1
|
Mujal AM, Owyong M, Santosa EK, Sauter JC, Grassmann S, Pedde AM, Meiser P, Wingert CK, Pujol M, Buchholz VR, Lau CM, Böttcher JP, Sun JC. Splenic TNF-α signaling potentiates the innate-to-adaptive transition of antiviral NK cells. Immunity 2025; 58:585-600.e6. [PMID: 40023159 DOI: 10.1016/j.immuni.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Natural killer (NK) cells possess both innate and adaptive features. Here, we investigated NK cell activation across tissues during cytomegalovirus infection, which generates antigen-specific clonal expansion and long-lived memory responses. Longitudinal tracking and single-cell RNA sequencing of NK cells following infection revealed enhanced activation in the spleen, as well as early formation of a CD69lo precursor population that preferentially gave rise to adaptive NK cells. Splenic NK cells demonstrated heightened tumor necrosis factor alpha (TNF-α) signaling and increased expression of the receptor TNFR2, which coincided with elevated TNF-α production by splenic myeloid cells. TNFR2-deficient NK cells exhibited impaired interferon gamma (IFN-γ) production and expansion. TNFR2 signaling engaged two distinct nuclear factor κB (NF-κB) signaling arms-innate effector NK cell responses required canonical NF-κB signaling, whereas non-canonical NF-κB signaling enforced differentiation of CD69lo adaptive NK cell precursors. Thus, NK cell priming in the spleen during viral infection promotes an innate-to-adaptive transition, providing insight into avenues for generating adaptive NK cell immunity across diverse settings.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Animals
- Mice
- Signal Transduction/immunology
- Spleen/immunology
- Immunity, Innate
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/immunology
- NF-kappa B/metabolism
- Adaptive Immunity
- Mice, Inbred C57BL
- Lymphocyte Activation/immunology
- Cytomegalovirus Infections/immunology
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Interferon-gamma/metabolism
- Muromegalovirus/immunology
- Antigens, Differentiation, T-Lymphocyte
- Antigens, CD
- Lectins, C-Type
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Mark Owyong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - John C Sauter
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna-Marie Pedde
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Philippa Meiser
- Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Claire K Wingert
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marine Pujol
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan P Böttcher
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Oda A, Furukawa S, Kitabatake M, Ouji-Sageshima N, Sonobe S, Horiuchi K, Nakajima Y, Ogiwara K, Goitsuka R, Shima M, Ito T, Nogami K. The spleen is the major site for the development and expansion of inhibitor producing-cells in hemophilia A mice upon FVIII infusion developing high-titer inhibitor. Thromb Res 2023; 231:144-151. [PMID: 36948993 DOI: 10.1016/j.thromres.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/22/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Hemophilia A (HA) is a hereditary bleeding disorder caused by defects in endogenous factor (F)VIII. Approximately 30 % of patients with severe HA treated with FVIII develop neutralizing antibodies (inhibitors) against FVIII, which render the therapy ineffective. The managements of HA patients with high-titter inhibitors are especially challenging. Therefore, it is important to understand the mechanism(s) of high-titer inhibitor development and dynamics of FVIII-specific plasma cells (FVIII-PCs). AIMS To identify the dynamics of FVIII-PCs and the lymphoid organs in which FVIII-PCs are localized during high-titer inhibitor formation. METHODS AND RESULTS When FVIII-KO mice were intravenously injected with recombinant (r)FVIII in combination with lipopolysaccharide (LPS), a marked enhancement of anti-FVIII antibody induction was observed with increasing FVIII-PCs, especially in the spleen. When splenectomized or congenitally asplenic FVIII-KO mice were treated with LPS + rFVIII, the serum inhibitor levels decreased by approximately 80 %. Furthermore, when splenocytes or bone marrow (BM) cells from inhibitor+ FVIII-KO mice treated with LPS + rFVIII were grafted into immune-deficient mice, anti-FVIII IgG was detected only in the serum of splenocyte-administered mice and FVIII-PCs were detected in the spleen but not in the BM. In addition, when splenocytes from inhibitor+ FVIII-KO mice were grafted into splenectomized immuno-deficient mice, inhibitor levels were significantly reduced in the serum. CONCLUSION The spleen is the major site responsible for the expansion and retention of FVIII-PCs in the presence of high-titer inhibitors.
Collapse
Affiliation(s)
- Akihisa Oda
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | | | | | - Shota Sonobe
- Department of Immunology, Nara Medical University, Kashihara, Japan
| | - Kaoru Horiuchi
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Japan; The Course of Thrombosis and Hemostasis Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Midori Shima
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan.
| |
Collapse
|
3
|
Wang X, He H, Rui W, Xie X, Wang D, Zhu Y. Long Non-Coding RNA BCAR4 Binds to miR-644a and Targets TLX1 to Promote the Progression of Bladder Cancer. Onco Targets Ther 2020; 13:2483-2490. [PMID: 32273720 PMCID: PMC7102885 DOI: 10.2147/ott.s232965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Bladder cancer is a serious threat to human health. It is meaningful to study the pathogenesis of bladder cancer. Long non-coding RNAs (lncRNAs) are reported to promote or inhibit bladder cancer development. However, the role of lncRNA BCAR4 in the regulation of bladder cancer remains unclear. Purpose This study was to explore the role of lncRNA BCAR4 in the progression of bladder cancer cell. Methods RT-PCR was used to examine the expression of BCAR4 and miR-644a. CCK8 assay, colony formation assay, Transwell assay were used to detect the progression of bladder cancer cells after transfecting of indicated plasmids. Results The expression of BCAR4 was higher in bladder cancer cell lines than normal urothelial cell line. Moreover, the expression of BCAR4 was associated with the advanced stage and metastasis of bladder cancer. Through knockdown of BCAR4, we discovered that knockdown of BCAR4 significantly decreased the proliferation, migration and invasive abilities of bladder cancer cells. Mechanically, we showed that BCAR4 can bind to miR-644a directly and targets TLX1. Moreover, we also showed that miR-644a was also highly expressed in bladder cancer cells and inhibition of miR-644a or overexpression of TLX1 can increased the migration abilities of bladder cancer caused by knockdown of BCAR4. Conclusion We showed that BCAR4 sponged miR-644a to modulate the expression of TLX1 and promote bladder cancer development.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, People's Republic of China
| | - Hongchao He
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, People's Republic of China
| | - Wenbin Rui
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, People's Republic of China
| | - Xin Xie
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, People's Republic of China
| | - Dawei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, People's Republic of China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, People's Republic of China
| |
Collapse
|
4
|
Transcription factor Tlx1 marks a subset of lymphoid tissue organizer-like mesenchymal progenitor cells in the neonatal spleen. Sci Rep 2019; 9:20408. [PMID: 31892733 PMCID: PMC6938487 DOI: 10.1038/s41598-019-56984-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The spleen is comprised of spatially distinct compartments whose functions, such as immune responses and removal of aged red blood cells, are tightly controlled by the non-hematopoietic stromal cells that provide regionally-restricted signals to properly activate hematopoietic cells residing in each area. However, information regarding the ontogeny and relationships of the different stromal cell types remains limited. Here we have used in vivo lineage tracing analysis and in vitro mesenchymal stromal cell assays and found that Tlx1, a transcription factor essential for embryonic spleen organogenesis, marks neonatal stromal cells that are selectively localized in the spleen and retain mesenchymal progenitor potential to differentiate into mature follicular dendritic cells, fibroblastic reticular cells and marginal reticular cells. Furthermore, by establishing a novel three-dimensional cell culture system that enables maintenance of Tlx1-expressing cells in vitro, we discovered that signals from the lymphotoxin β receptor and TNF receptor promote differentiation of these cells to express MAdCAM-1, CCL19 and CXCL13, representative functional molecules expressed by different subsets of mature stromal cells in the spleen. Taken together, these findings indicate that mesenchymal progenitor cells expressing Tlx1 are a subset of lymphoid tissue organizer-like cells selectively found in the neonatal spleen.
Collapse
|
5
|
Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep 2018; 8:8308. [PMID: 29844356 PMCID: PMC5974313 DOI: 10.1038/s41598-018-26693-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) in postnatal life is a pathological process in which the differentiation of hematopoietic stem/progenitor cells (HSPCs) occurs outside the bone marrow (BM) to respond to hematopoietic emergencies. The spleen is a major site for EMH; however, the cellular and molecular nature of the stromal cell components supporting HSPC maintenance, the niche for EMH in the spleen remain poorly understood compared to the growing understanding of the BM niche at the steady-state as well as in emergency hematopoiesis. In the present study, we demonstrate that mesenchymal progenitor-like cells expressing Tlx1, an essential transcription factor for spleen organogenesis, and selectively localized in the perifollicular region of the red pulp of the spleen, are a major source of HSPC niche factors. Consistently, overexpression of Tlx1 in situ induces EMH, which is associated with mobilization of HSPC into the circulation and their recruitment into the spleen where they proliferate and differentiate. The alterations in the splenic microenvironment induced by Tlx1 overexpression in situ phenocopy lipopolysaccharide (LPS)-induced EMH, and the conditional loss of Tlx1 abolished LPS-induced splenic EMH. These findings indicate that activation of Tlx1 expression in the postnatal splenic mesenchymal cells is critical for the development of splenic EMH.
Collapse
|
6
|
Tan JKH, Watanabe T. Stromal Cell Subsets Directing Neonatal Spleen Regeneration. Sci Rep 2017; 7:40401. [PMID: 28067323 PMCID: PMC5220291 DOI: 10.1038/srep40401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
Development of lymphoid tissue is determined by interactions between stromal lymphoid tissue organiser (LTo) and hematopoietic lymphoid tissue inducer (LTi) cells. A failure for LTo to receive appropriate activating signals during embryogenesis through lymphotoxin engagement leads to a complete cessation of lymph node (LN) and Peyer's patch development, identifying LTo as a key stromal population for lymphoid tissue organogenesis. However, little is known about the equivalent stromal cells that induce spleen development. Here, by dissociating neonatal murine spleen stromal tissue for re-aggregation and transplant into adult mouse recipients, we have identified a MAdCAM-1+CD31+CD201+ spleen stromal organizer cell-type critical for new tissue formation. This finding provides an insight into the regulation of post-natal spleen tissue organogenesis, and could be exploited in the development of spleen regenerative therapies.
Collapse
Affiliation(s)
- Jonathan K H Tan
- AK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Division of Biomedical Science, Research School of Biology, The Australian National University, Canberra 0200, Australia
| | - Takeshi Watanabe
- AK Project, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|