1
|
Bustamante-Brito R, Vera-Ponce de León A, Rosenblueth M, Martínez-Romero E. Comparative genomics of the carmine cochineal symbiont Candidatus Dactylopiibacterium carminicum reveals possible protection to the host against viruses via CRISPR/Cas. Syst Appl Microbiol 2024; 47:126540. [PMID: 39068732 DOI: 10.1016/j.syapm.2024.126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized. Here we found that all cochineal species tested had Dactylopiibacterium carminicum which has a highly conserved genome. All Dactylopiibacterium genomes analyzed had genes involved in nitrogen fixation and plant polymer degradation. Dactylopiibacterium genomes resemble those from free-living plant bacteria, some found as endophytes. Notably, we found here a new putative novel function where the bacteria may protect the insect from viruses, since all Dactylopiibacterium genomes contain CRISPRs with a spacer matching nucleopolyhedrovirus that affects insects.
Collapse
Affiliation(s)
- Rafael Bustamante-Brito
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Arturo Vera-Ponce de León
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico; Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
2
|
Rodríguez-Leyva E, García-Pascual E, González-Chávez MM, Méndez-Gallegos SDJ, Morales-Rueda JA, Posadas-Hurtado JC, Bravo-Vinaja Á, Franco-Vega A. Interactions of Opuntia ficus-indica with Dactylopius coccus and D. opuntiae (Hemiptera: Dactylopiidae) through the Study of Their Volatile Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:963. [PMID: 38611492 PMCID: PMC11013929 DOI: 10.3390/plants13070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Opuntia ficus-indica has always interacted with many phytophagous insects; two of them are Dactylopius coccus and D. opuntiae. Fine cochineal (D. coccus) is produced to extract carminic acid, and D. opuntiae, or wild cochineal, is an invasive pest of O. ficus-indica in more than 20 countries around the world. Despite the economic and environmental relevance of this cactus, D. opuntiae, and D. coccus, there are few studies that have explored volatile organic compounds (VOCs) derived from the plant-insect interaction. The aim of this work was to determine the VOCs produced by D. coccus and D. opuntiae and to identify different VOCs in cladodes infested by each Dactylopius species. The VOCs (essential oils) were obtained by hydrodistillation and identified by GC-MS. A total of 66 VOCs from both Dactylopius species were identified, and 125 from the Esmeralda and Rojo Pelón cultivars infested by D. coccus and D. opuntiae, respectively, were determined. Differential VOC production due to infestation by each Dactylopius species was also found. Some changes in methyl salicylate, terpenes such as linalool, or the alcohol p-vinylguaiacol were related to Dactylopius feeding on the cladodes of their respective cultivars. Changes in these VOCs and their probable role in plant defense mechanisms should receive more attention because this knowledge could improve D. coccus rearing or its inclusion in breeding programs for D. opuntiae control in regions where it is a key pest of O. ficus-indica.
Collapse
Affiliation(s)
| | - Esperanza García-Pascual
- Colegio de Postgraduados, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosi C.P. 78622, Mexico; (E.G.-P.); (Á.B.-V.)
| | - Marco M. González-Chávez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi C.P. 78210, Mexico; (J.C.P.-H.); (A.F.-V.)
| | - Santiago de J. Méndez-Gallegos
- Colegio de Postgraduados, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosi C.P. 78622, Mexico; (E.G.-P.); (Á.B.-V.)
| | - Juan A. Morales-Rueda
- Viscoelabs, Materials Research Center, Librado Rivera 390, San Luis Potosi C.P. 78200, Mexico;
| | - Juan C. Posadas-Hurtado
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi C.P. 78210, Mexico; (J.C.P.-H.); (A.F.-V.)
| | - Ángel Bravo-Vinaja
- Colegio de Postgraduados, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosi C.P. 78622, Mexico; (E.G.-P.); (Á.B.-V.)
| | - Avelina Franco-Vega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi C.P. 78210, Mexico; (J.C.P.-H.); (A.F.-V.)
| |
Collapse
|
3
|
Huang YX, Zhu XS, Chen XN, Zheng XY, Su BS, Shi XY, Wang X, Wu SA, Hu HY, Yu JP, Zhang YZ, Zhu CD. A chromosome-level genome assembly of the forestry pest Coronaproctus castanopsis. Sci Data 2024; 11:218. [PMID: 38368451 PMCID: PMC10874433 DOI: 10.1038/s41597-024-03016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024] Open
Abstract
As an important forestry pest, Coronaproctus castanopsis (Monophlebidae) has caused serious damage to the globally valuable Gutianshan ecosystem, China. In this study, we assembled the first chromosome-level genome of the female specimen of C. castanopsis by merging BGI reads, HiFi long reads and Hi-C data. The assembled genome size is 700.81 Mb, with a scaffold N50 size of 273.84 Mb and a contig N50 size of 12.37 Mb. Hi-C scaffolding assigned 98.32% (689.03 Mb) of C. Castanopsis genome to three chromosomes. The BUSCO analysis (n = 1,367) showed a completeness of 91.2%, comprising 89.2% of single-copy BUSCOs and 2.0% of multicopy BUSCOs. The mapping ratio of BGI, second-generation RNA, third-generation RNA and HiFi reads are 97.84%, 96.15%, 97.96%, and 99.33%, respectively. We also identified 64.97% (455.3 Mb) repetitive elements, 1,373 non-coding RNAs and 10,542 protein-coding genes. This study assembled a high-quality genome of C. castanopsis, which accumulated valuable molecular data for scale insects.
Collapse
Affiliation(s)
- Yi-Xin Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Qianjiangyuan National Park, Kaihua, Zhejiang, 324300, China
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xiu-Shuang Zhu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xiao-Nan Chen
- Qianjiangyuan National Park, Kaihua, Zhejiang, 324300, China
| | - Xin-Yi Zheng
- Beijing Forestry University, Beijing, 100083, China
| | - Bao-Shan Su
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xiao-Yu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - San-An Wu
- Beijing Forestry University, Beijing, 100083, China
| | - Hao-Yuan Hu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Jian-Ping Yu
- Qianjiangyuan National Park, Kaihua, Zhejiang, 324300, China.
| | - Yan-Zhou Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Nakajima Y, Ogura A. Genomics and effective trait candidates of edible insects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Čorak I, Brlek I, Sutlović A, Tarbuk A. Natural Dyeing of Modified Cotton Fabric with Cochineal Dye. Molecules 2022; 27:1100. [PMID: 35164364 PMCID: PMC8840378 DOI: 10.3390/molecules27031100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Natural dyes are not harmful to the environment owing to their biodegradability. For dye application to textiles, salts are necessary as mordant or electrolytes and make an environmental impact. In this paper, the influence of cationization during mercerization to the dyeing of cotton fabric with natural dye from Dactylopius coccus was researched. For this purpose, bleached cotton fabric as well as fabric cationized with Rewin OS was pre-mordanted using iron(II) sulfate heptahydrate (FeSO4·7H2O) and dyed with natural cochineal dye with and without electrolyte addition. For the characterization of surface changes after cationization, an electrokinetic analysis on SurPASS was performed and compared to pre-mordanting. For determination of dye exhaustion, the analysis of dye solution was performed on a UV/VIS spectrophotometer Cary 50 Solascreen. Spectrophotometric analysis was performed using a Datacolor 850 spectrophotometer, measuring remission "until tolerance" and the whiteness degree, color parameters, color depth (K/S), and colorfastness of dyed fabric were calculated. Levelness was determined by visual assessment. Cationized cotton fabrics showed better absorption and colorfastness. Pre-mordanting and cationization showed synergism. The electrolytes improved the process of dye absorption. However, when natural dyeing was performed on cotton fabric cationized during mercerization, similar chromacity, uniform color, and colorfastness were achieved with and without electrolyte, resulting in pure purple hue of cochineal. For achieving a violet hue, pre-mordanting with Fe-salt was needed. Therefore, salt can be reduced or even unnecessary, which makes this process of natural dyeing more environmentally friendly.
Collapse
Affiliation(s)
| | - Iva Brlek
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, HR-10000 Zagreb, Croatia; (I.Č.); (A.S.); (A.T.)
| | | | | |
Collapse
|
6
|
Roque-Rodríguez FJ. Controlled Mass Rearing of Cochineal Insect (Hemiptera: Dactylopiidae) Using Two Laboratory-Scale Production Systems in Peru. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:1. [PMID: 34942006 PMCID: PMC8698245 DOI: 10.1093/jisesa/ieab098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 06/14/2023]
Abstract
The carmine cochineal (Dactylopius coccus Costa) has high economic value as it is a natural source of carminic acid, an organic chromophore used in a wide range of sectors including pharmaceutics, food, and cosmetics. High demand is fuelling the search for innovative production techniques in order to move away from dependence on the prickly pear, which carries a number of limitations. The aim of this study was to establish cochineal colonies and breed and mass-produce the insects using two laboratory-scale production systems. The first system (STC-01) comprised a prismatic acrylic box with three compartments; synthetic matrices were placed vertically inside the box to provide support and a source of nutrients for the cochineal, and the system was lit artificially during fixed daylight periods. The second system (STC-02) comprised an automated micro-tunnel allowing the insects to move towards the sunlight, containing synthetic matrices arranged horizontally. There was a significant difference in yield between the two systems in a cochineal total life cycle of 120 d (80-90 d harvest period in both cases), with STC-01 being superior and producing a maximum yield of 4.86 ± 0.68 g fresh weight per day per square metre compared with 3.20 ± 0.14 g fresh weight per day per square metre production yield in STC-02. We conclude that cochineal production under controlled artificial conditions is feasible and sustainable, removing the need for natural and biological support and overcoming the environmental limitations posed by traditional production methods.
Collapse
Affiliation(s)
- Francisco Javier Roque-Rodríguez
- Department of Pharmacy, Bio-Chemistry and Biotechnology, Faculty of Pharmaceutical, Biochemical and Biotechnological Sciences, Universidad Católica De Santa María, Urb. San José s/n Umacollo, Arequipa 0401, Peru
| |
Collapse
|
7
|
Vera-Ponce León A, Dominguez-Mirazo M, Bustamante-Brito R, Higareda-Alvear V, Rosenblueth M, Martínez-Romero E. Functional genomics of a Spiroplasma associated with the carmine cochineals Dactylopius coccus and Dactylopius opuntiae. BMC Genomics 2021; 22:240. [PMID: 33823812 PMCID: PMC8025503 DOI: 10.1186/s12864-021-07540-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Spiroplasma is a widely distributed endosymbiont of insects, arthropods, and plants. In insects, Spiroplasma colonizes the gut, hemolymph, and reproductive organs of the host. Previous metagenomic surveys of the domesticated carmine cochineal Dactylopius coccus and the wild cochineal D. opuntiae reported sequences of Spiroplasma associated with these insects. However, there is no analysis of the genomic capabilities and the interaction of this Spiroplasma with Dactylopius. RESULTS Here we present three Spiroplasma genomes independently recovered from metagenomes of adult males and females of D. coccus, from two different populations, as well as from adult females of D. opuntiae. Single-copy gene analysis showed that these genomes were > 92% complete. Phylogenomic analyses classified these genomes as new members of Spiroplasma ixodetis. Comparative genome analysis indicated that they exhibit fewer genes involved in amino acid and carbon catabolism compared to other spiroplasmas. Moreover, virulence factor-encoding genes (i.e., glpO, spaid and rip2) were found incomplete in these S. ixodetis genomes. We also detected an enrichment of genes encoding the type IV secretion system (T4SS) in S. ixodetis genomes of Dactylopius. A metratranscriptomic analysis of D. coccus showed that some of these T4SS genes (i.e., traG, virB4 and virD4) in addition to the superoxide dismutase sodA of S. ixodetis were overexpressed in the ovaries. CONCLUSION The symbiont S. ixodetis is a new member of the bacterial community of D. coccus and D. opuntiae. The recovery of incomplete virulence factor-encoding genes in S. ixodetis of Dactylopius suggests that this bacterium is a non-pathogenic symbiont. A high number of genes encoding the T4SS, in the S. ixodetis genomes and the overexpression of these genes in the ovary and hemolymph of the host suggest that S. ixodetis use the T4SS to interact with the Dactylopius cells. Moreover, the transcriptional differences of S. ixodetis among the gut, hemolymph and ovary tissues of D. coccus indicate that this bacterium can respond and adapt to the different conditions (e.g., oxidative stress) present within the host. All this evidence proposes that there is a strong interaction and molecular signaling in the symbiosis between S. ixodetis and the carmine cochineal Dactylopius.
Collapse
Affiliation(s)
- Arturo Vera-Ponce León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico. .,Present Address: Faculty of Biotechnology, Chemistry and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | - Marian Dominguez-Mirazo
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Present Address: School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rafael Bustamante-Brito
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Víctor Higareda-Alvear
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Analysis of biomolecules in cochineal dyed archaeological textiles by surface-enhanced Raman spectroscopy. Sci Rep 2021; 11:6560. [PMID: 33753838 PMCID: PMC7985382 DOI: 10.1038/s41598-021-86074-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
SERS spectroscopy is successfully employed in this work to reveal different components integrating the cochineal colorant employed for dying archaeological textile samples from the Arica Region in North Chile. This analysis was done by in-situ experiments that does not imply the material (colorant and biomolecules) extraction. The spectroscopic analysis of the archaeological textiles by SERS reveals the presence of bands attributed to carminic acid and nucleobases, mainly adenine and guanine. The identification of these biomolecules was also verified in raw cochineal extract and in cochineal dyed replica wool fibers fabricated by us following ancient receipts. The effect of Al on the complexation of carminic acid and other biomolecules was also tested in order to understand the changes induced by the metal interaction on the colorant structure. This study revealed that Al can also complex biomolecules existing in the cochineal extract. In particular, guanine residue seems to interact strongly with the metal, since SERS bands of this residue are enhanced. Furthermore, a theoretical analysis on the interaction of carminic acid and a silver surface was also performed in order to better understand the interaction mechanism between carminic acid and a metal surface that leads to the final SERS spectrum. The results of the present work will be very useful in the identification of different molecules and metal complexes that may be forming part of the cochineal colorant found in archaeological materials.
Collapse
|
9
|
Amin N, Rehman FU, Adeel S, Ahamd T, Muneer M, Haji A. Sustainable application of cochineal-based anthraquinone dye for the coloration of bio-mordanted silk fabric. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6851-6860. [PMID: 31879870 DOI: 10.1007/s11356-019-06868-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Natural colors particularly animal-based colorants are employed in the field of cosmetics, food, and flavors and also gaining popularity in textiles, due to their soothing nature. In this study, the microwave-assisted extraction of colorant from cochineal insects for dyeing of bio-mordanted silk has been carried out. Acidic, methanolic, and acidified methanol solubilized media were used to extract the natural colorant from cochineal under microwave irradiation for 1-6 min. Bio-mordants have been employed at optimized conditions to make the process greener and sustainable. It is found that acid solubilized extract of pH 4, employed at 55 °C for 55 min containing 5 g/100 mL of Glauber's salt as exhausting agent has given high color strength onto microwave-treated silk fabric. Suggested ISO standards for colorfastness have revealed that bio-mordants have given excellent color depth and excellent rating of fastness properties, compared with chemical mordants used. It is found that microwave treatment has not only improved the dyeing behavior of colorant extracted from cochineal in acid solubilized medium but also enhanced the color characteristics onto bio-mordanted silk fabric.
Collapse
Affiliation(s)
- Nimra Amin
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Fazal-Ur- Rehman
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
| | - Shahid Adeel
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Tanvir Ahamd
- Department of Statistics, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Majid Muneer
- Department of Textile Engineering, Yazd University, Yazd, Iran
| | - Aminoddin Haji
- Department of Textile Engineering, Yazd University, Yazd, Iran
| |
Collapse
|
10
|
Bustamante-Brito R, Vera-Ponce de León A, Rosenblueth M, Martínez-Romero JC, Martínez-Romero E. Metatranscriptomic Analysis of the Bacterial Symbiont Dactylopiibacterium carminicum from the Carmine Cochineal Dactylopius coccus (Hemiptera: Coccoidea: Dactylopiidae). Life (Basel) 2019; 9:life9010004. [PMID: 30609847 PMCID: PMC6463064 DOI: 10.3390/life9010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation.
Collapse
Affiliation(s)
- Rafael Bustamante-Brito
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Arturo Vera-Ponce de León
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
- Department of Ecology, Evolution and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Julio César Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
11
|
Pascar J, Chandler CH. A bioinformatics approach to identifying Wolbachia infections in arthropods. PeerJ 2018; 6:e5486. [PMID: 30202647 PMCID: PMC6126470 DOI: 10.7717/peerj.5486] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Wolbachia is the most widespread endosymbiont, infecting >20% of arthropod species, and capable of drastically manipulating the host's reproductive mechanisms. Conventionally, diagnosis has relied on PCR amplification; however, PCR is not always a reliable diagnostic technique due to primer specificity, strain diversity, degree of infection and/or tissue sampled. Here, we look for evidence of Wolbachia infection across a wide array of arthropod species using a bioinformatic approach to detect the Wolbachia genes ftsZ, wsp, and the groE operon in next-generation sequencing samples available through the NCBI Sequence Read Archive. For samples showing signs of infection, we attempted to assemble entire Wolbachia genomes, and in order to better understand the relationships between hosts and symbionts, phylogenies were constructed using the assembled gene sequences. Out of the 34 species with positively identified infections, eight species of arthropod had not previously been recorded to harbor Wolbachia infection. All putative infections cluster with known representative strains belonging to supergroup A or B, which are known to only infect arthropods. This study presents an efficient bioinformatic approach for post-sequencing diagnosis and analysis of Wolbachia infection in arthropods.
Collapse
Affiliation(s)
- Jane Pascar
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | - Christopher H. Chandler
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| |
Collapse
|
12
|
Frandsen RJN, Khorsand-Jamal P, Kongstad KT, Nafisi M, Kannangara RM, Staerk D, Okkels FT, Binderup K, Madsen B, Møller BL, Thrane U, Mortensen UH. Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans. Sci Rep 2018; 8:12853. [PMID: 30150747 PMCID: PMC6110711 DOI: 10.1038/s41598-018-30816-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022] Open
Abstract
The natural red food colorants carmine (E120) and carminic acid are currently produced from scale insects. The access to raw material is limited and current production is sensitive to fluctuation in weather conditions. A cheaper and more stable supply is therefore desirable. Here we present the first proof-of-concept of heterologous microbial production of carminic acid in Aspergillus nidulans by developing a semi-natural biosynthetic pathway. Formation of the tricyclic core of carminic acid is achieved via a two-step process wherein a plant type III polyketide synthase (PKS) forms a non-reduced linear octaketide, which subsequently is folded into the desired flavokermesic acid anthrone (FKA) structure by a cyclase and a aromatase from a bacterial type II PKS system. The formed FKA is oxidized to flavokermesic acid and kermesic acid, catalyzed by endogenous A. nidulans monooxygenases, and further converted to dcII and carminic acid by the Dactylopius coccus C-glucosyltransferase DcUGT2. The establishment of a functional biosynthetic carminic acid pathway in A. nidulans serves as an important step towards industrial-scale production of carminic acid via liquid-state fermentation using a microbial cell factory.
Collapse
Affiliation(s)
- Rasmus J N Frandsen
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Paiman Khorsand-Jamal
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark.,Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Novo Nordisk A/S, Maaloev, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Majse Nafisi
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rubini M Kannangara
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,River Stone Biotech ApS, København Ø, Fruebjergvej 3, 2100, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Finn T Okkels
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,Actabio ApS, Roskilde, Denmark
| | - Kim Binderup
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark.,DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Bjørn Madsen
- Chr. Hansen Natural Colors A/S, Hoersholm, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,Center for Synthetic Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Ulf Thrane
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Energy Performance, Indoor Environment and Sustainability, Danish Building Research Institute, Aalborg University Copenhagen, Copenhagen, Denmark
| | - Uffe H Mortensen
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, The Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Vera-Ponce de León A, Ormeño-Orrillo E, Ramírez-Puebla ST, Rosenblueth M, Degli Esposti M, Martínez-Romero J, Martínez-Romero E. Candidatus Dactylopiibacterium carminicum, a Nitrogen-Fixing Symbiont of Dactylopius Cochineal Insects (Hemiptera: Coccoidea: Dactylopiidae). Genome Biol Evol 2017; 9:2237-2250. [PMID: 30605507 PMCID: PMC5604089 DOI: 10.1093/gbe/evx156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6 Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.
Collapse
Affiliation(s)
- Arturo Vera-Ponce de León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ernesto Ormeño-Orrillo
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de
Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Shamayim T Ramírez-Puebla
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mauro Degli Esposti
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Julio Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad
Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
14
|
Wang GH, Sun BF, Xiong TL, Wang YK, Murfin KE, Xiao JH, Huang DW. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes. Front Microbiol 2016; 7:1867. [PMID: 27965627 PMCID: PMC5126046 DOI: 10.3389/fmicb.2016.01867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022] Open
Abstract
Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria.
Collapse
Affiliation(s)
- Guan H Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Bao F Sun
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Tuan L Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Yan K Wang
- College of Life Sciences, Hebei University Baoding, China
| | - Kristen E Murfin
- Section of Infectious Diseases, Yale University School of Medicine New Haven, CT, USA
| | - Jin H Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Da W Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, Hebei UniversityBaoding, China
| |
Collapse
|
15
|
Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3-GENES GENOMES GENETICS 2016; 6:3343-3349. [PMID: 27543297 PMCID: PMC5068953 DOI: 10.1534/g3.116.031237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia. Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.
Collapse
|
16
|
Vera-Ponce de León A, Sanchez-Flores A, Rosenblueth M, Martínez-Romero E. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism. Front Microbiol 2016; 7:954. [PMID: 27446001 PMCID: PMC4917543 DOI: 10.3389/fmicb.2016.00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/02/2016] [Indexed: 11/13/2022] Open
Abstract
We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius.
Collapse
Affiliation(s)
- Arturo Vera-Ponce de León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavca, Mexico
| | - Alejandro Sanchez-Flores
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavca, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavca, Mexico
| |
Collapse
|
17
|
Abstract
The sesquicentennial celebrations of the publication of “Alice's Adventures in Wonderland” and the structure of benzene offer a unique opportunity to develop a contemporary interpretation of aspects of Alice's adventures, illuminate the symbolism of benzene, and contextualize both with the globalization of coffee, transitioning to how the philosophy and sustainable practices of ecopharmacognosy may be applied to modulating approaches to the quality, safety, efficacy, and consistency (QSEC) of traditional medicines and dietary supplements through technology integration, thereby improving patient-centered health care.
Collapse
Affiliation(s)
- Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, 60203, USA and Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|