1
|
Boscq S, Billoud B, Charrier B. Cell-Autonomous and Non-Cell-Autonomous Mechanisms Concomitantly Regulate the Early Developmental Pattern in the Kelp Saccharina latissima Embryo. PLANTS (BASEL, SWITZERLAND) 2024; 13:1341. [PMID: 38794413 PMCID: PMC11125204 DOI: 10.3390/plants13101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Brown algae are multicellular organisms that have evolved independently from plants and animals. Knowledge of the mechanisms involved in their embryogenesis is available only for the Fucus, Dictyota, and Ectocarpus, which are brown algae belonging to three different orders. Here, we address the control of cell growth and cell division orientation in the embryo of Saccharina latissima, a brown alga belonging to the order Laminariales, which grows as a stack of cells through transverse cell divisions until growth is initiated along the perpendicular axis. Using laser ablation, we show that apical and basal cells have different functions in the embryogenesis of this alga, with the apical cell being involved mainly in growth and basal cells controlling the orientation of cell division by inhibiting longitudinal cell division and thereby the widening of the embryo. These functions were observed in the very early development before the embryo reached the 8-cell stage. In addition, the growth of the apical and basal regions appears to be cell-autonomous, because there was no compensation for the loss of a significant part of the embryo upon laser ablation, resulting in smaller and less elongated embryos compared with intact embryos. In contrast, the orientation of cell division in the apical region of the embryo appears to be controlled by the basal cell only, which suggests a polarised, non-cell-autonomous mechanism. Altogether, our results shed light on the early mechanisms of growth rate and growth orientation at the onset of the embryogenesis of Saccharina, in which non-cell-specific cell-autonomous and cell-specific non-cell-autonomous processes are involved. This complex control differs from the mechanisms described in the other brown algal embryos, in which the establishment of embryo polarity depends on environmental cues.
Collapse
|
2
|
Marshall AR, Maniou E, Moulding D, Greene NDE, Copp AJ, Galea GL. Two-Photon Cell and Tissue Level Laser Ablation Methods to Study Morphogenetic Biomechanics. Methods Mol Biol 2022; 2438:217-230. [PMID: 35147945 PMCID: PMC7614166 DOI: 10.1007/978-1-0716-2035-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laser ablation is routinely performed to infer mechanical tension in cells and tissues. Here we describe our method of two-photon laser ablation at the cellular and tissue level in mouse embryos. The primary outcome of these experiments is initial retraction following ablation, which correlates with, and so can be taken as a measure of, the tensile stress that structure was under before ablation. Several experimental variables can affect interpretation of ablation tests. Pre-test factors include differences in physical properties such as viscoelasticity between experimental conditions. Factors relevant during the test include viability of the cells at the point of ablation, image acquisition rate and the potential for overzealous ablations to cause air bubbles through heat dissipation. Post-test factors include intensity-biased image registration that can artificially produce apparent directionality. Applied to the closing portion of the mouse spinal neural tube, these methods have demonstrated long-range biomechanical coupling of the embryonic structure and have identified highly contractile cell populations involved in its closure process.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Dale Moulding
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
- Birth Defects Research Centre, UCL GOS ICH, London, UK.
| |
Collapse
|
3
|
Stower MJ, Srinivas S. Advances in live imaging early mouse development: exploring the researcher's interdisciplinary toolkit. Development 2021; 148:dev199433. [PMID: 34897401 PMCID: PMC7615354 DOI: 10.1242/dev.199433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Live imaging is an important part of the developmental biologist's armoury of methods. In the case of the mouse embryo, recent advances in several disciplines including embryo culture, microscopy hardware and computational analysis have all contributed to our ability to probe dynamic events during early development. Together, these advances have provided us with a versatile and powerful 'toolkit', enabling us not only to image events during mouse embryogenesis, but also to intervene with them. In this short Spotlight article, we summarise advances and challenges in using live imaging specifically for understanding early mouse embryogenesis.
Collapse
Affiliation(s)
- Matthew J. Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
4
|
Culshaw LH, Savery D, Greene NDE, Copp AJ. Mouse whole embryo culture: Evaluating the requirement for rat serum as culture medium. Birth Defects Res 2019; 111:1165-1177. [PMID: 31237114 PMCID: PMC6778057 DOI: 10.1002/bdr2.1538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/18/2023]
Abstract
Background Whole embryo culture is a valuable research method in mammalian developmental biology and birth defects research, enabling longitudinal studies of explanted organogenesis‐stage rodent embryos. Rat serum is the primary culture medium, and can sustain growth and development over limited periods as in utero. However, the cost, labor, and time to produce culture serum are factors limiting the uptake of the methodology. The goal of replacing or at least reducing rat serum usage in culture would be in accordance with the principles of “replacement, reduction, and refinement” of animals in research (the 3Rs). Methods We performed cultures of mouse embryos for 24 hr from embryonic day 8.5 in serum‐free media or in rat serum diluted with defined media, compared with 100% rat serum. Developmental parameters scored after culture included yolk sac circulation, dorsal axial length, somite number, protein content, and completion of cranial neural tube closure. Results A literature review revealed use of both serum‐free and diluted rat serum‐based media in whole embryo culture studies, but with almost no formal comparisons of culture success against 100% rat serum. Two serum‐free media were tested, but neither could sustain development as in 100% rat serum. Dilution of rat serum 1:1 with Glasgow Minimum Essential Medium plus defined supplements supported growth and development as well as whole rat serum, whereas other diluent media yielded substandard outcomes. Conclusion Rat serum usage cannot be avoided, to achieve high quality mouse embryo cultures, but rat usage can be reduced using medium containing diluted serum.
Collapse
Affiliation(s)
- Lucy H Culshaw
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, London, United Kingdom
| | - Dawn Savery
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
El Sebae GK, Malatos JM, Cone MKE, Rhee S, Angelo JR, Mager J, Tremblay KD. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors. Development 2018; 145:dev.168658. [PMID: 30232173 DOI: 10.1242/dev.168658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
The definitive endoderm (DE) is the embryonic germ layer that forms the gut tube and associated organs, including thymus, lungs, liver and pancreas. To understand how individual DE cells furnish gut organs, genetic fate mapping was performed using the Rosa26lacZ Cre-reporter paired with a tamoxifen-inducible DE-specific Cre-expressing transgene. We established a low tamoxifen dose that infrequently induced heritable lacZ expression in a single cell of individual E8.5 mouse embryos and identified clonal cell descendants at E16.5. As expected, only a fraction of the E16.5 embryos contained lacZ-positive clonal descendants and a subset of these contained descendants in multiple organs, revealing novel ontogeny. Furthermore, immunohistochemical analysis was used to identify lacZ-positive hepatocytes and biliary epithelial cells, which are the cholangiocyte precursors, in each clonally populated liver. Together, these data not only uncover novel and suspected lineage relationships between DE-derived organs, but also illustrate the bipotential nature of individual hepatoblasts by demonstrating that single hepatoblasts contribute to both the hepatocyte and the cholangiocyte lineage in vivo.
Collapse
Affiliation(s)
- Gabriel K El Sebae
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Joseph M Malatos
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary-Kate E Cone
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Siyeon Rhee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse R Angelo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Palaria A, Angelo JR, Guertin TM, Mager J, Tremblay KD. Patterning of the hepato-pancreatobiliary boundary by BMP reveals heterogeneity within the murine liver bud. Hepatology 2018; 68:274-288. [PMID: 29315687 PMCID: PMC6033643 DOI: 10.1002/hep.29769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/20/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
During development, the endoderm initiates organ-restricted gene expression patterns in a spatiotemporally controlled manner. This process, termed induction, requires signals from adjacent mesodermal derivatives. Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) emanating from the cardiac mesoderm and the septum transversum mesenchyme (STM), respectively, are believed to be simultaneously and uniformly required to directly induce hepatic gene expression from the murine endoderm. Using small molecule inhibitors of BMP signals during liver bud induction in the developing mouse embryo, we found that BMP signaling was not uniformly required to induce hepatic gene expression. Although BMP inhibition caused an overall reduction in the number of induced hepatoblasts, the STM-bounded posterior liver bud demonstrated the most severe loss of the essential hepatic transcription factor, hepatocyte nuclear factor 4-α (HNF4α), whereas the sinus venosus-lined anterior liver bud was less affected. We found that the posterior liver bud progenitors were anteriorly displaced and aberrantly activated pancreatobiliary markers, including sex-determining region Y-box 9 (SOX9). Additionally, we found that ectopically expressed SOX9 inhibited HNF4α and that BMP was indirectly required for hepatoblast induction. Finally, because previous studies have demonstrated that FGF signals are essential for anterior but not posterior liver bud induction, we examined synchronous BMP and FGF inhibition and found this led to a nearly complete loss of hepatoblasts. CONCLUSION BMP signaling is required to maintain the hepato-pancreatobiliary boundary, at least in part, by indirectly repressing SOX9 in the hepatic endoderm. BMP and FGF signals are each required for the induction of spatially complementary subsets of hepatoblasts. These results underscore the importance of studying early inductive processes in the whole embryo. (Hepatology 2018;68:274-288).
Collapse
Affiliation(s)
- Amrita Palaria
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Jesse R Angelo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Taylor M Guertin
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
7
|
Angelo JR, Tremblay KD. Identification and fate mapping of the pancreatic mesenchyme. Dev Biol 2018; 435:15-25. [PMID: 29329912 DOI: 10.1016/j.ydbio.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
The murine pancreas buds from the ventral embryonic endoderm at approximately 8.75 dpc and a second pancreas bud emerges from the dorsal endoderm by 9.0 dpc. Although it is clear that secreted signals from adjacent mesoderm-derived sources are required for both the appropriate emergence and further refinement of the pancreatic endoderm, neither the exact signals nor the requisite tissue sources have been defined in mammalian systems. Herein we use DiI fate mapping of cultured murine embryos to identify the embryonic sources of both the early inductive and later condensed pancreatic mesenchyme. Despite being capable of supporting pancreas induction from dorsal endoderm in co-culture experiments, we find that in the context of the developing embryo, the dorsal aortae as well as the paraxial, intermediate, and lateral mesoderm derivatives only transiently associate with the dorsal pancreas bud, producing descendants that are decidedly anterior to the pancreas bud. Unlike these other mesoderm derivatives, the axial (notochord) descendants maintain association with the dorsal pre-pancreatic endoderm and early pancreas bud. This fate mapping data points to the notochord as the likely inductive source in vivo while also revealing dynamic morphogenetic movements displayed by individual mesodermal subtypes. Because none of the mesoderm examined above produced the pancreatic mesenchyme that condenses around the induced bud to support exocrine and endocrine differentiation, we also sought to identify the mesodermal origins of this mesenchyme. We identify a portion of the coelomic mesoderm that contributes to the condensed pancreatic mesenchyme. In conclusion, we identify a portion of the notochord as a likely source of the signals required to induce and maintain the early dorsal pancreas bud, demonstrate that the coelomic mesothelium contributes to the dorsal and ventral pancreatic mesenchyme, and provide insight into the dynamic morphological rearrangements of mesoderm-derived tissues during early organogenesis stages of mammalian development.
Collapse
Affiliation(s)
- Jesse R Angelo
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary&Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
8
|
Galea GL, Cho YJ, Galea G, Molè MA, Rolo A, Savery D, Moulding D, Culshaw LH, Nikolopoulou E, Greene NDE, Copp AJ. Biomechanical coupling facilitates spinal neural tube closure in mouse embryos. Proc Natl Acad Sci U S A 2017; 114:E5177-E5186. [PMID: 28607062 PMCID: PMC5495245 DOI: 10.1073/pnas.1700934114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neural tube (NT) formation in the spinal region of the mammalian embryo involves a wave of "zippering" that passes down the elongating spinal axis, uniting the neural fold tips in the dorsal midline. Failure of this closure process leads to open spina bifida, a common cause of severe neurologic disability in humans. Here, we combined a tissue-level strain-mapping workflow with laser ablation of live-imaged mouse embryos to investigate the biomechanics of mammalian spinal closure. Ablation of the zippering point at the embryonic dorsal midline causes far-reaching, rapid separation of the elevating neural folds. Strain analysis revealed tissue expansion around the zippering point after ablation, but predominant tissue constriction in the caudal and ventral neural plate zone. This zone is biomechanically coupled to the zippering point by a supracellular F-actin network, which includes an actin cable running along the neural fold tips. Pharmacologic inhibition of F-actin or laser ablation of the cable causes neural fold separation. At the most advanced somite stages, when completion of spinal closure is imminent, the cable forms a continuous ring around the neuropore, and simultaneously, a new caudal-to-rostral zippering point arises. Laser ablation of this new closure initiation point causes neural fold separation, demonstrating its biomechanical activity. Failure of spinal closure in pre-spina bifida Zic2Ku mutant embryos is associated with altered tissue biomechanics, as indicated by greater neuropore widening after ablation. Thus, this study identifies biomechanical coupling of the entire region of active spinal neurulation in the mouse embryo as a prerequisite for successful NT closure.
Collapse
Affiliation(s)
- Gabriel L Galea
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom;
| | - Young-June Cho
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Gauden Galea
- Division of Noncommunicable Diseases and Promoting Health Through the Life Course, World Health Organization Regional Office for Europe, Copenhagen DK-2100, Denmark
| | - Matteo A Molè
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Ana Rolo
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Dawn Savery
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Dale Moulding
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Lucy H Culshaw
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Evanthia Nikolopoulou
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| |
Collapse
|
9
|
Siedlik MJ, Nelson CM. Regulation of tissue morphodynamics: an important role for actomyosin contractility. Curr Opin Genet Dev 2015; 32:80-5. [PMID: 25748251 DOI: 10.1016/j.gde.2015.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Forces arising from contractile actomyosin filaments help shape tissue form during morphogenesis. Developmental events that result from actomyosin contractility include tissue elongation, bending, budding, and collective migration. Here, we highlight recent insights into these morphogenetic processes from the perspective of actomyosin contractility as a key regulator. Emphasis is placed on a range of results obtained through live imaging, culture, and computational methods. Combining these approaches in the future has the potential to generate a robust, quantitative understanding of tissue morphodynamics.
Collapse
Affiliation(s)
- Michael J Siedlik
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
10
|
Wang J, Rhee S, Palaria A, Tremblay KD. FGF signaling is required for anterior but not posterior specification of the murine liver bud. Dev Dyn 2014; 244:431-43. [PMID: 25302779 DOI: 10.1002/dvdy.24215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The definitive endoderm arises as a naive epithelial sheet that produces the entire gut tube and associated organs including the liver, pancreas and lungs. Murine explant studies demonstrate that fibroblast growth factor (FGF) signaling from adjacent tissues is required to induce hepatic gene expression from isolated foregut endoderm. The requirement of FGF signaling during liver development is examined by means of small molecule inhibition during whole embryo culture. RESULTS Loss of FGF signaling before hepatic induction results in morphological defects and gene expression changes that are confined to the anterior liver bud. In contrast the posterior portion of the liver bud remains relatively unaffected. Because FGF is thought to act as a morphogen during endoderm organogenesis, the ventral pancreas was also examined after FGF inhibition. Although the size of the ventral pancreas is not affected, loss of FGF signaling results in a significantly higher density of ventral pancreas cells. CONCLUSIONS The requirement for FGF-mediated induction of hepatic gene expression differs across the anterior/posterior axis of the developing liver bud. These results underscore the importance of studying tissue differentiation in the context of the whole embryo.
Collapse
Affiliation(s)
- Jikui Wang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | | | | | | |
Collapse
|