1
|
Friuli M, Eramo B, Sepe C, Kiani M, Casolini P, Zuena AR. The endocannabinoid and paracannabinoid systems in natural reward processes: possible pharmacological targets? Physiol Behav 2025; 296:114929. [PMID: 40274041 DOI: 10.1016/j.physbeh.2025.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Natural rewards such as food, mating, and social interaction are essential for survival and species preservation, and their regulation involves a complex interplay of motivational, cognitive, and emotional processes. Over the past two decades, increasing attention has been directed toward the endocannabinoid system and its paracannabinoid counterpart as key modulators of these behaviors. This review aims to provide an integrated overview of the roles played by the endocannabinoid and paracannabinoid systems in regulating natural reward-driven behaviors, focusing on feeding, reproductive behavior, and social interaction. We highlight how the endocannabinoid system - mainly through CB1 receptor signaling - modulates central and peripheral circuits involved in energy homeostasis, reward processing, and emotional regulation. In parallel, we explore the role of paracannabinoids, such as oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA), which act primarily via non-cannabinoid receptors and contribute to the regulation of appetite, sexual motivation, and social behavior. Special attention is given to the relevance of these systems in the pathophysiology of obesity, eating disorders, sexual dysfunctions, and social impairments, as well as their potential as pharmacological targets. Overall, the evidence discussed supports a broader conceptualization of endocannabinoid and paracannabinoid signaling as pivotal regulators of natural rewards and opens new avenues for the development of targeted interventions for motivational and reward-related disorders.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Barbara Eramo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Christian Sepe
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Mitra Kiani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Paola Casolini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Rodríguez-García C, Osuna-Prieto FJ, Kohler I, Sanchez-Gomez J, Ruiz-Campos S, Castillo MJ, Amaro-Gahete FJ, Martínez-Tellez B, Jurado-Fasoli L. Higher plasma levels of endocannabinoids and analogues are correlated with a worse cardiometabolic profile in middle-aged adults. J Physiol Biochem 2025; 81:173-184. [PMID: 39636365 DOI: 10.1007/s13105-024-01063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The increase in age-related comorbidities, such as cardiometabolic diseases, has become a global health priority. There is a growing need to find new parameters capable of improving the detection of cardiometabolic risk factors, and circulating endocannabinoids (eCBs) are a promising tool in this context. Here, we aimed to investigate the relationship between plasma levels of eCBs and their analogues with body composition and cardiometabolic risk factors in middle-aged adults. Seventy-two individuals (54% women; 53.6 ± 5.1 years old) were included in this study. Plasma levels of eCBs and analogues were determined using liquid chromatography-tandem mass spectrometry. Body composition was measured by dual-energy X-ray absorptiometry. Cardiometabolic risk factors (i.e., glucose and lipid profile, blood pressure, liver and renal parameters, and gonadal hormones) were also assessed. The plasma levels of 1- and 2-arachidonylglycerol (1-AG&2-AG) were positively correlated with adiposity (all r ≥ 0.23, P < 0.05). Interestingly, the plasma levels of 1-AG&2-AG, arachidonoylethanolamide, and palmitoyl-ethanolamide were positively correlated with the homeostatic model assessment index - Insulin Resistance (HOMA-IR) (all r ≥ 0.32, P < 0.01). Our results also showed that high levels of 1-AG&2-AG, arachidonoylethanolamide, linoleoyl ethanolamide, and palmitoleoyl ethanolamide were correlated with poorer liver (all r ≥ 0.27, P < 0.05), kidney (all r ≥ 0.24, P < 0.05), and gonadal function parameters (testosterone: all r > 0.26, P < 0.05, SHBG: 1-AG&2-AG r=-0.33, P < 0.01). The plasma levels of some eCBs and analogues are correlated with a worse cardiometabolic profile in middle-aged adults.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Francisco J Osuna-Prieto
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain, Tarragona, 43005, Spain
- Department of Physical Education and Sports, PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, 18071, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, 1098 HX, The Netherlands
| | - Joaquin Sanchez-Gomez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - Samuel Ruiz-Campos
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biosanitaria, Ibs.Granada, Granada, Spain
| | - Borja Martínez-Tellez
- Department of Nursing, Physiotherapy and Medicine and SPORT Research Group (CTS-1024), CIBIS Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, 04009, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, 18071, Spain.
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands.
- Department of Physiology, Faculty of Medicine, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| |
Collapse
|
3
|
Mottarlini F, Targa G, Rizzi B, Fumagalli F, Caffino L. Developmental activity-based anorexia alters hippocampal non-genomic stress response and induces structural instability and spatial memory impairment in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111065. [PMID: 38901757 DOI: 10.1016/j.pnpbp.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Anorexia nervosa (AN) is characterized by hyperactivation of the hypothalamic-pituitary-adrenal axis and cognitive deficits. However, little is known about the rapid non-genomic stress response involvement. This study investigates the molecular, structural and behavioral signatures of the anorexic phenotype induction in female rats on stress-related mechanisms in the hippocampus. METHOD Female adolescent rats, exposed to the combination of food restriction and wheel access, i.e., the activity-based anorexia (ABA) protocol, were sacrificed in the acute phase of the pathology (postnatal day [P]42) or following a 7-day recovery period (P49). RESULTS ABA rats, in addition to body weight loss and increased wheel activity, alter their pattern of activity over days, showing increased food anticipatory activity, a readout of their motivation to engage in intense physical activity. Corticosterone plasma levels were enhanced at P42 while reduced at P49 in ABA rats. In the membrane fraction of the hippocampus, we found reduced glucocorticoid receptor levels together with reduced expression of caldesmon, n-cadherin and neuroligin-1, molecular markers of cytoskeletal stability and glutamatergic homeostasis. Accordingly, structural analyses revealed reduced dendritic spine density, a reduced number of mushroom-shaped spines, together with an increased number of thin-shaped spines. These events are paralleled by impairment in spatial memory measured in the spatial order object recognition test. These effects persisted even when body weight of ABA rats was restored. DISCUSSION Our findings indicate that ABA induction orchestrates hippocampal maladaptive structural and functional plasticity, contributing to cognitive deficits, providing a putative mechanism that could be targeted in AN patients.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
4
|
Mir HD, Giorgini G, Di Marzo V. The emerging role of the endocannabinoidome-gut microbiome axis in eating disorders. Psychoneuroendocrinology 2023; 154:106295. [PMID: 37229916 DOI: 10.1016/j.psyneuen.2023.106295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Among the sources of chemical signals regulating food intake, energy metabolism and body weight, few have attracted recently as much attention as the expanded endocannabinoid system, or endocannabinoidome (eCBome), and the gut microbiome, the two systems on which this review article is focussed. Therefore, it is legitimate to expect that these two systems also play a major role in the etiopathology of eating disorders (EDs), in particular of anorexia nervosa, bulimia nervosa and binge-eating disorder. The major mechanisms through which, also via interactions with other endogenous signaling systems, the eCBome, with its several lipid mediators and receptors, and the gut microbiome, via its variety of microbial kingdoms, phyla and species, and armamentarium of metabolites, intervene in these disorders, are described here, based on several published studies in either experimental models or patients. Additionally, in view of the emerging multi-faceted cross-talk mechanisms between these two complex systems, we discuss the possibility that the eCBome-gut microbiome axis is also involved in EDs.
Collapse
Affiliation(s)
- Hayatte-Dounia Mir
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Giada Giorgini
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada; École de nutrition, Faculté des Sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
5
|
Dedoni S, Scherma M, Camoglio C, Siddi C, Fratta W, Fadda P. Anaplastic Lymphoma Kinase Receptor: Possible Involvement in Anorexia Nervosa. Nutrients 2023; 15:2205. [PMID: 37432348 DOI: 10.3390/nu15092205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
The pathophysiology of Anorexia Nervosa (AN) has not been fully elucidated. Anaplastic lymphoma kinase (ALK) receptor is a protein-tyrosine kinase mainly known as a key oncogenic driver. Recently, a genetic deletion of ALK in mice has been found to increase energy expenditure and confers resistance to obesity in these animals, suggesting its role in the regulation of thinness. Here, we investigated the expression of ALK and the downstream intracellular pathways in female rats subjected to the activity-based anorexia (ABA) model, which reproduces important features of human AN. In the hypothalamic lysates of ABA rats, we found a reduction in ALK receptor expression, a downregulation of Akt phosphorylation, and no change in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. After the recovery from body weight loss, ALK receptor expression returned to the control baseline values, while it was again suppressed during a second cycle of ABA induction. Overall, this evidence suggests a possible involvement of the ALK receptor in the pathophysiology of AN, that may be implicated in its stabilization, resistance, and/or its exacerbation.
Collapse
Affiliation(s)
- Simona Dedoni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Scherma
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Chiara Camoglio
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Carlotta Siddi
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
| | - Paola Fadda
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Science, University of Cagliari, 09124 Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), 09042 Cagliari, Italy
| |
Collapse
|
6
|
Giunti E, Collu R, Dedoni S, Castelli MP, Fratta W, Scherma M, Fadda P. Food restriction and hyperactivity induce changes in corticolimbic brain dopamine and serotonin levels in female rats. Behav Brain Res 2023; 444:114374. [PMID: 36863461 DOI: 10.1016/j.bbr.2023.114374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Compelling data support altered dopamine (DA) and serotonin (5-HT) signaling in anorexia nervosa (AN). However, their exact role in the etiopathogenesis of AN has yet to be elucidated. Here, we evaluated the corticolimbic brain levels of DA and 5-HT in the induction and recovery phases of the activity-based anorexia (ABA) model of AN. We exposed female rats to the ABA paradigm and measured the levels of DA, 5-HT, the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and the dopaminergic type 2 (D2) receptors density in feeding- and reward-implicated brain regions (i.e., cerebral cortex, Cx; prefrontal cortex, PFC; caudate putamen, CPu; nucleus accumbens, NAcc; amygdala, Amy; hypothalamus, Hyp; hippocampus, Hipp). DA levels were significantly increased in the Cx, PFC and NAcc, while 5-HT was significantly enhanced in the NAcc and Hipp of ABA rats. Following recovery, DA was still elevated in the NAcc, while 5-HT was increased in the Hyp of recovered ABA rats. DA and 5-HT turnover were impaired at both ABA induction and recovery. D2 receptors density was increased in the NAcc shell. These results provide further proof of the impairment of the dopaminergic and serotoninergic systems in the brain of ABA rats and support the knowledge of the involvement of these two important neurotransmitter systems in the development and progression of AN. Thus, providing new insights on the corticolimbic regions involved in the monoamine dysregulations in the ABA model of AN.
Collapse
Affiliation(s)
- Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience, Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
7
|
Pinos H, Sánchez-Serrano R, Carrillo B, Fernández-García JM, García-Úbeda R, de Paz A, López-Tolsa GE, Vidal P, Gutiérrez-Ferre V, Pellón R, Collado P. Activity-based anorexia alters hypothalamic POMC and orexin populations in male rats. Behav Brain Res 2023; 436:114055. [DOI: 10.1016/j.bbr.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
|
8
|
Mottarlini F, Targa G, Bottan G, Tarenzi B, Fumagalli F, Caffino L. Cortical reorganization of the glutamate synapse in the activity-based anorexia rat model: Impact on cognition. J Neurochem 2022; 161:350-365. [PMID: 35257377 PMCID: PMC9313878 DOI: 10.1111/jnc.15605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
Patients suffering from anorexia nervosa (AN) display altered neural activity, morphological, and functional connectivity in the fronto-striatal circuit. In addition, hypoglutamatergic transmission and aberrant excitability of the medial prefrontal cortex (mPFC) observed in AN patients might underpin cognitive deficits that fuel the vicious cycle of dieting behavior. To provide a molecular mechanism, we employed the activity-based anorexia (ABA) rat model, which combines the two hallmarks of AN (i.e., caloric restriction and intense physical exercise), to evaluate structural remodeling together with alterations in the glutamatergic signaling in the mPFC and their impact on temporal memory, as measured by the temporal order object recognition (TOOR) test. Our data indicate that the combination of caloric restriction and intense physical exercise altered the homeostasis of the glutamate synapse and reduced spine density in the mPFC. These events, paralleled by an impairment in recency discrimination in the TOOR test, are associated with the ABA endophenotype. Of note, after a 7-day recovery period, body weight was recovered and the mPFC structure normalized but ABA rats still exhibited reduced post-synaptic stability of AMPA and NMDA glutamate receptors associated with cognitive dysfunction. Taken together, these data suggest that the combination of reduced food intake and hyperactivity affects the homeostasis of the excitatory synapse in the mPFC contributing to maintain the aberrant behaviors observed in AN patients. Our findings, by identifying novel potential targets of AN, may contribute to more effectively direct the therapeutic interventions to ameliorate, at least, the cognitive effects of this psychopathology.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Giorgia Bottan
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Benedetta Tarenzi
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
9
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
10
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Spadini S, Ferro M, Lamanna J, Malgaroli A. Activity-based anorexia animal model: a review of the main neurobiological findings. J Eat Disord 2021; 9:123. [PMID: 34600568 PMCID: PMC8487535 DOI: 10.1186/s40337-021-00481-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genesis of anorexia nervosa (AN), a severe eating disorder with a pervasive effect on many brain functions such as attention, emotions, reward processing, cognition and motor control, has not yet been understood. Since our current knowledge of the genetic aspects of AN is limited, we are left with a large and diversified number of biological, psychological and environmental risk factors, called into question as potential triggers of this chronic condition with a high relapse rate. One of the most valid and used animal models for AN is the activity-based anorexia (ABA), which recapitulates important features of the human condition. This model is generated from naïve rodents by a self-motivated caloric restriction, where a fixed schedule food delivery induces spontaneous increased physical activity. AIM In this review, we sought to provide a summary of the experimental research conducted using the ABA model in the pursuit of potential neurobiological mechanism(s) underlying AN. METHOD The experimental work presented here includes evidence for neuroanatomical and neurophysiological changes in several brain regions as well as for the dysregulation of specific neurochemical synaptic and neurohormonal pathways. RESULTS The most likely hypothesis for the mechanism behind the development of the ABA phenotype relates to an imbalance of the neural circuitry that mediates reward processing. Evidence collected here suggests that ABA animals show a large set of alterations, involving regions whose functions extend way beyond the control of reward mechanisms and eating habits. Hence, we cannot exclude a primary role of these alterations from a mechanistic theory of ABA induction. CONCLUSIONS These findings are not sufficient to solve such a major enigma in neuroscience, still they could be used to design ad hoc further experimental investigation. The prospect is that, since treatment of AN is still challenging, the ABA model could be more effectively used to shed light on the complex AN neurobiological framework, thus supporting the future development of therapeutic strategies but also the identification of biomarkers and diagnostic tools. Anorexia Nervosa (AN) is a severe eating disorder with a dramatic effect on many functions of our brain, such as attention, emotions, cognition and motion control. Since our current knowledge of the genetic aspects behind the development of AN is still limited, many biological, psychological and environmental factors must be taken into account as potential triggers of this condition. One of the most valid animal models for studying AN is the activity-based anorexia (ABA). In this model, rodents spontaneously limit food intake and start performing increased physical activity on a running wheel, a result of the imposition of a fixed time schedule for food delivery. In this review, we provide a detailed summary of the experimental research conducted using the ABA model, which includes extended evidence for changes in the anatomy and function of the brain of ABA rodents. The hope is that such integrated view will support the design of future experiments that will shed light on the complex brain mechanisms behind AN. Such advanced knowledge is crucial to find new, effective strategies for both the early diagnosis of AN and for its treatment.
Collapse
Affiliation(s)
- Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
12
|
From Desire to Dread-A Neurocircuitry Based Model for Food Avoidance in Anorexia Nervosa. J Clin Med 2021; 10:jcm10112228. [PMID: 34063884 PMCID: PMC8196668 DOI: 10.3390/jcm10112228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anorexia nervosa is a severe psychiatric illness associated with food avoidance. Animal models from Berridge et al. over the past decade showed that environmental ambience, pleasant or fear inducing, can trigger either appetitive (desire) or avoidance (dread) behaviors in animals via frontal cortex, nucleus accumbens dopamine D1 and D2 receptors, and hypothalamus. Those mechanisms could be relevant for understanding anorexia nervosa. However, models that translate animal research to explain the psychopathology of anorexia nervosa are sparse. This article reviews animal and human research to find evidence for whether this model can explain food avoidance behaviors in anorexia nervosa. Research on anorexia nervosa suggests fear conditioning to food, activation of the corticostriatal brain circuitry, sensitization of ventral striatal dopamine response, and alterations in hypothalamic function. The results support the applicability of the animal neurocircuitry derived model and provide directions to further study the pathophysiology that underlies anorexia nervosa.
Collapse
|
13
|
Scharner S, Stengel A. Animal Models for Anorexia Nervosa-A Systematic Review. Front Hum Neurosci 2021; 14:596381. [PMID: 33551774 PMCID: PMC7854692 DOI: 10.3389/fnhum.2020.596381] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.
Collapse
Affiliation(s)
- Sophie Scharner
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|
15
|
Rochefort G, Provencher V, Castonguay-Paradis S, Perron J, Lacroix S, Martin C, Flamand N, Di Marzo V, Veilleux A. Intuitive eating is associated with elevated levels of circulating omega-3-polyunsaturated fatty acid-derived endocannabinoidome mediators. Appetite 2020; 156:104973. [PMID: 32971226 DOI: 10.1016/j.appet.2020.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.
Collapse
Affiliation(s)
- Gabrielle Rochefort
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Véronique Provencher
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada
| | - Sophie Castonguay-Paradis
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Julie Perron
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Sébastien Lacroix
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Cyril Martin
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Nicolas Flamand
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Alain Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada.
| |
Collapse
|
16
|
Yagin NL, Hajjarzadeh S, Aliasgharzadeh S, Aliasgari F, Mahdavi R. The association of dietary patterns with endocannabinoids levels in overweight and obese women. Lipids Health Dis 2020; 19:161. [PMID: 32631352 PMCID: PMC7339382 DOI: 10.1186/s12944-020-01341-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Higher levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), the main arachidonic acid-derived endocannabinoids, are frequently reported in overweight and obese individuals. Recently, endocannabinoids have become a research interest in obesity area regarding their role in food intake. The relationship between dietary patterns and endocannabinoids is poorly understood; therefore, this study evaluated the association of the dietary patterns with AEA and 2-AG levels in overweight and obese women. METHODS In this cross sectional study, 183 overweight and obese females from Tabriz, Iran who aged between 19 and 50 years old and with mean BMI = 32.44 ± 3.79 kg/m2 were interviewed. The AEA and 2-AG levels were measured, and the dietary patterns were assessed using food frequency questionnaire. To extract the dietary patterns, factor analysis was applied. The association between AEA and 2-AG levels and dietary patterns was analyzed by linear regression. RESULTS Three major dietary patterns including "Western", "healthy", and "traditional" were extracted. After adjusting for age, physical activity, BMI, waist circumference, and fat mass, higher levels of AEA and 2-AG were observed in participants who were in the highest quintile of the Western pattern (P < 0.05). Also, in both unadjusted and adjusted models, significantly lower levels of AEA and 2-AG were detected in the women of the highest quintile of the healthy pattern (P < 0.01). Moreover, there was no significant association between "traditional" pattern and AEA and 2- AG levels in both unadjusted and adjusted models (P > 0.05). CONCLUSION In regard with the lower levels of endocannabinoids in healthy dietary pattern, adherence to healthy pattern might have promising results in regulating endocannabinoids levels.
Collapse
Affiliation(s)
- Neda Lotfi Yagin
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hajjarzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Aliasgharzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasgari
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
D'Addario C, Zaplatic E, Giunti E, Pucci M, Micioni Di Bonaventura MV, Scherma M, Dainese E, Maccarrone M, Nilsson IA, Cifani C, Fadda P. Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa. Int J Eat Disord 2020; 53:432-446. [PMID: 32275093 DOI: 10.1002/eat.23271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Lipid Neurochemistry Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ida A Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
18
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
19
|
Collu R, Post JM, Scherma M, Giunti E, Fratta W, Lutz B, Fadda P, Bindila L. Altered brain levels of arachidonic acid-derived inflammatory eicosanoids in a rodent model of anorexia nervosa. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158578. [PMID: 31778792 DOI: 10.1016/j.bbalip.2019.158578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Increasing evidence underline the role of inflammation in the behavioral, emotional and cognitive dysregulations displayed in anorexia nervosa (AN). Among the inflammatory mediators acting at both peripheral and central levels, growing attention receives a class of lipids derived from arachidonic acid (AA), called eicosanoids (eiCs), which exert a complex, multifaceted role in a wide range of neuroinflammatory processes, peripheral inflammation, and generally in immune system function. To date, little is known about their possible involvement in the neurobiological underpinnings of AN. The present study evaluated whether the activity-based model of AN (ABA) may alter AA-metabolic pathways by changing the levels of AA-derived eiCs in specific brain areas implicated in the development of the typical anorexic-like phenotype, i.e. in prefrontal cortex, cerebral cortex, nucleus accumbens, caudate putamen, amygdala, hippocampus, hypothalamus and cerebellum. Our results point to brain region-specific alterations of the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP) metabolic pathways rendering altered levels of AA-derived eiCs (i.e. prostaglandins, thromboxanes and hydroxyeicosatetraenoic acids) in response to induction of and recovery from the ABA condition. These changes, supported by altered messenger RNA (mRNA) levels of genes coding for enzymes involved in eiCs-related methabolic pathways (i.e., PLA2, COX-2, 5-LOX and 15-LOX), underlie a widespread brain dysregulation of pro- and anti-inflammatory eiC-mediated processes in the ABA model of AN. These data suggest the importance of eiCs signaling within corticolimbic areas in regulating key neurobehavioral functions and highlight eiCs as biomarker candidates for monitoring the onset and development of AN, and/or as possible targets for pharmacological management.
Collapse
Affiliation(s)
- Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Julia Maria Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy; National Neuroscience Institute, Italy.
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|