirect organogenesis and the establishment of cell suspension cultures. Therefore, understanding how callogenesis takes place is helpful to plant tissue culture, as well as to plant biotechnology and bioprocess engineering. The common herbaceous plant stinging nettle (Urtica dioica L.) is a species producing cellulosic fibres (the bast fibres) and a whole array of phytochemicals for pharmacological, nutraceutical and cosmeceutical use. Thus, it is of interest as a potential multi-purpose plant. In this study, callogenesis in internode explants of a nettle fibre clone (clone 13) was studied using RNA-Seq to understand which gene ontologies predominate at different time points. Callogenesis was induced with the plant growth regulators α-napthaleneacetic acid (NAA) and 6-benzyl aminopurine (BAP) after having determined their optimal concentrations. The process was studied over a period of 34 days, a time point at which a well-visible callus mass developed on the explants. The bioinformatic analysis of the transcriptomic dataset revealed specific gene ontologies characterizing each of the four time points investigated (0, 1, 10 and 34 days). The results show that, while the advanced stage of callogenesis is characterized by the iron deficiency response triggered by the high levels of reactive oxygen species accumulated by the proliferating cell mass, the intermediate and early phases are dominated by ontologies related to the immune response and cell wall loosening, respectively.
Collapse
|
7
|
Sasidharan V, Sánchez Alvarado A. The Diverse Manifestations of Regeneration and Why We Need to Study Them. Cold Spring Harb Perspect Biol 2021; 14:a040931. [PMID: 34750171 PMCID: PMC9438785 DOI: 10.1101/cshperspect.a040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
For hundreds of years, the question of why some organisms can regenerate missing body parts while others cannot has remained poorly understood. This has been due in great part to the inability to genetically, molecularly, and cellularly dissect this problem for most of the history of the field. It has only been in the past 20-30 years that important mechanistic advances have been made in methodologies that introduce loss and gain of gene function in animals that can regenerate. However, we still have a very incomplete understanding of how broadly regenerative abilities may be dispersed across species and whether or not such properties share a common evolutionary origin, which may have emerged independently or both. Understanding regeneration, therefore, will require rigorously practiced fundamental, curiosity-driven, discovery research. Expanding the number of research organisms used to study regeneration allows us to uncover aspects of this problem we may not yet know exist and simultaneously increases our chances of solving this long-standing problem of biology.
Collapse
|
8
|
Wen L, Li W, Parris S, West M, Lawson J, Smathers M, Li Z, Jones D, Jin S, Saski CA. Transcriptomic profiles of non-embryogenic and embryogenic callus cells in a highly regenerative upland cotton line (Gossypium hirsutum L.). BMC DEVELOPMENTAL BIOLOGY 2020; 20:25. [PMID: 33267776 PMCID: PMC7713314 DOI: 10.1186/s12861-020-00230-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022]
Abstract
Background Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. The critical genetic architecture of non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells in a highly regenerable cotton genotype is unknown. Results In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5333 differentially expressed genes (DEG) with 2534 genes upregulated and 2799 genes downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes were unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. Conclusions This comparative analysis of NEC and EC transcriptomes gives new insights into the genes involved in somatic embryogenesis in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-020-00230-4.
Collapse
Affiliation(s)
- Li Wen
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.,Department of Food and Biology Engineering, College of Food and Chemistry Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, People's Republic of China
| | - Wei Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Stephen Parris
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Matthew West
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - John Lawson
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Michael Smathers
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | | | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
9
|
Macnee NC, Rebstock R, Hallett IC, Schaffer RJ, Bulley SM. A review of current knowledge about the formation of native peridermal exocarp in fruit. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1019-1031. [PMID: 32571472 DOI: 10.1071/fp19135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2020] [Indexed: 05/09/2023]
Abstract
The outer skin layer in any plant is essential in offering a protective barrier against water loss and pathogen attack. Within fleshy fruit, the skin supports internal cell layers and can provide the initial cues in attracting seed-dispersing animals. The skin of a fruit, termed the exocarp, is a key element of consumer preference and a target for many breeding programs. Across fruiting species there is a huge diversity of exocarp types and these range from a simple single living cell layer (epidermis) often covered with a waxy layer, to complex multicellular suberised and dead cell layers (periderm), with various intermediate russet forms in between. Each exocarp can be interspersed with other structures such as hairs or spines. The epidermis has been well characterised and remains pluripotent with the help of the cells immediately under the epidermis. The periderm, in contrast, is the result of secondary meristematic activity, which replaces the epidermal layers, and is not well characterised in fruits. In this review we explore the structure, composition and mechanisms that control the development of a periderm type fruit exocarp. We draw upon literature from non-fleshy fruit species that form periderm tissue, from which a considerable amount of research has been undertaken.
Collapse
Affiliation(s)
- Nikolai C Macnee
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand; and School of Biological Science, The University of Auckland, Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mount Albert, Auckland 1025, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Auckland, New Zealand; and The New Zealand Institute for Plant and Food Research Limited, 55 Old Mill Road, RD3, Motueka 7198, New Zealand
| | - Sean M Bulley
- The New Zealand Institute for Plant and Food Research Limited, 412 No. 1 Road, RD2, Te Puke 3182, New Zealand; and Corresponding author.
| |
Collapse
|
10
|
Ramkumar TR, Lenka SK, Arya SS, Bansal KC. A Short History and Perspectives on Plant Genetic Transformation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2124:39-68. [PMID: 32277448 DOI: 10.1007/978-1-0716-0356-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant genetic transformation is an important technological advancement in modern science, which has not only facilitated gaining fundamental insights into plant biology but also started a new era in crop improvement and commercial farming. However, for many crop plants, efficient transformation and regeneration still remain a challenge even after more than 30 years of technical developments in this field. Recently, FokI endonuclease-based genome editing applications in plants offered an exciting avenue for augmenting crop productivity but it is mainly dependent on efficient genetic transformation and regeneration, which is a major roadblock for implementing genome editing technology in plants. In this chapter, we have outlined the major historical developments in plant genetic transformation for developing biotech crops. Overall, this field needs innovations in plant tissue culture methods for simplification of operational steps for enhancing the transformation efficiency. Similarly, discovering genes controlling developmental reprogramming and homologous recombination need considerable attention, followed by understanding their role in enhancing genetic transformation efficiency in plants. Further, there is an urgent need for exploring new and low-cost universal delivery systems for DNA/RNA and protein into plants. The advancements in synthetic biology, novel vector systems for precision genome editing and gene integration could potentially bring revolution in crop-genetic potential enhancement for a sustainable future. Therefore, efficient plant transformation system standardization across species holds the key for translating advances in plant molecular biology to crop improvement.
Collapse
Affiliation(s)
- Thakku R Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL, USA
| | - Sangram K Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Sagar S Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Kailash C Bansal
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India.
| |
Collapse
|
11
|
Fehér A. Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? FRONTIERS IN PLANT SCIENCE 2019; 10:536. [PMID: 31134106 PMCID: PMC6524723 DOI: 10.3389/fpls.2019.00536] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/08/2019] [Indexed: 05/18/2023]
Abstract
Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant developmental biology. The history of plant cell and tissue culture dates back to more than a century. Its basic methodology and terminology were formulated preceding modern plant biology. Recent progress in molecular and cell biology techniques allowed unprecedented insights into the underlying processes of plant cell/tissue culture and regeneration. The main aim of this review is to provide a theoretical framework supported by recent experimental findings to reconsider certain historical, even dogmatic, statements widely used by plant scientists and teachers such as "plant cells are totipotent" or "callus is a mass of dedifferentiated cells," or "somatic embryos have a single cell origin." These statements are based on a confused terminology. Clarification of it might help to avoid further misunderstanding and to overcome potential "terminology-raised" barriers in plant research.
Collapse
Affiliation(s)
- Attila Fehér
- Department of Plant Biology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- *Correspondence: Attila Fehér, ;
| |
Collapse
|
12
|
Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology. Curr Top Microbiol Immunol 2018; 418:489-507. [PMID: 29959543 DOI: 10.1007/82_2018_97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The last decade has seen significant strides in Agrobacterium-mediated plant transformation technology. This has not only expanded the number of crop species that can be transformed by Agrobacterium, but has also made it possible to routinely transform several recalcitrant crop species including cereals (e.g., maize, sorghum, and wheat). However, the technology is limited by the random nature of DNA insertions, genotype dependency, low frequency of quality events, and variation in gene expression arising from genomic insertion sites. A majority of these deficiencies have now been addressed by improving the frequency of quality events, developing genotype-independent transformation capability in maize, developing an Agrobacterium-based site-specific integration technology for precise gene targeting, and adopting Agrobacterium-delivered CRISPR-Cas genes for gene editing. These improved transformation technologies are discussed in detail in this chapter.
Collapse
|
13
|
Wang X, Chen L, Yang A, Bu C, He Y. Quantitative Proteomics Analysis of Developmental Reprogramming in Protoplasts of the Moss Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2017; 58:946-961. [PMID: 28398533 DOI: 10.1093/pcp/pcx039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
The moss Physcomitrella patens is a model system for studying Plant developmental processes. To better understand the biochemical and physiological changes involved in developmental reprogramming, we conducted a quantitative proteomics analysis for protonemata, protoplasts made therefrom and protoplasts regenerated for 2 d. Using an iTRAQ peptide labeling strategy and liquid chromatography-tandem mass spectrometry (LC-MS/MS), >3,000 peptides and 1,000 proteins were quantified. Of these, 162 proteins were identified as having differential abundances during developmental reprogramming. These proteins were involved in various biological functions, such as defense, energy production, translation, metabolism, protein destination and storage, transcription, transport, cell growth/division, cell structure and signal transduction. Of these, the proteins involved in energy production and translation increased in abundance, while many of the metabolism and defense proteins decreased in abundance. In addition, most of the cell growth/division, protein stability and cell structure proteins were also down-regulated. This is the first report on the metabolic changes involved in developmental reprogramming in protoplasts. The significance of metabolic networks in developmental programming is beginning to emerge. Our study suggested that stress signals, energy metabolism and ribosomal proteins are pivotal components during developmental programming.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit trees, Beijing University of Agriculture, Beijing, China
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lu Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Aizhen Yang
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beijing, China
| | - Chunya Bu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beijing, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
14
|
Perry SE, Zheng Q, Zheng Y. Transcriptome analysis indicates that GmAGAMOUS-Like 15 may enhance somatic embryogenesis by promoting a dedifferentiated state. PLANT SIGNALING & BEHAVIOR 2016; 11:e1197463. [PMID: 27302197 PMCID: PMC4991326 DOI: 10.1080/15592324.2016.1197463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 05/08/2023]
Abstract
Somatic embryogenesis (SE) is an important avenue for regeneration of many plants. Although documented over half a century ago, the process of SE remains poorly understood and many factors impact upon competence for SE. We recently reported that a Glycine max ortholog of a MADS-domain transcription factor that promotes SE in Arabidopsis also enhances SE in soybean. We recently assessed transcriptomes in 35Spro:GmAGL15 compared to control during an early time-course of SE and in response to 35Spro:AtAGL15. We expand here upon discussion of the types of genes regulated by overexpression of AGL15 and characterize the step of SE that may be affected by altered accumulation of AGL15.
Collapse
Affiliation(s)
- Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington KY, USA
| | - Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington KY, USA
| | - Yumei Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington KY, USA
| |
Collapse
|
15
|
Lee K, Park OS, Seo PJ. RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli. Mol Cells 2016; 39:484-94. [PMID: 27215197 PMCID: PMC4916400 DOI: 10.14348/molcells.2016.0049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 11/27/2022] Open
Abstract
Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756,
Korea
| | - Ok-Sun Park
- Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756,
Korea
| | - Pil Joon Seo
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756,
Korea
- Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756,
Korea
| |
Collapse
|
16
|
Probst AV, Mittelsten Scheid O. Stress-induced structural changes in plant chromatin. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:8-16. [PMID: 26042538 DOI: 10.1016/j.pbi.2015.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Stress defense in plants is elaborated at the level of protection and adaptation. Dynamic changes in sophisticated chromatin substructures and concomitant transcriptional changes play an important role in response to stress, as illustrated by the transient rearrangement of compact heterochromatin structures or the modulation of chromatin composition and modification upon stress exposure. To connect cytological, developmental, and molecular data around stress and chromatin is currently an interesting, multifaceted, and sometimes controversial field of research. This review highlights some of the most recent findings on nuclear reorganization, histone variants, histone chaperones, DNA- and histone modifications, and somatic and meiotic heritability in connection with stress.
Collapse
Affiliation(s)
- Aline V Probst
- CNRS UMR6293 - INSERM U1103 - Clermont University, GReD, Campus Universitaire des Cézeaux, 10 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
17
|
Rapp YG, Ransbotyn V, Grafi G. Senescence Meets Dedifferentiation. PLANTS 2015; 4:356-68. [PMID: 27135333 PMCID: PMC4844402 DOI: 10.3390/plants4030356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 01/07/2023]
Abstract
Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation.
Collapse
Affiliation(s)
- Yemima Givaty Rapp
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990 Israel.
| | - Vanessa Ransbotyn
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990 Israel.
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990 Israel.
| |
Collapse
|
18
|
Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:403-16. [DOI: 10.1016/j.bbagrm.2014.07.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
|
19
|
Jiang F, Feng Z, Liu H, Zhu J. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation. FRONTIERS IN PLANT SCIENCE 2015; 6:1028. [PMID: 26635851 PMCID: PMC4649052 DOI: 10.3389/fpls.2015.01028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/05/2015] [Indexed: 05/02/2023]
Abstract
Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells) are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.
Collapse
Affiliation(s)
- Fangwei Jiang
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhenhua Feng
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hailiang Liu
- Translational Center for Stem Cell Research, Tongji University School of Medicine, Tongji Hospital, Shanghai, China
- *Correspondence: Hailiang Liu, ; Jian Zhu,
| | - Jian Zhu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Hailiang Liu, ; Jian Zhu,
| |
Collapse
|
20
|
Stress induces cell dedifferentiation in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:378-84. [PMID: 25086338 DOI: 10.1016/j.bbagrm.2014.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
Accumulating evidence lends support to the proposal that a major theme in plant responses to stresses is dedifferentiation, whereby mature cells acquire stem cell features (e.g. open chromatin conformation) prior to acquisition of a new cell fate. In this review, we discuss data addressing plant cell plasticity and provide evidence linking stress, dedifferentiation and a switch in cell fate. We emphasize the epigenetic modifications associated with stress-induced global changes in chromatin structure and conclude with the implications for genetic variation and for induced pluripotent stem cells in animals. It appears that stress is perceived as a signal that directs plant cells to undergo reprogramming (dedifferentiation) as a means for adaptation and in preparation for a stimulus-based acquisition of a new cell fate. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|