1
|
Manescu MD, Catalin B, Baldea I, Mateescu VO, Rosu GC, Boboc IKS, Istrate‐Ofiteru A, Liliac IM, Streba CT, Kumar‐Singh S, Pirici D. Aquaporin 4 modulation drives amyloid burden and cognitive abilities in an APPPS1 mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e70164. [PMID: 40329616 PMCID: PMC12056304 DOI: 10.1002/alz.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Deficiency in the aquaporin-4 (AQP4) water channel has been linked to impaired amyloid beta (Aβ) clearance. However, a detailed morphopathological analysis of amyloid deposition following AQP4 therapeutic modulation remains unexplored. METHODS Two-month-old amyloid precursor protein presenilin 1 (APPPS1) mice were treated daily for 28 days with either the AQP4 facilitator N-(3-(Benzyloxy)pyridin-2-yl) benzene-sulfonamide (TGN-073) or the AQP4 inhibitor N-(1,3,4-thiadiazol-2-yl)pyridine-3-carboxamide dihydrochloride (TGN-020) (both at 200 mg/kg). Controls included vehicle-treated APPPS1 and WT C57BL/6J mice. Comprehensive histopathological, biochemical, and behavioral analyses were conducted. RESULTS Mice treated with AQP4 facilitator showed a significant reduction in total Aβ, fibrillar deposits, and soluble Aβ, while the AQP4 inhibitor caused a substantial increase in brain Aβ. AQP4-facilitator treatment also reduced Aβ40 levels and Aβ40/Aβ42 ratio, whereas the inhibitor treatment increased both Aβ40 and Aβ42. Additionally, facilitator-treated mice demonstrated reduced anxiety and improved memory performance. DISCUSSION These findings suggest that AQP4 modulation is a promising strategy to enhance Aβ clearance and a potential therapeutic target in Alzheimer's disease. HIGHLIGHTS Intramural periarterial drainage of the interstitial fluid mediated by aquaporin-4 (AQP4) is a key element that ensures clearance of catabolites/Aβ peptide from within the brain parenchyma. Inhibition of AQP4 in an APPPS1 mouse model of AD leads to increased amyloid deposition and deficient behavior compared to untreated transgenic animals. Pharmaceutical facilitation of AQP4 in the same APPPS1 mouse model leads to a massive decrease in amyloid burden and improves the behavioral performance of the animals compared to untreated control APPPS1 mice.
Collapse
Affiliation(s)
| | - Bogdan Catalin
- Department of PhysiologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Ioana Baldea
- Department of PhysiologyIuliu Haţieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | | | | | | | | | - Ilona Mihaela Liliac
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Costin Teodor Streba
- Department of PulmonologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Samir Kumar‐Singh
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medical and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Daniel Pirici
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
2
|
Godeanu S, Cătălin B. The Complementary Role of Morphology in Understanding Microglial Functional Heterogeneity. Int J Mol Sci 2025; 26:3811. [PMID: 40332469 PMCID: PMC12027755 DOI: 10.3390/ijms26083811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
A search of the PubMed database for publications on microglia reveals an intriguing shift in scientific interest over time. Dividing microglia into categories such as "resting" and "activated" or M1 versus M2 is nowadays obsolete, with the current research focusing on unraveling microglial heterogeneity. The onset of transcriptomics, especially single-cell RNA sequencing (scRNA-seq), has profoundly reshaped our understanding of microglia heterogeneity. Conversely, microglia morphology analysis can offer important insights regarding their activation state or involvement in tissue responses. This review explores microglial heterogeneity under homeostatic conditions, developmental stages, and disease states, with a focus on integrating transcriptomic data with morphological analysis. Beyond the core gene expression profile, regional differences are observed with cerebellar microglia exhibiting a uniquely immune-vigilant profile. During development, microglia express homeostatic genes before birth, yet the bushy appearance is a characteristic that appears later on. In neurodegeneration, microglia alternate between proinflammatory and neuroprotective roles, influenced by regional factors and disease onset. Understanding these structural adaptations may help identify specific microglial subpopulations for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sânziana Godeanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Building 48, University of Saarland, 66421 Homburg, Germany
| |
Collapse
|
3
|
Elzinga SE, Guo K, Turfah A, Henn RE, Webber‐Davis IF, Hayes JM, Pacut CM, Teener SJ, Carter AD, Rigan DM, Allouch AM, Jang D, Parent R, Glass E, Murphy GG, Lentz SI, Chen KS, Zhao L, Hur J, Feldman EL. Metabolic stress and age drive inflammation and cognitive decline in mice and humans. Alzheimers Dement 2025; 21:e70060. [PMID: 40110679 PMCID: PMC11923576 DOI: 10.1002/alz.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Metabolic stressors (obesity, metabolic syndrome, prediabetes, and type 2 diabetes [T2D]) increase the risk of cognitive impairment (CI), including Alzheimer's disease (AD). Immune system dysregulation and inflammation, particularly microglial mediated, may underlie this risk, but mechanisms remain unclear. METHODS Using a high-fat diet-fed (HFD) model, we assessed longitudinal metabolism and cognition, and terminal inflammation and brain spatial transcriptomics. Additionally, we performed hippocampal spatial transcriptomics and single-cell RNA sequencing of post mortem tissue from AD and T2D human subjects versus controls. RESULTS HFD induced progressive metabolic and CI with terminal inflammatory changes, and dysmetabolic, neurodegenerative, and inflammatory gene expression profiles, particularly in microglia. AD and T2D human subjects had similar gene expression changes, including in secreted phosphoprotein 1 (SPP1), a pro-inflammatory gene associated with AD. DISCUSSION These data show that metabolic stressors cause early and progressive CI, with inflammatory changes that promote disease. They also indicate a role for microglia, particularly microglial SPP1, in CI. HIGHLIGHTS Metabolic stress causes persistent metabolic and cognitive impairments in mice. Murine and human brain spatial transcriptomics align and indicate a pro-inflammatory milieu. Transcriptomic data indicate a role for microglial-mediated inflammatory mechanisms. Secreted phosphoprotein 1 emerged as a potential target of interest in metabolically driven cognitive impairment.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PhysiologyMichigan State UniversityEast LansingMichiganUSA
| | - Kai Guo
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ali Turfah
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Rosemary E. Henn
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Crystal M. Pacut
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Samuel J. Teener
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Andrew D. Carter
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Diana M. Rigan
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Adam M. Allouch
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Dae‐Gyu Jang
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Rachel Parent
- Department of Internal MedicineGeneral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Emily Glass
- Department of Molecular and Integrative PhysiologyDivision of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative PhysiologyDivision of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen I. Lentz
- Department of Internal MedicineDivision of MetabolismEndocrinology, and DiabetesUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin S. Chen
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Lili Zhao
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Junguk Hur
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
4
|
Godeanu S, Mușat MI, Scheller A, Osiac E, Cătălin B. Minimal differences observed when comparing the morphological profiling of microglia obtained by confocal laser scanning and optical sectioning microscopy. Front Neuroanat 2025; 18:1507140. [PMID: 39829733 PMCID: PMC11739110 DOI: 10.3389/fnana.2024.1507140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Background While widefield microscopy has long been constrained by out-of-focus scattering, advancements have generated a solution in the form of confocal laser scanning microscopy (cLSM) and optical sectioning microscopy using structured illumination (OSM). In this study, we aim to investigate, using microglia branching, if cLSM and OSM can produce images with comparable morphological characteristics. Results By imaging the somatosensory microglia from a tissue slice of a 3-week-old mouse and establishing morphological parameters that characterizes the microglial branching pattern, we were able to show that there is no difference in total length of the branch tree, number of branches, mean branch length and number of primary to terminal branches. We did find that area-based parameters such as mean occupied area and mean surveillance area were bigger in cLSM isolated microglia compared to OSM ones. Additionally, by investigating the difference in acquisition time between techniques and personal costs we were able to establish that the amortization could be made in 6.11 ± 2.93 years in the case of countries with a Human Development Index (HDI) = 7-9 and 7.06 ± 3.13 years, respectably, for countries with HDI < 7. As such, OSM systems seem a valid option if one just wants basic histological evaluation, and cLSM should be considered for groups that demand higher resolution or volumetric images.
Collapse
Affiliation(s)
- Sânziana Godeanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Saarbrücken, Germany
| | - Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Saarbrücken, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), University of Saarland, Saarbrücken, Germany
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
5
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
6
|
Nedelea G, Muşat MI, Mitran SI, Ciorbagiu MC, Cătălin B. Acute liver damage generates age independent microglia morphology changes in mice. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:679-685. [PMID: 39957030 PMCID: PMC11924902 DOI: 10.47162/rjme.65.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a silent global epidemic, frequently contributing to systemic inflammation. As the primary immune cells of the central nervous system (CNS), microglia undergo morphological changes that serve as critical indicators of CNS health. In this study, we aimed to quantify alterations in microglial morphology within the cortex of young and aged mice with liver damage. Our results demonstrated that hepatic dysfunction leads to a significant increase in total branch length in both young (285.79±68.23 μm) and aged animals (268.67±69.06 μm), compared to their respective controls (164.07±33.05 μm and 140.96±27.18 μm) (p<0.0001). Additionally, aged animals with liver damage exhibited a mean branch length of 5.84±0.66 μm, higher than 2.63±0.19 μm observed in those without liver injury. The number of primary branches in aged mice with liver damage decreased from 6.6±1.2 branches to 3.1±1.5 (p<0.0001). In addition, we have shown a decrease in the number of secondary branches in aged animals with liver damage. This suggests that microglia not only respond to CNS-specific injuries but also to chronic systemic pathologies like NAFLD. These findings highlight the importance of better understanding the liver-brain axis in order to better understand the neuroimmune consequences of systemic diseases.
Collapse
Affiliation(s)
- Gabriel Nedelea
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania;
| | | | | | | | | |
Collapse
|
7
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. J Neuroinflammation 2024; 21:182. [PMID: 39068433 PMCID: PMC11283709 DOI: 10.1186/s12974-024-03182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sydney J Risen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Tobias Emge
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sadhana Sharma
- Sachi Bio, Colorado Technology Center, Louisville, CO, USA
| | | | | | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA.
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
8
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578493. [PMID: 38370618 PMCID: PMC10871285 DOI: 10.1101/2024.02.03.578493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
|
9
|
Boboc IKS, Cojocaru A, Nedelea G, Catalin B, Bogdan M, Calina D. Chronic Administration of Ion Channel Blockers Impact Microglia Morphology and Function in a Murine Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:14474. [PMID: 37833922 PMCID: PMC10572937 DOI: 10.3390/ijms241914474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
As the population ages, a high prevalence of multimorbidity will affect the way physicians need to think about drug interactions. With microglia's important involvement in the pathology and progression of Alzheimer's disease (AD), understanding whether systemically administered drugs intended for other affections could impact microglia function, already impacted by the presence of beta-amyloid, is important. The aim of this study was to evaluate morphological changes of microglia, using in vivo 2-photon laser scanning microscopy, in a murine model of AD under systemic administration of sodium or calcium ion channel blockers in order to establish potential effects that these drugs might have on microglia under neuro-inflammatory conditions. A total of 30 mice (age 14-16 weeks, weight 20-25 g) were used, with 25 APP randomly divided into three groups. The remaining animals were CX3CR1GFP/GFP male mice (n = 5) used as WT controls. After baseline behavior testing, all animals received daily intraperitoneal injections for 30 days according to the assigned group [WT (n = 5), Control (n = 5), Carbamazepine (n = 10), and Verapamil (n = 10)]. The results showed that the Verapamil treatment improved short-term memory and enhanced exploratory behavior in APP mice. The Carbamazepine treatment also improved short-term memory but did not elicit significant changes in anxiety-related behavior. Both Verapamil and Carbamazepine reduced the surveillance speed of microglia processes and changed microglia morphology in the cortex compared to the Control group. Due to their complex molecular machinery, microglia are potentially affected by drugs that do not target them specifically, and, as such, investigating these interactions could prove beneficial in our management of neurodegenerative pathologies.
Collapse
Affiliation(s)
- Ianis Kevyn Stefan Boboc
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- U.M.F. Doctoral School Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru Cojocaru
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Gabriel Nedelea
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Catalin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Bogdan
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Deans MR, Williams M. Getting connected: Pathfinding and synaptogenesis in development, evolution, and disease, Part 2. Dev Dyn 2023; 252:1066-1067. [PMID: 37548433 DOI: 10.1002/dvdy.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Affiliation(s)
- Michael R Deans
- Department of Otolaryngology - Head & Neck Surgery, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah, USA
| | - Megan Williams
- Department of Neurobiology, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Macaron G, Larochelle C, Arbour N, Galmard M, Girard JM, Prat A, Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front Neurol 2023; 14:1197212. [PMID: 37483447 PMCID: PMC10361071 DOI: 10.3389/fneur.2023.1197212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023] Open
Abstract
With a rapidly aging global population and improvement of outcomes with newer multiple sclerosis (MS)-specific disease-modifying therapies (DMTs), the epidemiology of MS has shifted to an older than previously described population, with a peak prevalence of the disease seen in the 55-65 years age group. Changes in the pathophysiology of MS appear to be age-dependent. Several studies have identified a consistent phase of disability worsening around the fifth decade of life. The latter appears to be independent of prior disease duration and inflammatory activity and concomitant to pathological changes from acute focal active demyelination to chronic smoldering plaques, slow-expanding lesions, and compartmentalized inflammation within the central nervous system (CNS). On the other hand, decreased CNS tissue reserve and poorer remyelinating capacity with aging lead to loss of relapse recovery potential. Aging with MS may imply longer exposure to DMTs, although treatment efficacy in patients >55 years has not been evaluated in pivotal randomized controlled trials and appears to decrease with age. Older individuals are more prone to adverse effects of DMTs, an important aspect of treatment individualization. Aging with MS also implies a higher global burden of comorbid illnesses that contribute to overall impairments and represent a crucial confounder in interpreting clinical worsening. Discontinuation of DMTs after age 55, when no evidence of clinical or radiological activity is detected, is currently under the spotlight. In this review, we will discuss the impact of aging on MS pathobiology, the effect of comorbidities and other confounders on clinical worsening, and focus on current therapeutic considerations in this age group.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Catherine Larochelle
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Nathalie Arbour
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Manon Galmard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Jean Marc Girard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Alexandre Prat
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Pierre Duquette
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| |
Collapse
|