1
|
Leigh S, Ritchie MG. A history of studies of reproductive isolation between Drosophila pseudoobscura and D. persimilis. Fly (Austin) 2025; 19:2439111. [PMID: 39707709 DOI: 10.1080/19336934.2024.2439111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Drosophila pseudoobscura and D. persimilis are a sister species pair that have been used as a model for studies of reproductive isolation and speciation for almost 100 years owing to their close evolutionary history, well characterized genetic differences, and overlapping geographic distribution. There are extensive analyses of both pre- and post-zygotic isolation, including studies of courtship divergence, conspecific sperm precedence (CSP) and how reinforcement by natural selection may or may not act to strengthen isolation in sympatry. Post-zygotic analyses explore the underlying mechanics of reproductive isolation; how inversions may give rise to initial speciation events and misexpression of key genes typically found within inversion regions render hybrid offspring unfit or inviable. We aim here to present a history of studies of reproductive isolation between this species pair, looking at how the field has developed over the last century and identifying the open questions and gaps within the literature.
Collapse
Affiliation(s)
- Stewart Leigh
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
2
|
Pennell TM, Mank JE, Alonzo SH, Hosken DJ. On the resolution of sexual conflict over shared traits. Proc Biol Sci 2024; 291:20240438. [PMID: 39082243 PMCID: PMC11289733 DOI: 10.1098/rspb.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Anisogamy, different-sized male and female gametes, sits at the heart of sexual selection and conflict between the sexes. Sperm producers (males) and egg producers (females) of the same species generally share most, if not all, of the same genome, but selection frequently favours different trait values in each sex for traits common to both. The extent to which this conflict might be resolved, and the potential mechanisms by which this can occur, have been widely debated. Here, we summarize recent findings and emphasize that once the sexes evolve, sexual selection is ongoing, and therefore new conflict is always possible. In addition, sexual conflict is largely a multivariate problem, involving trait combinations underpinned by networks of interconnected genes. Although these complexities can hinder conflict resolution, they also provide multiple possible routes to decouple male and female phenotypes and permit sex-specific evolution. Finally, we highlight difficulty in the study of sexual conflict over shared traits and promising directions for future research.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060, USA
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| |
Collapse
|
3
|
Barata C, Snook RR, Ritchie MG, Kosiol C. Selection on the Fly: Short-Term Adaptation to an Altered Sexual Selection Regime in Drosophila pseudoobscura. Genome Biol Evol 2023; 15:evad113. [PMID: 37341535 PMCID: PMC10319773 DOI: 10.1093/gbe/evad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Experimental evolution studies are powerful approaches to examine the evolutionary history of lab populations. Such studies have shed light on how selection changes phenotypes and genotypes. Most of these studies have not examined the time course of adaptation under sexual selection manipulation, by resequencing the populations' genomes at multiple time points. Here, we analyze allele frequency trajectories in Drosophila pseudoobscura where we altered their sexual selection regime for 200 generations and sequenced pooled populations at 5 time points. The intensity of sexual selection was either relaxed in monogamous populations (M) or elevated in polyandrous lines (E). We present a comprehensive study of how selection alters population genetics parameters at the chromosome and gene level. We investigate differences in the effective population size-Ne-between the treatments, and perform a genome-wide scan to identify signatures of selection from the time-series data. We found genomic signatures of adaptation to both regimes in D. pseudoobscura. There are more significant variants in E lines as expected from stronger sexual selection. However, we found that the response on the X chromosome was substantial in both treatments, more pronounced in E and restricted to the more recently sex-linked chromosome arm XR in M. In the first generations of experimental evolution, we estimate Ne to be lower on the X in E lines, which might indicate a swift adaptive response at the onset of selection. Additionally, the third chromosome was affected by elevated polyandry whereby its distal end harbors a region showing a strong signal of adaptive evolution especially in E lines.
Collapse
Affiliation(s)
- Carolina Barata
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Carolin Kosiol
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
4
|
Veltsos P, Porcelli D, Fang Y, Cossins AR, Ritchie MG, Snook RR. Experimental sexual selection reveals rapid evolutionary divergence in sex-specific transcriptomes and their interactions following mating. Mol Ecol 2022; 31:3374-3388. [PMID: 35437824 PMCID: PMC9325514 DOI: 10.1111/mec.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Post copulatory interactions between the sexes in internally fertilizing species elicits both sexual conflict and sexual selection. Macroevolutionary and comparative studies have linked these processes to rapid transcriptomic evolution in sex‐specific tissues and substantial transcriptomic post mating responses in females, patterns of which are altered when mating between reproductively isolated species. Here, we tested multiple predictions arising from sexual selection and conflict theory about the evolution of sex‐specific and tissue‐specific gene expression and the post mating response at the microevolutionary level. Following over 150 generations of experimental evolution under either reduced (enforced monogamy) or elevated (polyandry) sexual selection in Drosophila pseudoobscura, we found a substantial effect of sexual selection treatment on transcriptomic divergence in virgin male and female reproductive tissues (testes, male accessory glands, the female reproductive tract and ovaries). Sexual selection treatment also had a dominant effect on the post mating response, particularly in the female reproductive tract – the main arena for sexual conflict – compared to ovaries. This effect was asymmetric with monandry females typically showing more post mating responses than polyandry females, with enriched gene functions varying across treatments. The evolutionary history of the male partner had a larger effect on the post mating response of monandry females, but females from both sexual selection treatments showed unique patterns of gene expression and gene function when mating with males from the alternate treatment. Our microevolutionary results mostly confirm comparative macroevolutionary predictions on the role of sexual selection on transcriptomic divergence and altered gene regulation arising from divergent coevolutionary trajectories between sexual selection treatments.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Damiano Porcelli
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Yongxiang Fang
- CGR, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Andrew R Cossins
- Centre for Genomic Research, Institute for Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
5
|
Garlovsky MD, Holman L, Brooks AL, Novicic ZK, Snook RR. Experimental sexual selection affects the evolution of physiological and life-history traits. J Evol Biol 2022; 35:742-751. [PMID: 35384100 PMCID: PMC9322299 DOI: 10.1111/jeb.14003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life-history traits in response to long-term experimental manipulation of the mating system in populations of Drosophila pseudoobscura. Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation- and starvation resistant than monogamy males, suggesting trade-offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non-sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Andrew L Brooks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zorana K Novicic
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Scharmann M, Rebelo AG, Pannell JR. High rates of evolution preceded shifts to sex-biased gene expression in Leucadendron, the most sexually dimorphic angiosperms. eLife 2021; 10:e67485. [PMID: 34726596 PMCID: PMC8635981 DOI: 10.7554/elife.67485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
Differences between males and females are usually more subtle in dioecious plants than animals, but strong sexual dimorphism has evolved convergently in the South African Cape plant genus Leucadendron. Such sexual dimorphism in leaf size is expected largely to be due to differential gene expression between the sexes. We compared patterns of gene expression in leaves among 10 Leucadendron species across the genus. Surprisingly, we found no positive association between sexual dimorphism in morphology and the number or the percentage of sex-biased genes (SBGs). Sex bias in most SBGs evolved recently and was species specific. We compared rates of evolutionary change in expression for genes that were sex biased in one species but unbiased in others and found that SBGs evolved faster in expression than unbiased genes. This greater rate of expression evolution of SBGs, also documented in animals, might suggest the possible role of sexual selection in the evolution of gene expression. However, our comparative analysis clearly indicates that the more rapid rate of expression evolution of SBGs predated the origin of bias, and shifts towards bias were depleted in signatures of adaptation. Our results are thus more consistent with the view that sex bias is simply freer to evolve in genes less subject to constraints in expression level.
Collapse
Affiliation(s)
- Mathias Scharmann
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Anthony G Rebelo
- Applied Biodiversity Research Division, South African National Biodiversity InstituteCape TownSouth Africa
| | - John R Pannell
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Li Richter XY, Hollis B. Softness of selection and mating system interact to shape trait evolution under sexual conflict. Evolution 2021; 75:2335-2347. [PMID: 34396531 PMCID: PMC9293156 DOI: 10.1111/evo.14329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 07/09/2021] [Indexed: 12/01/2022]
Abstract
Sexual selection and sexual conflict play central roles in driving the evolution of male and female traits. Experimental evolution provides a powerful approach to study the operation of these forces under controlled environmental and demographic conditions, thereby allowing direct comparisons of evolutionary trajectories under different treatments such as mating systems. Despite the rapid progress of experimental and statistical techniques that support experimental evolution studies, we still lack clear theoretical predictions on the effects of different mating systems beyond what intuition suggests. For example, polygamy (several males and females in a mating group) and polyandry (one single female and multiple males in a mating group) have each been used as treatments that elevate sexual selection on males and sexual conflict relative to monogamy. However, polygamy and polyandry manipulations sometimes produce different evolutionary outcomes, and the precise reasons why remain elusive. In addition, the softness of selection (i.e., scale of competition within each sex) is known to affect trait evolution, and is an important factor to consider in experimental design. To date, no model has specifically investigated how the softness of selection interacts with different mating systems. Here, we try to fill these gaps by generating clear and readily testable predictions. Our set of models were designed to capture the most important life cycle events in typical experimental evolution studies, and we use simulated changes of sex‐specific gene expression profiles (i.e., feminization or masculinization) to quantify trait evolution under different selection schemes. We show that interactions between the softness of selection and the mating system can produce results that have been identified as counterintuitive in previous empirical work such as polyandry producing stronger feminization than monogamy. We conclude by encouraging a stronger integration of modelling in future experimental evolution studies and pointing out remaining knowledge gaps for future theoretical work.
Collapse
Affiliation(s)
- Xiang-Yi Li Richter
- Institute of Biology, University of Neuchâtel, Neuchâtel, CH-2000, Switzerland
| | - Brian Hollis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| |
Collapse
|
8
|
Wiberg RAW, Veltsos P, Snook RR, Ritchie MG. Experimental evolution supports signatures of sexual selection in genomic divergence. Evol Lett 2021; 5:214-229. [PMID: 34136270 PMCID: PMC8190450 DOI: 10.1002/evl3.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has contributed to the growing evidence that sexual selection is an important component of evolutionary divergence and speciation. Divergence by sexual selection is implicated in faster rates of divergence of the X chromosome and of genes thought to underlie sexually selected traits, including genes that are sex biased in expression. However, accurately inferring the relative importance of complex and interacting forms of natural selection, demography, and neutral processes that occurred in the evolutionary past is challenging. Experimental evolution provides an opportunity to apply controlled treatments for multiple generations and examine the consequent genomic divergence. Here, we altered sexual selection intensity, elevating sexual selection in polyandrous lines and eliminating it in monogamous lines, and examined patterns of allele frequency divergence in the genome of Drosophila pseudoobscura after more than 160 generations of experimental evolution. Divergence is not uniform across the genome but concentrated in "islands," many of which contain candidate genes implicated in mating behaviors and other sexually selected phenotypes. These are more often seen on the X chromosome, which also shows greater divergence in F ST than neutral expectations. There are characteristic signatures of selection seen in these regions, with lower diversity on the X chromosome than the autosomes, and differences in diversity on the autosomes between selection regimes. Reduced Tajima's D within some of the divergent regions may imply that selective sweeps have occurred, despite considerable recombination. These changes are associated with both differential gene expression between the lines and sex-biased gene expression within the lines. Our results are very similar to those thought to implicate sexual selection in divergence between species and natural populations, and hence provide experimental support for the likely role of sexual selection in driving such types of genetic divergence, but also illustrate how variable outcomes can be for different genomic regions.
Collapse
Affiliation(s)
- R. Axel W. Wiberg
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Current Address: Department of Environmental SciencesZoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| | - Rhonda R. Snook
- Department of ZoologyStockholm UniversityStockholm106 91Sweden
| | - Michael G. Ritchie
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
9
|
Ruzicka F, Dutoit L, Czuppon P, Jordan CY, Li X, Olito C, Runemark A, Svensson EI, Yazdi HP, Connallon T. The search for sexually antagonistic genes: Practical insights from studies of local adaptation and statistical genomics. Evol Lett 2020; 4:398-415. [PMID: 33014417 PMCID: PMC7523564 DOI: 10.1002/evl3.192] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Sexually antagonistic (SA) genetic variation-in which alleles favored in one sex are disfavored in the other-is predicted to be common and has been documented in several animal and plant populations, yet we currently know little about its pervasiveness among species or its population genetic basis. Recent applications of genomics in studies of SA genetic variation have highlighted considerable methodological challenges to the identification and characterization of SA genes, raising questions about the feasibility of genomic approaches for inferring SA selection. The related fields of local adaptation and statistical genomics have previously dealt with similar challenges, and lessons from these disciplines can therefore help overcome current difficulties in applying genomics to study SA genetic variation. Here, we integrate theoretical and analytical concepts from local adaptation and statistical genomics research-including F ST and F IS statistics, genome-wide association studies, pedigree analyses, reciprocal transplant studies, and evolve-and-resequence experiments-to evaluate methods for identifying SA genes and genome-wide signals of SA genetic variation. We begin by developing theoretical models for between-sex F ST and F IS, including explicit null distributions for each statistic, and using them to critically evaluate putative multilocus signals of sex-specific selection in previously published datasets. We then highlight new statistics that address some of the limitations of F ST and F IS, along with applications of more direct approaches for characterizing SA genetic variation, which incorporate explicit fitness measurements. We finish by presenting practical guidelines for the validation and evolutionary analysis of candidate SA genes and discussing promising empirical systems for future work.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological SciencesMonash UniversityClaytonVIC 3800Australia
| | - Ludovic Dutoit
- Department of ZoologyUniversity of OtagoDunedin9054New Zealand
| | - Peter Czuppon
- Institute of Ecology and Environmental Sciences, UPEC, CNRS, IRD, INRASorbonne UniversitéParis75252France
- Center for Interdisciplinary Research in Biology, CNRS, Collège de FrancePSL Research UniversityParis75231France
| | - Crispin Y. Jordan
- School of Biomedical SciencesUniversity of EdinburghEdinburghEH8 9XDUnited Kingdom
| | - Xiang‐Yi Li
- Institute of BiologyUniversity of NeuchâtelNeuchatelCH‐2000Switzerland
| | - Colin Olito
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Anna Runemark
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | | | | | - Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVIC 3800Australia
| |
Collapse
|
10
|
Abbott JK, Chippindale AK, Morrow EH. The microevolutionary response to male-limited X-chromosome evolution in Drosophila melanogaster reflects macroevolutionary patterns. J Evol Biol 2020; 33:738-750. [PMID: 32176391 DOI: 10.1111/jeb.13618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
Due to its hemizygous inheritance and role in sex determination, the X-chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X-chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X-linked loci or trans-regulation of autosomal loci by the X. We found evidence of masculinization via up-regulation of male-benefit sexually antagonistic genes and down-regulation of X-linked female-benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito-nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.
Collapse
Affiliation(s)
- Jessica K Abbott
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | - Edward H Morrow
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
11
|
Sex-biased gene expression is repeatedly masculinized in asexual females. Nat Commun 2019; 10:4638. [PMID: 31604947 PMCID: PMC6789136 DOI: 10.1038/s41467-019-12659-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
Males and females feature strikingly different phenotypes, despite sharing most of their genome. A resolution of this apparent paradox is through differential gene expression, whereby genes are expressed at different levels in each sex. This resolution, however, is likely to be incomplete, leading to conflict between males and females over the optimal expression of genes. Here we test the hypothesis that gene expression in females is constrained from evolving to its optimum level due to sexually antagonistic selection on males, by examining changes in sex-biased gene expression in five obligate asexual species of stick insect, which do not produce males. We predicted that the transcriptome of asexual females would be feminized as asexual females do not experience any sexual conflict. Contrary to our prediction we find that asexual females feature masculinized gene expression, and hypothesise that this is due to shifts in female optimal gene expression levels following the suppression of sex.
Collapse
|
12
|
Dean R, Hammer C, Higham V, Dowling DK. Masculinization of gene expression is associated with male quality in Drosophila melanogaster. Evolution 2018; 72:2736-2748. [PMID: 30382578 DOI: 10.1111/evo.13618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
Abstract
The signature of sexual selection has been revealed through the study of differences in patterns of genome-wide gene expression, both between the sexes and between alternative reproductive morphs within a single sex. What remains unclear, however, is whether differences in gene expression patterns between individuals of a given sex consistently map to variation in individual quality. Such a pattern, particularly if found in males, would provide unambiguous evidence that the phenotypic response to sexual selection is shaped through sex-specific alterations to the transcriptome. To redress this knowledge gap, we explored whether patterns of sex-biased gene expression are associated with variation in male reproductive quality in Drosophila melanogaster. We measured two male reproductive phenotypes, and their association with sex-biased gene expression, across a selection of inbred lines from the Drosophila Genetic Reference Panel. Genotypes with higher expression of male-biased genes produced males exhibiting shorter latencies to copulation, and higher capacity to inseminate females. Conversely, female-biased genes tended to show negative associations with these male reproductive traits across genotypes. We uncovered similar patterns, by reanalyzing a published dataset from a second D. melanogaster population. Our results reveal the footprint of sexual selection in masculinising the male transcriptome.
Collapse
Affiliation(s)
- Rebecca Dean
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, United Kingdom
| | - Camille Hammer
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Vanessa Higham
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
13
|
Immonen E, Hämäläinen A, Schuett W, Tarka M. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav Ecol Sociobiol 2018; 72:60. [PMID: 29576676 PMCID: PMC5856903 DOI: 10.1007/s00265-018-2462-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 11/16/2022]
Abstract
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18 D, SE-75 236 Uppsala, Sweden
| | - Anni Hämäläinen
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| | - Wiebke Schuett
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Maja Tarka
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
14
|
Wright AE, Fumagalli M, Cooney CR, Bloch NI, Vieira FG, Buechel SD, Kolm N, Mank JE. Male-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture. Evol Lett 2018; 2:52-61. [PMID: 30283664 PMCID: PMC6089503 DOI: 10.1002/evl3.39] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Many genes are subject to contradictory selection pressures in males and females, and balancing selection resulting from sexual conflict has the potential to substantially increase standing genetic diversity in populations and thereby act as an important force in adaptation. However, the underlying causes of sexual conflict, and the potential for resolution, remains hotly debated. Using transcriptome‐resequencing data from male and female guppies, we use a novel approach, combining patterns of genetic diversity and intersexual divergence in allele frequency, to distinguish the different scenarios that give rise to sexual conflict, and how this conflict may be resolved through regulatory evolution. We show that reproductive fitness is the main source of sexual conflict, and this is resolved via the evolution of male‐biased expression. Furthermore, resolution of sexual conflict produces significant differences in genetic architecture between males and females, which in turn lead to specific alleles influencing sex‐specific viability. Together, our findings suggest an important role for sexual conflict in shaping broad patterns of genome diversity, and show that regulatory evolution is a rapid and efficient route to the resolution of conflict.
Collapse
Affiliation(s)
- Alison E Wright
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park Campus Imperial College London London United Kingdom
| | - Christopher R Cooney
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Natasha I Bloch
- Department of Genetics, Evolution and Environment University College London London United Kingdom
| | - Filipe G Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | | | - Niclas Kolm
- Department of Zoology Stockholm University Stockholm Sweden
| | - Judith E Mank
- Department of Genetics, Evolution and Environment University College London London United Kingdom.,Department of Organismal Biology Uppsala University Uppsala Sweden
| |
Collapse
|
15
|
Cook N, Boulton RA, Green J, Trivedi U, Tauber E, Pannebakker BA, Ritchie MG, Shuker DM. Differential gene expression is not required for facultative sex allocation: a transcriptome analysis of brain tissue in the parasitoid wasp Nasonia vitripennis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171718. [PMID: 29515880 PMCID: PMC5830769 DOI: 10.1098/rsos.171718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/15/2018] [Indexed: 03/14/2024]
Abstract
Whole-transcriptome technologies have been widely used in behavioural genetics to identify genes associated with the performance of a behaviour and provide clues to its mechanistic basis. Here, we consider the genetic basis of sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. Female Nasonia facultatively vary their offspring sex ratio in line with Hamilton's theory of local mate competition (LMC). A single female or 'foundress' laying eggs on a patch will lay just enough sons to fertilize her daughters. As the number of 'foundresses' laying eggs on a patch increases (and LMC declines), females produce increasingly male-biased sex ratios. Phenotypic studies have revealed the cues females use to estimate the level of LMC their sons will experience, but our understanding of the genetics underlying sex allocation is limited. Here, we exposed females to three foundress number conditions, i.e. three LMC conditions, and allowed them to oviposit. mRNA was extracted from only the heads of these females to target the brain tissue. The subsequent RNA-seq experiment confirmed that differential gene expression is not associated with the response to sex allocation cues and that we must instead turn to the underlying neuroscience to reveal the underpinnings of this impressive behavioural plasticity.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Rebecca A. Boulton
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA
| | - Jade Green
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Urmi Trivedi
- Edinburgh Genomics, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Eran Tauber
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Bart A. Pannebakker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Michael G. Ritchie
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - David M. Shuker
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| |
Collapse
|
16
|
Veltsos P, Fang Y, Cossins AR, Snook RR, Ritchie MG. Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nat Commun 2017; 8:2072. [PMID: 29233985 PMCID: PMC5727229 DOI: 10.1038/s41467-017-02232-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sex differences in dioecious animals are pervasive and result from gene expression differences. Elevated sexual selection has been predicted to increase the number and expression of male-biased genes, and experimentally imposing monogamy on Drosophila melanogaster has led to a relative feminisation of the transcriptome. Here, we test this hypothesis further by subjecting another polyandrous species, D. pseudoobscura, to 150 generations of experimental monogamy or elevated polyandry. We find that sex-biased genes do change in expression but, contrary to predictions, there is usually masculinisation of the transcriptome under monogamy, although this depends on tissue and sex. We also identify and describe gene expression changes following courtship experience. Courtship often influences gene expression, including patterns in sex-biased gene expression. Our results confirm that mating system manipulation disproportionately influences sex-biased gene expression but show that the direction of change is dynamic and unpredictable.
Collapse
Affiliation(s)
- Paris Veltsos
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.,Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Yongxiang Fang
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Andrew R Cossins
- Centre for Genomic Researc, Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7BX, UK
| | - Rhonda R Snook
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK. .,Zoologiska Institutionen (Ekologi), Stockholm University, 106 91, Stockholm, Sweden.
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, St Andrews, KY16 9TH, UK.
| |
Collapse
|
17
|
Immonen E, Sayadi A, Bayram H, Arnqvist G. Mating Changes Sexually Dimorphic Gene Expression in the Seed Beetle Callosobruchus maculatus. Genome Biol Evol 2017; 9:677-699. [PMID: 28391318 PMCID: PMC5381559 DOI: 10.1093/gbe/evx029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Sexually dimorphic phenotypes arise largely from sex-specific gene expression, which has mainly been characterized in sexually naïve adults. However, we expect sexual dimorphism in transcription to be dynamic and dependent on factors such as reproductive status. Mating induces many behavioral and physiological changes distinct to each sex and is therefore expected to activate regulatory changes in many sex-biased genes. Here, we first characterized sexual dimorphism in gene expression in Callosobruchus maculatus seed beetles. We then examined how females and males respond to mating and how it affects sex-biased expression, both in sex-limited (abdomen) and sex-shared (head and thorax) tissues. Mating responses were largely sex-specific and, as expected, females showed more genes responding compared with males (∼2,000 vs. ∼300 genes in the abdomen, ∼500 vs. ∼400 in the head and thorax, respectively). Of the sex-biased genes present in virgins, 16% (1,041 genes) in the abdomen and 17% (243 genes) in the head and thorax altered their relative expression between the sexes as a result of mating. Sex-bias status changed in 2% of the genes in the abdomen and 4% in the head and thorax following mating. Mating responses involved de-feminization of females and, to a lesser extent, de-masculinization of males relative to their virgin state: mating decreased rather than increased dimorphic expression of sex-biased genes. The fact that regulatory changes of both types of sex-biased genes occurred in both sexes suggests that male- and female-specific selection is not restricted to male- and female-biased genes, respectively, as is sometimes assumed.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Helen Bayram
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Göran Arnqvist
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| |
Collapse
|
18
|
Wiberg RAW, Gaggiotti OE, Morrissey MB, Ritchie MG. Identifying consistent allele frequency differences in studies of stratified populations. Methods Ecol Evol 2017; 8:1899-1909. [PMID: 29263778 PMCID: PMC5726381 DOI: 10.1111/2041-210x.12810] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 12/02/2022]
Abstract
With increasing application of pooled‐sequencing approaches to population genomics robust methods are needed to accurately quantify allele frequency differences between populations. Identifying consistent differences across stratified populations can allow us to detect genomic regions under selection and that differ between populations with different histories or attributes. Current popular statistical tests are easily implemented in widely available software tools which make them simple for researchers to apply. However, there are potential problems with the way such tests are used, which means that underlying assumptions about the data are frequently violated. These problems are highlighted by simulation of simple but realistic population genetic models of neutral evolution and the performance of different tests are assessed. We present alternative tests (including Generalised Linear Models [GLMs] with quasibinomial error structure) with attractive properties for the analysis of allele frequency differences and re‐analyse a published dataset. The simulations show that common statistical tests for consistent allele frequency differences perform poorly, with high false positive rates. Applying tests that do not confound heterogeneity and main effects significantly improves inference. Variation in sequencing coverage likely produces many false positives and re‐scaling allele frequencies to counts out of a common value or an effective sample size reduces this effect. Many researchers are interested in identifying allele frequencies that vary consistently across replicates to identify loci underlying phenotypic responses to selection or natural variation in phenotypes. Popular methods that have been suggested for this task perform poorly in simulations. Overall, quasibinomial GLMs perform better and also have the attractive feature of allowing correction for multiple testing by standard procedures and are easily extended to other designs.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| | - Oscar E Gaggiotti
- Scottish Oceans Institute Gatty Marine Laboratory University of St Andrews East Sands St Andrews, Scotland United Kingdom
| | - Michael B Morrissey
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| | - Michael G Ritchie
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| |
Collapse
|
19
|
Dean R, Wright AE, Marsh‐Rollo SE, Nugent BM, Alonzo SH, Mank JE. Sperm competition shapes gene expression and sequence evolution in the ocellated wrasse. Mol Ecol 2016; 26:505-518. [DOI: 10.1111/mec.13919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Rebecca Dean
- Department of Genetics, Evolution and Environment University College London London UK
- School of Biological Sciences Monash University Clayton VIC Australia
| | - Alison E. Wright
- Department of Genetics, Evolution and Environment University College London London UK
| | - Susan E. Marsh‐Rollo
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
- Department of Psychology Neuroscience & Behaviour McMaster University Hamilton Ontario Canada
| | - Bridget M. Nugent
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Department of Biomedical Sciences University of Pennsylvania Philadelphia PA USA
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment University College London London UK
| |
Collapse
|
20
|
Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH, Pointer MA, Mank JE. Sexual selection drives evolution and rapid turnover of male gene expression. Proc Natl Acad Sci U S A 2015; 112:4393-8. [PMID: 25831521 PMCID: PMC4394296 DOI: 10.1073/pnas.1501339112] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The profound and pervasive differences in gene expression observed between males and females, and the unique evolutionary properties of these genes in many species, have led to the widespread assumption that they are the product of sexual selection and sexual conflict. However, we still lack a clear understanding of the connection between sexual selection and transcriptional dimorphism, often termed sex-biased gene expression. Moreover, the relative contribution of sexual selection vs. drift in shaping broad patterns of expression, divergence, and polymorphism remains unknown. To assess the role of sexual selection in shaping these patterns, we assembled transcriptomes from an avian clade representing the full range of sexual dimorphism and sexual selection. We use these species to test the links between sexual selection and sex-biased gene expression evolution in a comparative framework. Through ancestral reconstruction of sex bias, we demonstrate a rapid turnover of sex bias across this clade driven by sexual selection and show it to be primarily the result of expression changes in males. We use phylogenetically controlled comparative methods to demonstrate that phenotypic measures of sexual selection predict the proportion of male-biased but not female-biased gene expression. Although male-biased genes show elevated rates of coding sequence evolution, consistent with previous reports in a range of taxa, there is no association between sexual selection and rates of coding sequence evolution, suggesting that expression changes may be more important than coding sequence in sexual selection. Taken together, our results highlight the power of sexual selection to act on gene expression differences and shape genome evolution.
Collapse
Affiliation(s)
- Peter W Harrison
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Alison E Wright
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Fabian Zimmer
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Stephen H Montgomery
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Marie A Pointer
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
21
|
Innocenti P, Flis I, Morrow EH. Female responses to experimental removal of sexual selection components in Drosophila melanogaster. BMC Evol Biol 2014; 14:239. [PMID: 25406540 PMCID: PMC4243381 DOI: 10.1186/s12862-014-0239-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the common assumption that multiple mating should in general be favored in males, but not in females, to date there is no consensus on the general impact of multiple mating on female fitness. Notably, very little is known about the genetic and physiological features underlying the female response to sexual selection pressures. By combining an experimental evolution approach with genomic techniques, we investigated the effects of single and multiple matings on female fecundity and gene expression. We experimentally manipulated the opportunity for mating in replicate populations of Drosophila melanogaster by removing components of sexual selection, with the aim of testing differences in short term post-mating effects of females evolved under different mating strategies. RESULTS We show that monogamous females suffer decreased fecundity, a decrease that was partially recovered by experimentally reversing the selection pressure back to the ancestral state. The post-mating gene expression profiles of monogamous females differ significantly from promiscuous females, involving 9% of the genes tested (approximately 6% of total genes in D. melanogaster). These transcripts are active in several tissues, mainly ovaries, neural tissues and midgut, and are involved in metabolic processes, reproduction and signaling pathways. CONCLUSIONS Our results demonstrate how the female post-mating response can evolve under different mating systems, and provide novel insights into the genes targeted by sexual selection in females, by identifying a list of candidate genes responsible for the decrease in female fecundity in the absence of promiscuity.
Collapse
Affiliation(s)
- Paolo Innocenti
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden.
| | - Ilona Flis
- Ecology, Behaviour and Environment Group, University of Sussex, Brighton, BN1 9QG, UK.
| | - Edward H Morrow
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden. .,Ecology, Behaviour and Environment Group, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|