1
|
Ferreira‐Airaud B, Vieira S, Branco M, Pina A, Soares V, Tiwari M, Witt M, Castilho R, Teodósio A, Hawkes LA. Green and Hawksbill Sea turtles of Eastern Atlantic: New insights into a globally important rookery in the Gulf of Guinea. Ecol Evol 2024; 14:e11133. [PMID: 38505183 PMCID: PMC10948591 DOI: 10.1002/ece3.11133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Sea turtles are critical components of marine ecosystems, and their conservation is important for Ocean Governance and Global Planet Health. However, there is limited knowledge of their ecology in the Gulf of Guinea. To fill this knowledge gap, this study presents the first integrative assessment of green and hawksbill turtles in the region, combining nesting surveys over 9 years and telemetry data, to offer insights into these population dynamics, and behaviours, including nesting preferences, morphological and reproductive parameters, diving patterns and inter-nesting core-use areas. Both green and hawksbill turtles are likely making a recovery on São Tomé, potentially driven by sustained conservation efforts. There are preliminary indications of recovery, but we interpret this cautiously. Coupled with satellite tracking, this study estimated that 482 to 736 green turtles and 135 to 217 hawksbills nest on the beaches of São Tomé. Their movements overlap significantly with a proposed Marine Protected Area (MPA), which suggests they may be well placed for conservation if managed appropriately. However, the presence of artisanal fisheries and emerging threats, such as sand mining and unregulated tourism, highlight the urgent need for robust management strategies that align global conservation objectives with local socioeconomic realities. This study significantly enhances our understanding of the ecology and conservation needs of the green and hawksbill turtles in the Gulf of Guinea. The insights gleaned here can contribute to the development of tailored conservation strategies that benefit these populations and the ecosystem services upon which they depend.
Collapse
Affiliation(s)
- Betânia Ferreira‐Airaud
- Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal
- Hatherly LaboratoriesUniversity of ExeterExeterUK
- Programa TatôSão ToméSão Tomé and Príncipe
| | - Sara Vieira
- Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal
- Programa TatôSão ToméSão Tomé and Príncipe
| | | | | | | | - Manjula Tiwari
- Ocean Ecology NetworkResearch Affiliate of NOAA Southwest Fisheries Science CenterLa JollaCaliforniaUSA
| | - Matthew Witt
- Hatherly LaboratoriesUniversity of ExeterExeterUK
| | - Rita Castilho
- Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal
| | | | | |
Collapse
|
2
|
Lasala JA, Macksey MC, Mazzarella KT, Main KL, Foote JJ, Tucker AD. Forty years of monitoring increasing sea turtle relative abundance in the Gulf of Mexico. Sci Rep 2023; 13:17213. [PMID: 37821522 PMCID: PMC10567714 DOI: 10.1038/s41598-023-43651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Longitudinal data sets for population abundance are essential for studies of imperiled organisms with long life spans or migratory movements, such as marine turtles. Population status trends are crucial for conservation managers to assess recovery effectiveness. A direct assessment of population growth is the enumeration of nesting numbers and quantifying nesting attempts (successful nests/unsuccessful attempts) and emergence success (number of hatchlings leaving the nest) because of the substantial annual variations due to nest placement, predation, and storm activity. We documented over 133,000 sea turtle crawls for 50.9 km of Florida Gulf of Mexico coastline from 1982 to 2021 for a large loggerhead turtle nesting aggregation and a recovering remnant population of green sea turtles. Over time both species have emerged to nest significantly earlier in the year and green sea turtle nesting seasons have extended. Nest counts and hatchling production for both species have significantly increased, but the rate of emergence success of hatchlings leaving nests has not changed for loggerheads and has declined for green sea turtles. Sea level rise and coastal developments undoubtedly influence coastal habitats in the long-term, impacting nest site selection and potential recruitment from the loss of emerged hatchlings. However, the present indications for steady Gulf of Mexico recovery of loggerhead and green sea turtles counter findings of the Florida Atlantic coasts. This study indicates that effective conservation practices can be detected within time scales of 1-2 turtle generations.
Collapse
Affiliation(s)
- Jacob Andrew Lasala
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - Melissa C Macksey
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Kristen T Mazzarella
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Kevan L Main
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
| | - Jerris J Foote
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
- Parks, Recreation and Natural Resources, Sarasota County, 1660 Ringling Boulevard, Sarasota, FL, 34236, USA
| | - Anton D Tucker
- Sea Turtle Conservation and Research Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| |
Collapse
|
3
|
Strategic nest site selection in one of the world's largest loggerhead turtle nesting colonies, on Maio Island, Cabo Verde. ORYX 2022. [DOI: 10.1017/s0030605321001496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
For species without parental care, such as sea turtles, nest site selection is particularly important for embryo development, hatchling survival and, ultimately, reproductive success. We conducted an 8-year (2012–2019) capture–mark–recapture study of the re-nesting behaviour of loggerhead turtles Caretta caretta to identify both inter- and intra-beach patterns of nest site selection. Our study site, Maio Island in the archipelago of Cabo Verde, hosts one of the largest loggerhead turtle nesting colonies globally. Of 1,060 females analysed, 77% laid repeated clutches within 15 km of their previous nesting sites both between and within nesting seasons. This site fidelity was particularly high (64–71%) for turtles nesting on the east coast of Maio Island. In two areas of the island (north-west and south-east) individual nesting zone consistency was extremely low (10–25%). In all cases extra-zone re-nesting events mainly occurred on the east coast. We also found that females avoided re-nesting near the shoreline, which is particularly relevant in the context of rising sea levels. Overall, loggerhead turtles nesting in Maio Island are philopatric but are using a bet-edging strategy to distribute nests amongst several beaches, choosing the safest area within each beach to maximize their reproductive success. This study highlights the priority sites for protection on Maio Island and could help to optimize capture–mark–recapture programmes. The data reveal the potential for adaptive responses to projected sea level rises.
Collapse
|
4
|
Gravelle J, Wyneken J. Resilient Eggs: Highly Successful Loggerhead Sea Turtle Nesting Sites Vary in Their Characteristics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.853835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sea turtle nest success, defined as the number of eggs in a nest that successfully hatch and emerge, is closely linked to environmental conditions. Interacting biotic and abiotic factors influence hatching and hatchling emergence success. To date, combinations of multiple factors interacting together, which result in highly successful sea turtle nests are not well understood. Using 25 years of historic nest data and local expert experience, we identified five historically successful loggerhead (Caretta caretta) nesting beaches (hotspots) along the Florida (United States) Atlantic coast and measured nest environments along with the nest success. Principal component analysis was used to reduce 12 environmental variables so that the relative contributions of sand characteristics, nest temperatures, sand moisture, and nest location were considered. The nest environments differed among nesting beaches and were broadly segregated into two distinct climates: subtropical (hot and humid) and warm-temperate (warm and dry). We found that nests at subtropical sites, compared with warm-temperate sites, were characterized by environmental gradients in contrasting ways. Nest locations were predominantly mid-beach in subtropical sites but clustered at higher elevations and closer to the base of the dune at warm-temperate climate sites. Collectively, highly successful nest hotspots represent a mosaic of abiotic factors providing conditions that promote successful hatching and emergence. This new perspective on consistently successful loggerhead nesting beach traits demonstrate that the key traits of sea turtle nesting habitat vary with prevailing climate type and should be managed accordingly.
Collapse
|
5
|
Lyons MP, von Holle B, Weishampel JF. Why do sea turtle nests fail? Modeling clutch loss across the southeastern United States. Ecosphere 2022. [DOI: 10.1002/ecs2.3988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Marta P. Lyons
- Department of Biology University of Central Florida Orlando Florida USA
| | - Betsy von Holle
- Department of Biology University of Central Florida Orlando Florida USA
- National Science Foundation Alexandria Virginia USA
| | | |
Collapse
|
6
|
Farr ER, Johnson MR, Nelson MW, Hare JA, Morrison WE, Lettrich MD, Vogt B, Meaney C, Howson UA, Auster PJ, Borsuk FA, Brady DC, Cashman MJ, Colarusso P, Grabowski JH, Hawkes JP, Mercaldo-Allen R, Packer DB, Stevenson DK. An assessment of marine, estuarine, and riverine habitat vulnerability to climate change in the Northeast U.S. PLoS One 2021; 16:e0260654. [PMID: 34882701 PMCID: PMC8659346 DOI: 10.1371/journal.pone.0260654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Climate change is impacting the function and distribution of habitats used by marine, coastal, and diadromous species. These impacts often exacerbate the anthropogenic stressors that habitats face, particularly in the coastal environment. We conducted a climate vulnerability assessment of 52 marine, estuarine, and riverine habitats in the Northeast U.S. to develop an ecosystem-scale understanding of the impact of climate change on these habitats. The trait-based assessment considers the overall vulnerability of a habitat to climate change to be a function of two main components, sensitivity and exposure, and relies on a process of expert elicitation. The climate vulnerability ranks ranged from low to very high, with living habitats identified as the most vulnerable. Over half of the habitats examined in this study are expected to be impacted negatively by climate change, while four habitats are expected to have positive effects. Coastal habitats were also identified as highly vulnerable, in part due to the influence of non-climate anthropogenic stressors. The results of this assessment provide regional managers and scientists with a tool to inform habitat conservation, restoration, and research priorities, fisheries and protected species management, and coastal and ocean planning.
Collapse
Affiliation(s)
- Emily R. Farr
- Office of Habitat Conservation, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Michael R. Johnson
- Habitat and Ecosystem Services Division, Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, United States of America
| | - Mark W. Nelson
- ECS, Under contract to the Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Jonathan A. Hare
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts, United States of America
| | - Wendy E. Morrison
- Office of Sustainable Fisheries, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Matthew D. Lettrich
- ECS, Under contract to the Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Bruce Vogt
- NOAA Chesapeake Bay Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Annapolis, Maryland, United States of America
| | - Christopher Meaney
- Gulf of Maine Coastal Program, U.S. Fish and Wildlife Service, Falmouth, Maine, United States of America
| | - Ursula A. Howson
- Office of Renewable Energy Programs, Bureau of Ocean Energy Management, Sterling, Virginia, United States of America
| | - Peter J. Auster
- Mystic Aquarium & University of Connecticut, Groton, Connecticut, United States of America
| | - Frank A. Borsuk
- Region 3, U.S. Environmental Protection Agency, Wheeling, West Virginia, United States of America
| | - Damian C. Brady
- Darling Marine Center, University of Maine, Walpole, Maine, United States of America
| | - Matthew J. Cashman
- Maryland-Delaware-DC Water Science Center, U.S. Geological Survey, Baltimore, Maryland, United States of America
| | - Phil Colarusso
- Region 1, U.S. Environmental Protection Agency, Boston, Massachusetts, United States of America
| | - Jonathan H. Grabowski
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - James P. Hawkes
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Orono, Maine, United States of America
| | - Renee Mercaldo-Allen
- Milford Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Milford, Connecticut, United States of America
| | - David B. Packer
- James J. Howard Marine Sciences Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Highlands, New Jersey, United States of America
| | - David K. Stevenson
- Habitat and Ecosystem Services Division, Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, United States of America
| |
Collapse
|
7
|
Patrício AR, Hawkes LA, Monsinjon JR, Godley BJ, Fuentes MMPB. Climate change and marine turtles: recent advances and future directions. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Climate change is a threat to marine turtles that is expected to affect all of their life stages. To guide future research, we conducted a review of the most recent literature on this topic, highlighting knowledge gains and research gaps since a similar previous review in 2009. Most research has been focussed on the terrestrial life history phase, where expected impacts will range from habitat loss and decreased reproductive success to feminization of populations, but changes in reproductive periodicity, shifts in latitudinal ranges, and changes in foraging success are all expected in the marine life history phase. Models have been proposed to improve estimates of primary sex ratios, while technological advances promise a better understanding of how climate can influence different life stages and habitats. We suggest a number of research priorities for an improved understanding of how climate change may impact marine turtles, including: improved estimates of primary sex ratios, assessments of the implications of female-biased sex ratios and reduced male production, assessments of the variability in upper thermal limits of clutches, models of beach sediment movement under sea level rise, and assessments of impacts on foraging grounds. Lastly, we suggest that it is not yet possible to recommend manipulating aspects of turtle nesting ecology, as the evidence base with which to understand the results of such interventions is not robust enough, but that strategies for mitigation of stressors should be helpful, providing they consider the synergistic effects of climate change and other anthropogenic-induced threats to marine turtles, and focus on increasing resilience.
Collapse
Affiliation(s)
- AR Patrício
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, 1149-041 Lisbon, Portugal
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - LA Hawkes
- Hatherley Laboratories, College of Life and Environmental Sciences, University of Exeter, Streatham Campus, Exeter EX4 4PS, UK
| | - JR Monsinjon
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6139, South Africa
| | - BJ Godley
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - MMPB Fuentes
- Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|