1
|
Clay CG, Dunhill AM, Reimer JD, Beger M. Trait networks: Assessing marine community resilience and extinction recovery. iScience 2024; 27:110962. [PMID: 39429771 PMCID: PMC11490707 DOI: 10.1016/j.isci.2024.110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Extensive global habitat degradation and the climate crisis are tipping the biosphere toward a "sixth" mass extinction and marine communities will not be spared from this catastrophic loss of biodiversity. The resilience of marine communities following large-scale disturbances or extinction events is mediated by the life-history traits of species and their interplay within communities. The presence and abundance of traits in communities provide proxies of function, but whether the breakdown of their associations with species loss can delineate functional loss remains unclear. Here, we propose that relationships between traits within trait networks provide unique perspectives on the importance of specific traits, trait combinations, and their role in supporting the stability of communities, while exploring the vulnerability of both past deep time and present-day marine communities.
Collapse
Affiliation(s)
- Charlotte G. Clay
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander M. Dunhill
- School of Earth and Environment, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Song S, Xiong K, Chi Y. Response of grassland ecosystem function to plant functional traits under different vegetation restoration models in areas of karst desertification. FRONTIERS IN PLANT SCIENCE 2023; 14:1239190. [PMID: 38148857 PMCID: PMC10749941 DOI: 10.3389/fpls.2023.1239190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Plant functional traits serve as a bridge between plants, the environment, and ecosystem function, playing an important role in predicting the changes in ecosystem function that occur during ecological restoration. However, the response of grassland ecosystem function to plant functional traits in the context of ecological restoration in areas of karst desertification remains unclear. Therefore, in this study, we selected five plant functional traits [namely, plant height (H), specific leaf area (SLA), leaf dry matter content (LDMC), root length (RL), and root dry matter content (RDMC)], measured these along with community-weighted mean (CWM) and functional trait diversity, and combined these measures with 10 indexes related to ecosystem function in order to investigate the differences in plant functional traits and ecosystem function, as well as the relationship between plant functional traits and ecosystem functions, under four ecological restoration models [Dactylis glomerata (DG), Lolium perenne (LP), Lolium perenne + Trifolium repens (LT), and natural grassland (NG)]. We found that: 1) the Margalef index and Shannon-Wiener index were significantly lower for plant species in DG and LP than for those in NG (P<0.05), while the Simpson index was significantly higher in the former than in NG (P<0.05); 2) CWMH, CWMLDMC, and CWMRDMC were significantly higher in DG, LP, and LT than in NG, while CWMSLA was significantly lower in the former than in NG (P<0.05). The functional richness index (FRic) was significantly higher in DG and LP than in NG and LT, but the functional dispersion index (FDis) and Rao's quadratic entropy index (RaoQ) were significantly lower in DG and LP than in NG and LT (P<0.05), and there was no significant difference between DG and LP, or between NG and LT (P>0.05); 3) ecosystem function, including ecosystem productivity, carbon storage, water conservation and soil conservation, was highest in LT and lowest in NG; and 4) CWMLDMC (F=56.7, P=0.024), CWMRL (F=28.7, P=0.024), and CWMH (F=4.5, P=0.048) were the main factors affecting ecosystem function. The results showed that the mixed pasture of perennial ryegrass and white clover was most conductive to restoration of ecosystem function. This discovery has important implications for the establishment of vegetation, optimal utilization of resources, and the sustainable development of degraded karst ecosystems.
Collapse
Affiliation(s)
- Shuzhen Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Yongkuan Chi
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| |
Collapse
|
3
|
You Y, Della Penna A, Thrush SF. Modelled broad-scale shifts on seafloor ecosystem functioning due to microplastic impacts on bioturbation. Sci Rep 2023; 13:17121. [PMID: 37816828 PMCID: PMC10564913 DOI: 10.1038/s41598-023-44425-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
Bioturbating species play an essential role in regulating nutrient cycling in marine sediments, but their interaction with microplastics (MP) remains poorly understood. Here we investigated the linkage between MP and ecosystem functioning using experimental observations of luminophore distribution in the sediment to parametrize bioturbation coefficients (Db). this information as fed into a simplified transport-reaction model, allowing us to upscale our experimental results. We found that the composition of bioturbators modulated shifts in the ecosystem functioning under microplastic stress. Maldanid worms (Macroclymenella stewartensis), functionally deep burrowing and upward-conveyor belt feeders, became less active. The Db of M. stewartensis reduced by 25% with the addition of 0.002 g MP cm-2 at surface sediment, causing accumulation of organic matter in the oxic sediment zone and stimulating aerobic respiration by 18%. In contract, the tellinid bivalve Macomona liliana, functionally a surface -deposit feeder that excretes at depth, maintained particle mixing behaviour in MP-contaminated systems. This study provides a mechanistic insight into the impacts of MP and indicates that the functional role of bioturbating species should be involved in assessing the global impact of MP. The model allowed us to understand the broad-scale impact of MP on seafloor habitat.
Collapse
Affiliation(s)
- Yuxi You
- Institute of Marine Science, The University of Auckland, Auckland, 1010, New Zealand.
| | - Alice Della Penna
- Institute of Marine Science, The University of Auckland, Auckland, 1010, New Zealand
- School of Biology Science, The University of Auckland, Auckland, 1010, New Zealand
| | - Simon Francis Thrush
- Institute of Marine Science, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
4
|
Stressors Increase the Impacts of Coastal Macrofauna Biodiversity Loss on Ecosystem Multifunctionality. Ecosystems 2022. [DOI: 10.1007/s10021-022-00775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThere is substantial evidence that biodiversity underpins ecosystem functioning, but it is unclear how these relationships change with multiple stressors in complex real-world settings. Coastal zones are affected by numerous stressors (for example, sediment input and nutrient runoff from land) and the cumulative effects of these stressors may result in pronounced and unexpected changes in the functioning of ecosystems. To investigate the cumulative effects of turbidity and elevated nutrients on coastal biodiversity-ecosystem functioning relationships, we performed a large-scale field experiment manipulating in situ sediment porewater ammonium concentrations and measured multiple ecosystem functions related to carbon fixation and mineralisation in 15 estuaries with varying levels of turbidity. The results indicated that the benthic macrofauna diversity (species richness, abundance, and functional richness) declined with increased porewater ammonium concentrations and there were clear thresholds in light levels at the seafloor in relation to the biodiversity-ecosystem function relationships. Multifunctionality indices (an integrated index of all measured functions) in moderately turbid and turbid estuaries (daily mean seafloor PAR < 420 µmol m−2 s−1) decreased with the loss of macrofauna biodiversity. Functioning in low-turbidity estuaries (daily mean PAR > 420 µmol m−2 s−1) however remained relatively constant, suggesting that they were more resilient against the nutrient-induced biodiversity loss. Our results demonstrate that ecosystems already stressed by stressors that alter functional performance (turbidity) may be more prone to loss of overall functioning if biodiversity is reduced by another stressor (nutrient enrichment), highlighting the potential snowballing effects of cumulative change.
Collapse
|
5
|
de Juan S, Bremner J, Hewitt J, Törnroos A, Mangano MC, Thrush S, Hinz H. Biological traits approaches in benthic marine ecology: Dead ends and new paths. Ecol Evol 2022; 12:e9001. [PMID: 35784057 PMCID: PMC9163796 DOI: 10.1002/ece3.9001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/30/2023] Open
Abstract
Biological traits analysis (BTA) links community structure to both ecological functions and response to environmental drivers through species' attributes. In consequence, it has become a popular approach in marine benthic studies. However, BTA will reach a dead end if the scientific community does not acknowledge its current shortcomings and limitations: (a) uncertainties related to data origins and a lack of standardized reporting of trait information; (b) knowledge gaps on the role of multiple interacting traits on driving the organisms' responses to environmental variability; (c) knowledge gaps regarding the mechanistic links between traits and functions; (d) a weak focus on the spatial and temporal variability that is inherent to the trait expression of species; and, last but not least, (e) the large reliance on expert knowledge due to an enormous knowledge gap on the basic ecology of many benthic species. BTA will only reach its full potential if the scientific community is able to standardize and unify the reporting and storage of traits data and reconsider the importance of baseline observational and experimental studies to fill knowledge gaps on the mechanistic links between biological traits, functions, and environmental variability. This challenge could be assisted by embracing new technological advances in marine monitoring, such as underwater camera technology and artificial intelligence, and making use of advanced statistical approaches that consider the interactive nature and spatio-temporal variability of biological systems. The scientific community has to abandon some dead ends and explore new paths that will improve our understanding of individual species, traits, and the functioning of benthic ecosystems.
Collapse
Affiliation(s)
- Silvia de Juan
- Instituto Mediterraneo de Estudios AvanzadosIMEDEA (CSIC‐UIB)EsporlesIslas BalearesSpain
| | - Julie Bremner
- Centre for EnvironmentFisheries and Aquaculture ScienceLowestoftEngland
- Collaborative Centre for Sustainable Use of the SeasUniversity of East Anglia School of Environmental ScienceNorwichEngland
| | - Judi Hewitt
- Department of StatisticsUniversity of AucklandAucklandNew Zealand
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
| | - Anna Törnroos
- Environmental and Marine BiologyFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
| | - Maria Cristina Mangano
- Department of Integrative Marine Ecology (EMI)Stazione Zoologica Anton DohrnSicily Marine CentreLungomare Cristoforo Colombo (complesso Roosevelt)PalermoItaly
| | - Simon Thrush
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
| | - Hilmar Hinz
- Instituto Mediterraneo de Estudios AvanzadosIMEDEA (CSIC‐UIB)EsporlesIslas BalearesSpain
| |
Collapse
|
6
|
Cook KM, Yamagiwa H, Beger M, Masucci GD, Ross S, Lee HYT, Stuart‐Smith RD, Reimer JD. A community and functional comparison of coral and reef fish assemblages between four decades of coastal urbanisation and thermal stress. Ecol Evol 2022; 12:e8736. [PMID: 35356574 PMCID: PMC8939291 DOI: 10.1002/ece3.8736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 01/29/2023] Open
Abstract
Urbanized coral reefs experience anthropogenic disturbances caused by coastal development, pollution, and nutrient runoff, resulting in turbid, marginal conditions in which only certain species can persist. Mortality effects are exacerbated by increasingly regular thermal stress events, leading to shifts towards novel communities dominated by habitat generalists and species with low structural complexity.There is limited data on the turnover processes that occur due to this convergence of anthropogenic stressors, and how novel urban ecosystems are structured both at the community and functional levels. As such, it is unclear how they will respond to future disturbance events.Here, we examine the patterns of coral reef community change and determine whether ecosystem functions provided by specialist species are lost post-disturbance. We present a comparison of community and functional trait-based changes for scleractinian coral genera and reef fish species assemblages subject to coastal development, coastal modification, and mass bleaching between two time periods, 1975-1976 and 2018, in Nakagusuku Bay, Okinawa, Japan.We observed an increase in fish habitat generalists, a dominance shift from branching to massive/sub-massive corals and increasing site-based coral genera richness between years. Fish and coral communities significantly reassembled, but functional trait-based multivariate space remained constant, indicating a turnover of species with similar traits. A compression of coral habitat occurred, with shallow (<5 m) and deep (>8 m) coral genera shifting towards the mid-depths (5-8 m).We show that although reef species assemblages altered post disturbance, new communities retained similar ecosystem functions. This result could be linked to the stressors experienced by urban reefs, which reflect those that will occur at an increasing frequency globally in the near future. Yet, even after shifts to disturbed communities, these fully functioning reef systems may maintain high conservation value.
Collapse
Affiliation(s)
- Katie M. Cook
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Hirotaka Yamagiwa
- Molecular Invertebrate Systematics and Ecology LaboratoryGraduate School of Engineering and ScienceUniversity of the RyukyusNishiharaJapan
| | - Maria Beger
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
- Centre for Biodiversity and Conservation ScienceSchool of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Giovanni Diego Masucci
- Molecular Invertebrate Systematics and Ecology LaboratoryGraduate School of Engineering and ScienceUniversity of the RyukyusNishiharaJapan
| | - Stuart Ross
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Hui Yian Theodora Lee
- Molecular Invertebrate Systematics and Ecology LaboratoryGraduate School of Engineering and ScienceUniversity of the RyukyusNishiharaJapan
- Experimental Marine Ecology LaboratoryDepartment of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Rick D. Stuart‐Smith
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaTaroonaTasmaniaAustralia
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology LaboratoryGraduate School of Engineering and ScienceUniversity of the RyukyusNishiharaJapan
- Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan
| |
Collapse
|
7
|
Zheng S, Chi Y, Yang X, Li W, Lan Z, Bai Y. Direct and indirect effects of nitrogen enrichment and grazing on grassland productivity through intraspecific trait variability. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuxia Zheng
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Yonggang Chi
- College of Geography and Environmental Sciences Zhejiang Normal University Jinhua China
| | - Xiaojing Yang
- School of Geography and Tourism Shaanxi Normal University Xi'an China
| | - Wenhuai Li
- School of Ecology and Environment Inner Mongolia University Hohhot China
| | - Zhichun Lan
- Observation and Research Station for the Wetland Ecosystem of Lake Poyang Nanjing Institute of Geography and Limnology Chinese Academy of Sciences Lushan China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| |
Collapse
|
8
|
Siwicka E, Gladstone‐Gallagher R, Hewitt JE, Thrush SF. Beyond the single index: Investigating ecological mechanisms underpinning ecosystem multifunctionality with network analysis. Ecol Evol 2021; 11:12401-12412. [PMID: 34594508 PMCID: PMC8462174 DOI: 10.1002/ece3.7987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index-based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep-dwelling worms, hard-bodied surface dwellers, and tube-forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real-world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision-making will support the assessment of multiple ecosystem services and social-ecological values.
Collapse
Affiliation(s)
- Ewa Siwicka
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
| | - Rebecca Gladstone‐Gallagher
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Judi E. Hewitt
- National Institute of Water and Atmospheric Research (NIWA)HamiltonNew Zealand
- Department of StatisticsUniversity of AucklandAucklandNew Zealand
| | - Simon F. Thrush
- Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
| |
Collapse
|