1
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
2
|
Bremer KV, Wu C, Patel AA, He KL, Grunfeld AM, Chanfreau GF, Quinlan ME. Formin tails act as a switch, inhibiting or enhancing processive actin elongation. J Biol Chem 2024; 300:105557. [PMID: 38097186 PMCID: PMC10797183 DOI: 10.1016/j.jbc.2023.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024] Open
Abstract
Formins are large, multidomain proteins that nucleate new actin filaments and accelerate elongation through a processive interaction with the barbed ends of filaments. Their actin assembly activity is generally attributed to their eponymous formin homology (FH) 1 and 2 domains; however, evidence is mounting that regions outside of the FH1FH2 stretch also tune actin assembly. Here, we explore the underlying contributions of the tail domain, which spans the sequence between the FH2 domain and the C terminus of formins. Tails vary in length from ∼0 to >200 residues and contain a number of recognizable motifs. The most common and well-studied motif is the ∼15-residue-long diaphanous autoregulatory domain. This domain mediates all or nothing regulation of actin assembly through an intramolecular interaction with the diaphanous inhibitory domain in the N-terminal half of the protein. Multiple reports demonstrate that the tail can enhance both nucleation and processivity. In this study, we provide a high-resolution view of the alternative splicing encompassing the tail in the formin homology domain (Fhod) family of formins during development. While four distinct tails are predicted, we found significant levels of only two of these. We characterized the biochemical effects of the different tails. Surprisingly, the two highly expressed Fhod-tails inhibit processive elongation and diminish nucleation, while a third supports activity. These findings demonstrate a new mechanism of modulating actin assembly by formins and support a model in which splice variants are specialized to build distinct actin structures during development.
Collapse
Affiliation(s)
- Kathryn V Bremer
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aanand A Patel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Kevin L He
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Alex M Grunfeld
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
3
|
Sun C, Wei D, Pan Y, Xiao X, Wang F. BmCaspase-8-like regulates autophagy by suppressing BmDREDD-mediated cleavage of BmATG6. INSECT SCIENCE 2023; 30:365-374. [PMID: 36044542 DOI: 10.1111/1744-7917.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Autophagy plays an important role in tissue remodeling during insect development. The interplay between autophagy-related (ATG) proteins and caspases regulates the autophagic activity of ATGs, thereby modulating the process of autophagy. Our previous study characterized BmCaspase-8-like (BmCasp8L) as a caspase suppressor that inhibits apoptosis and immune signaling by suppressing the activation of death-related ced-3/Nedd2-like caspase (DREDD), a caspase-8 homolog in silkworm. In this study, we explored the regulatory role of BmCasp8L in autophagy. We found that the expression of Bmcasp8l increased from the late spinning stage to the pupa stage in the posterior silk gland (PSG), correlating with the expression patterns of Bmatg8 and Bmatg6. RNA interference-mediated downregulation of BmCasp8L expression significantly decreased starvation-induced autophagic influx as determined by the levels of BmATG8-phosphatidylethanolamine and the percentage of cells displaying punctate enhanced green fluorescent protein-BmATG8. Conversely, the overexpression of BmCasp8L significantly increased autophagic influx. We also found that BmCasp8L underwent autophagic degradation induced by starvation and that it was colocalized with BmATG8. Lastly, we demonstrated that BmDREDD attenuated autophagy and BmCasp8L suppressed BmDREDD-mediated cleavage of BmATG6. Taken together, our results demonstrated that BmCasp8L is a novel proautophagic molecule which suppresses BmDREDD-mediated cleavage of BmATG6 and is a target for autophagy.
Collapse
Affiliation(s)
- Chang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Dongmei Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yumeng Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoyi Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Nomura S, Sota T. Evolutionary changes in gene expression profiles associated with the coevolution of male and female genital parts among closely related ground beetle species. BMC Genomics 2022; 23:637. [PMID: 36076166 PMCID: PMC9454128 DOI: 10.1186/s12864-022-08865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background The coevolutionary dynamics of corresponding male and female sexual traits, including genitalia, may be driven by complex genetic mechanisms. Carabus (Ohomopterus) ground beetles show correlated evolution in the size of their functionally corresponding male and female genital parts. To reveal the genetic mechanisms involved in the evolution of size, we investigated interspecific differences in gene expression profiles in four closely related species (two species each with long and short genital parts) using transcriptome data from genital tissues in the early and late pupal stages. Results We detected 1536 and 1306 differentially expressed genes (DEGs) among the species in males and 546 and 1959 DEGs in females in the two pupal stages, respectively. The DEGs were clustered by species-specific expression profiles for each stage and sex to identify candidate gene clusters for genital size based on the expression patterns among the species and gene ontology. We identified one and two gene clusters in females and males, respectively, all from the late pupal stage; one cluster of each sex showed similar expression profiles in species with similar genital size, which implies a common gene expression change associated with similar genital size in each sex. However, the remaining male cluster showed different expression profiles between species with long genital parts, which implies species-specific gene expression changes. These clusters did not show sex-concordant expression profiles for genital size differences. Conclusion Our study demonstrates that sex-independent and partly species-specific gene expression underlies the correlated evolution of male and female genital size. These results may reflect the complex evolutionary history of male and female genitalia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08865-2.
Collapse
Affiliation(s)
- Shota Nomura
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Sakyo, 606-8502, Japan. .,Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38, Nishigonaka, Okazaki, Myodaiji, 444- 8585, Japan.
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Sakyo, 606-8502, Japan.
| |
Collapse
|
5
|
Zhang Z, Liu J, Huber DJ, Qu H, Yun Z, Li T, Jiang Y. Transcriptome, degradome and physiological analysis provide new insights into the mechanism of inhibition of litchi fruit senescence by melatonin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110926. [PMID: 34034874 DOI: 10.1016/j.plantsci.2021.110926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 05/25/2023]
Abstract
Litchi fruit has high commercial value on the international market, but senesces rapidly after harvest. We used weighted gene co-expression network analysis (WGCNA) and degradome technology to investigate the molecular mechanisms of melatonin-mediated delay of litchi fruit senescence through application of exogenous melatonin and p-chlorophenylalanine (p-CPA, an inhibitor of melatonin biosynthesis) treatments. Results demonstrated that exogenous melatonin treatment delayed litchi fruit senescence while p-CPA accelerated senescence. Coupled analyses of transcriptome and physiological parameters of litchi fruit provided the correlation of network modules with dynamic changes in browning index during storage. Additionally, we found that microRNAs (miR858 and miR160a) and their targets were actively involved in melatonin-mediated delay of litchi fruit senescence. Melatonin treatment decreased abscisic acid (ABA) content but increased PP2C and F-box expression levels, suggesting the involvement of ABA signaling in melatonin-mediated antisenescence. The transcriptions of ZAT, NAC and DREB1 were activated by melatonin treatment. Moreover, the major functional genes involved in histone methylation, γ-aminobutyric acid (GABA) metabolism, energy production, reactive oxygen species (ROS) accumulation and cell death were identified in the melatonin-inhibited litchi pericarp browning. Taken together, we first constructed the global map of the important regulators and pathways to delay litchi senescence and pericarp browning mediated by melatonin.
Collapse
Affiliation(s)
- Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jialiang Liu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Donald J Huber
- Horticultural Sciences Department, PO Box 110690, IFAS, University of Florida, Gainesville, FL, 32611-0690, USA
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ze Yun
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
6
|
Vu A, Humphries T, Vogel S, Haberman A. Polyglutamine repeat proteins disrupt actin structure in Drosophila photoreceptors. Mol Cell Neurosci 2018; 93:10-17. [PMID: 30149064 DOI: 10.1016/j.mcn.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Expansions of polygutamine-encoding stretches in several genes cause neurodegenerative disorders including Huntington's Disease and Spinocerebellar Ataxia type 3. Expression of the human disease alleles in Drosophila melanogaster neurons recapitulates cellular features of these disorders, and has therefore been used to model the cell biology of these diseases. Here, we show that polyglutamine disease alleles expressed in Drosophila photoreceptors disrupt actin structure at rhabdomeres, as other groups have shown they do in Drosophila and mammalian dendrites. We show this actin regulatory pathway works through the small G protein Rac and the actin nucleating protein Form3. We also find that Form3 has additional functions in photoreceptors, and that loss of Form3 results in the specification of extra photoreceptors in the eye.
Collapse
Affiliation(s)
- Annie Vu
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA
| | - Tyler Humphries
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA
| | - Sean Vogel
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA
| | - Adam Haberman
- University of San Diego, Department of Biology, 5998 Alcala Park Blvd, SCST 372, San Diego, CA 92110, USA.
| |
Collapse
|
7
|
Wang P, Hawkins TJ, Hussey PJ. Connecting membranes to the actin cytoskeleton. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:71-76. [PMID: 28779654 DOI: 10.1016/j.pbi.2017.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 05/10/2023]
Abstract
In plants, the actin cytoskeleton plays a major role in organelle movement, cargo transport, maintaining cell polarity and controlling the morphogenesis of endomembrane systems. All of these events require a direct connection between membrane structures and the cytoskeleton. Our knowledge in this field has been greatly advanced by a few recent discoveries including the identification of the plant specific NETWORKED family of proteins, which can mediate such linkages. Other proteins that are known to regulate actin nucleation and polymerization are also likely to be involved, but many key questions still remain unanswered. In this paper, we will focus on recent research on the interfaces between the actin cytoskeleton and membranes of the endoplasmic reticulum, the vacuole and autophagosomes.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Tim J Hawkins
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
8
|
Muñoz-Soriano V, Domingo-Muelas A, Li T, Gamero E, Bizy A, Fariñas I, Alepuz P, Paricio N. Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins. Sci Rep 2017; 7:9580. [PMID: 28852021 PMCID: PMC5575014 DOI: 10.1038/s41598-017-10057-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023] Open
Abstract
Elongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes through translation of formins in eukaryotes.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Ana Domingo-Muelas
- Departamento de Biología Celular & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Tianlu Li
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, Hospitalet de Llobregat, Spain
| | - Esther Gamero
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Alexandra Bizy
- Departamento de Biología Celular & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46100, Burjassot, Spain.
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| | - Nuria Paricio
- Departamento de Genética, Universidad de Valencia, 46100, Burjassot, Spain.
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
9
|
Molnár I, Migh E, Szikora S, Kalmár T, Végh AG, Deák F, Barkó S, Bugyi B, Orfanos Z, Kovács J, Juhász G, Váró G, Nyitrai M, Sparrow J, Mihály J. DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila. PLoS Genet 2014; 10:e1004166. [PMID: 24586196 PMCID: PMC3937221 DOI: 10.1371/journal.pgen.1004166] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.
Collapse
Affiliation(s)
- Imre Molnár
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Ede Migh
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Tibor Kalmár
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
| | - Attila G. Végh
- Institute of Biophysics, Biological Research Centre HAS, Szeged, Hungary
| | - Ferenc Deák
- Institute of Biochemistry, Biological Research Centre HAS, Szeged, Hungary
| | - Szilvia Barkó
- University of Pécs, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Department of Biophysics, Pécs, Hungary
| | | | - János Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - György Váró
- Institute of Biophysics, Biological Research Centre HAS, Szeged, Hungary
| | - Miklós Nyitrai
- University of Pécs, Department of Biophysics, Pécs, Hungary
- Hungarian Academy of Sciences, Office for Subsidized Research Units, Budapest, Hungary
| | - John Sparrow
- Department of Biology, University of York, York, United Kingdom
| | - József Mihály
- Institute of Genetics, Biological Research Centre HAS, Szeged, Hungary
- * E-mail:
| |
Collapse
|
10
|
Lammel U, Bechtold M, Risse B, Berh D, Fleige A, Bunse I, Jiang X, Klämbt C, Bogdan S. The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development 2014; 141:1366-80. [PMID: 24553290 DOI: 10.1242/dev.101352] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A tight spatiotemporal control of actin polymerization is important for many cellular processes that shape cells into a multicellular organism. The formation of unbranched F-actin is induced by several members of the formin family. Drosophila encodes six formin genes, representing six of the seven known mammalian subclasses. Knittrig, the Drosophila homolog of mammalian FHOD1, is specifically expressed in the developing central nervous system midline glia, the trachea, the wing and in macrophages. knittrig mutants exhibit mild tracheal defects but survive until late pupal stages and mainly die as pharate adult flies. knittrig mutant macrophages are smaller and show reduced cell spreading and cell migration in in vivo wounding experiments. Rescue experiments further demonstrate a cell-autonomous function of Knittrig in regulating actin dynamics and cell migration. Knittrig localizes at the rear of migrating macrophages in vivo, suggesting a cellular requirement of Knittrig in the retraction of the trailing edge. Supporting this notion, we found that Knittrig is a target of the Rho-dependent kinase Rok. Co-expression with Rok or expression of an activated form of Knittrig induces actin stress fibers in macrophages and in epithelial tissues. Thus, we propose a model in which Rok-induced phosphorylation of residues within the basic region mediates the activation of Knittrig in controlling macrophage migration.
Collapse
Affiliation(s)
- Uwe Lammel
- Institute for Neurobiology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|