1
|
Zheng W, Yan LJ, Burgess KS, Luo YH, Zou JY, Qin HT, Wang JH, Gao LM. Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence. BMC PLANT BIOLOGY 2021; 21:529. [PMID: 34763662 PMCID: PMC8582147 DOI: 10.1186/s12870-021-03312-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. RESULTS Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. CONCLUSIONS Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Li-Jun Yan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
- College of Vocational and Technical Education, Yunnan Normal University, 650092, Kunming, Yunnan, China
| | - Kevin S Burgess
- Department of Biology, Columbus State University, University System of Georgia, 31907-5645, Columbus, GA, USA
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Ji-Hua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, 674100, Lijiang, Yunnan, China.
| |
Collapse
|
2
|
Hu L, Yang R, Wang YH, Gong X. The natural hybridization between species Ligularia nelumbifolia and Cremanthodium stenoglossum (Senecioneae, Asteraceae) suggests underdeveloped reproductive isolation and ambiguous intergeneric boundary. AOB PLANTS 2021; 13:plab012. [PMID: 33796247 PMCID: PMC7994929 DOI: 10.1093/aobpla/plab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Natural hybridization is frequent in plants and is considered an important factor facilitating speciation. The natural intergeneric hybridization between Ligularia and Cremanthodium was previously confirmed using a couple of DNA markers. However, the mechanism of this intergeneric hybridization and the role of reproductive isolation in the process of hybridization remain unclear. Here we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to further quantify the occurrence of hybridization, the genetic structure of the hybrid population and the role of reproductive isolation between Ligularia nelumbifolia and Cremanthodium stenoglossum. The results based on the ddRAD-seq SNP data sets indicated that hybridization between L. nelumbifolia and C. stenoglossum was restricted to F1s, and no gene introgression was identified between these two species. STRUCTURE analysis and maximum likelihood (ML) tree results showed a slightly larger genetic contribution of L. nelumbifolia to putative hybrid F1s. We deduced that the reproductive isolation between these two parent species is not well-developed but still strong enough to maintain the genetic integrity of the species, and that their F1s are sterile or with low fertility. Given the poorly resolved phylogenetic relationship between Ligularia and Cremanthodium, the occurrence of natural hybridization between L. nelumbifolia and C. stenoglossum may provide new insights into the re-circumscription and re-delimitation of these two genera.
Collapse
Affiliation(s)
- Li Hu
- Plant Science Institute, School of Life Sciences, Yunnan University, Kunming 650201, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Hua Wang
- Plant Science Institute, School of Life Sciences, Yunnan University, Kunming 650201, Yunnan, China
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Mao X, Wang J, Shrestha N, Ma Y, Liu J. Species Identification in the Rhododendron vernicosum- R. decorum Species Complex (Ericaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:608964. [PMID: 33584768 PMCID: PMC7876077 DOI: 10.3389/fpls.2021.608964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Delimitating species boundaries is the primary aim of biological classification and could be critical for evaluating the evolving process of species and conserving biodiversity. Rhododendron is an iconic group with an extraordinary diversity in southwest China. However, it remains unknown whether the recorded species therein comprise independently evolving lineages or artificially delimitated morphological entities. In this study, we carried out species delimitation of four Rhododendron species in the R. vernicosum-R. decorum species complex based on morphological analyses and population genetic data from nuclear simple sequence repeats (SSR) markers. We randomly selected a total of 105 specimens of different individuals identified as four species across their distributional ranges to examine the statistically distinct phenotypic clusters based on 19 morphological traits. Similarly, we genotyped 55 individuals of four species from 21 populations using 15 SSR markers. The morphological analyses sorted R. decorum and the other three species into two different phenotypic clusters. The genetic clusters were consistent with the morphological clusters. However, we also recovered the third genetic cluster, comprising six R. vernicosum populations and containing the admixed genetic compositions of the other two distinct genetic clusters. This hybrid group was morphologically similar to the typical R. vernicosum (including the samples from its type specimen locality and both R. verruciferum and R. gonggashanense) but with more genetic ancestry from R. decorum. Based on our findings, we identify two distinct species and one putative hybrid group due to introgression in the R. vernicosum-R. decorum species complex. We propose to merge R. verruciferum and R. gonggashanense into R. vernicosum based on genetic compositions and our morphological analyses. The hybrid group inferred from our findings, however, needs further investigations.
Collapse
Affiliation(s)
- Xingxing Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ji Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Yazhen Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education and State Key Lab of Hydraulics and Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Sheeja TE, Kumar IPV, Giridhari A, Minoo D, Rajesh MK, Babu KN. Amplified Fragment Length Polymorphism: Applications and Recent Developments. Methods Mol Biol 2021; 2222:187-218. [PMID: 33301096 DOI: 10.1007/978-1-0716-0997-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective amplification of a subset of digested DNA fragments from any source to generate and compare unique fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness, resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy, genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encompasses in detail the various applications of AFLP in plants and the major advantages and disadvantages. The review also considers various modifications of this technique and novel developments in detection of polymorphism. A wet-lab protocol is also provided.
Collapse
Affiliation(s)
- Thotten Elampilay Sheeja
- Indian Institute of Spices Research, Kozhikode, Kerala, India.
- Division of Crop Improvement and Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, India.
| | | | | | | | | | | |
Collapse
|
5
|
Zhang X, Qin H, Xie W, Ma Y, Sun W. Comparative population genetic analyses suggest hybrid origin of R hododendron pubicostatum, an endangered plant species with extremely small populations endemic to Yunnan, China. PLANT DIVERSITY 2020; 42:312-318. [PMID: 33094202 PMCID: PMC7567756 DOI: 10.1016/j.pld.2020.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/08/2023]
Abstract
Gene flow between sympatric congeneric plants is thought to be very common and may pose serious threats to endangered species. In the present study, we evaluate the genetic diversity and divergence of three sympatric Rhododendron species in Jiaozi Mountain using newly developed microsatellites through the Illumina MiSeq sequencing approach. Genetic diversity of all three Rhododendron species studied was moderate in comparison to genetic parameters previously reported from species of this genus. Interestingly, genetic structure analysis of the three species identified a possible hybrid origin of the threatened Rh. pubicostatum. This sympatry should be considered a unimodal hybrid zone, since R h. pubicostatum is predominant here. Unimodal hybrid zones are uncommon in Rhododendron, despite the fact that hybridization frequently occurs in the genus. Issues pertaining to the conservation of R h. pubicostatum resulting from admixture of genetic material from its parental species are discussed.
Collapse
Affiliation(s)
- Xuemei Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650201, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650201, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hantao Qin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650201, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weijia Xie
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming, 650201, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650201, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650201, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, 650201, China
| |
Collapse
|
6
|
Yang B, Zhang G, Guo F, Wang M, Wang H, Xiao H. A Genomewide Scan for Genetic Structure and Demographic History of Two Closely Related Species, Rhododendron dauricum and R. mucronulatum ( Rhododendron, Ericaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:1093. [PMID: 32765570 PMCID: PMC7380098 DOI: 10.3389/fpls.2020.01093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Understanding the processes of divergence and speciation is an important task for evolutionary research, and climate oscillations play a pivotal role. We estimated the genetic structure and demographic history of two closely related species of Rhododendron, R. dauricum, and R. mucronulatum, distributed in northeastern China using 664,406 single nucleotide polymorphic loci of specific-locus amplified fragment sequencing (SLAF-seq) and 4 chloroplast DNA (cpDNA) fragments, sampling 376 individuals from 39 populations of these two species across their geographic distributions. The geographical distribution of cpDNA haplotypes revealed that R. dauricum and R. mucronulatum have different spatial genetic structures and haplotype diversity. Analysis of molecular variance (AMOVA) results showed that these two species have significant genetic differentiation and that the phylogeny demonstrates that these two species clustered a monophyletic group based on SLAF data, respectively, but not in cpDNA data. The evidence of significant gene flow was also detected from R. mucronulatum to R. dauricum. A deep divergence between the two species was observed and occurred during the early Oligocene. The niche models showed that the two species have different demographic histories. Thus, our results imply that geography and climate changes played important roles in the evolutionary process of R. dauricum and R. mucronulatum, and although there was an interspecific gene flow, the divergence was maintained by natural selection.
Collapse
Affiliation(s)
- Baiming Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- Changchun Guoxin Modern Agricultural Technology Development Co., Ltd., Changchun, China
| | - Guoli Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Fengping Guo
- Biology Group, No. 30 Middle School of Shenyang, Shenyang, China
| | - Manqi Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
7
|
Yang R, Folk R, Zhang N, Gong X. Homoploid hybridization of plants in the Hengduan mountains region. Ecol Evol 2019; 9:8399-8410. [PMID: 31380098 PMCID: PMC6662326 DOI: 10.1002/ece3.5393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 04/24/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
The Hengduan Mountains Region (HMR) is a major global biodiversity hotspot. Complex tectonic and historical climatic conditions created opportunities for natural interspecific hybridization. Likewise, anthropogenic disturbance potentially raises the frequency of hybridization. Among species studies to date, the frequency of homoploid hybridization appears in the HMR. Of nine taxa in which natural hybridization has been detected, three groups are involved in homoploid hybrid speciation, and species pairs from the remaining six genera suggest that continuous gene flow occurs in hybrid zones. Reproductive isolation may greatly affect the dynamic and architecture of hybrid zones in the HMR. Asymmetrical hybridization and introgression can primarily be attributed to both prezygotic and postzygotic barriers. The frequent observation of such asymmetry may imply that reproductive barrier contributes to maintaining species boundaries in the alpine region. Ecological isolations with environmental disturbance may promote breeding barriers between parental species and hybrids. Hybrid zones may be an important phase for homoploid hybrid speciation. Hybrid zones potentially provided abundant genetic resources for the diversification of the HMR flora. The ecological and molecular mechanisms of control and mediation for natural hybridization will help biologists to understand the formation of biodiversity in the HMR. More researches from ecological and molecular aspects were required in future studies.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and BiotechnologyKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ryan Folk
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| | - Ningning Zhang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and BiotechnologyKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and BiotechnologyKunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Yunnan Key Laboratory for Wild Plant ResourcesKunmingChina
| |
Collapse
|
8
|
Yan LJ, Burgess KS, Zheng W, Tao ZB, Li DZ, Gao LM. Incomplete reproductive isolation between Rhododendron taxa enables hybrid formation and persistence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:433-448. [PMID: 30192058 DOI: 10.1111/jipb.12718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre- and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species, R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation. All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators; reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.
Collapse
Affiliation(s)
- Li-Jun Yan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Kevin S Burgess
- Department of Biology, College of Letters & Sciences, Columbus State University, University System of Georgia, 31907-5645 Columbus, GA, USA
| | - Wei Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Zhi-Bin Tao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
9
|
Yan LJ, Burgess KS, Milne R, Fu CN, Li DZ, Gao LM. Asymmetrical natural hybridization varies among hybrid swarms between two diploid Rhododendron species. ANNALS OF BOTANY 2017; 120:51-61. [PMID: 28444136 PMCID: PMC5737508 DOI: 10.1093/aob/mcx039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/14/2017] [Indexed: 05/23/2023]
Abstract
Background and Aims The extent to which hybridization leads to gene flow between plant species depends on the structure of hybrid populations. However, if this varies between locations, species barriers might prove permeable in some locations but not in others. To assess possible variation in hybrid population structure, the magnitude and direction of natural hybridization between two Chinese endemic species, Rhododendron spiciferum and Rhododendron spinuliferum , were evaluated. Methods Thirteen nuclear microsatellite markers were employed to characterize 566 individuals collected from 15 non-allopatric populations and nine allopatric parental populations. Chloroplast DNA (cpDNA) sequences were obtained from a subset of samples. Genetic structure and direction of gene flow was determined using a combination of STRUCTURE and NEWHYBRIDS analysis. Key Results Nuclear analysis revealed that parental taxa formed two genetically distinct clusters and hybrids shared the genetic background of both parents and did not form a separate genetic lineage. Overall, hybrid swarms were dominated by early- and later-generation hybrids, with a significantly higher proportion of hybrids (59·6 %) possessing >50 % R. spiciferum-like nuclear germplasm. The cpDNA analysis further indicated that a significantly greater proportion of hybrids (61·1 %) possessed the R. spiciferum cpDNA haplotype. Conclusions Gene flow between R. spiciferum and R. spinuliferum was found to be bidirectional in 14 of the 15 hybrid swarms and asymmetrical in six hybrid swarms. Asymmetrical gene flow was evident for only nuclear DNA (nDNA) in two populations, for only cpDNA in three populations, and for both nDNA and cpDNA in one population. Collectively, the variation in genetic structure found among the 15 hybrid swarms suggests that introgression rather than hybrid speciation is a more likely outcome of hybridization between these hybridizing taxa.
Collapse
Affiliation(s)
- Li-Jun Yan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Kevin S. Burgess
- Department of Biology, College of Letters & Sciences, Columbus State University, University System of Georgia, 163A LeNoir Hall, Columbus, GA 31907-5645, USA
| | - Richard Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JH, UK
| | - Chao-Nan Fu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
10
|
Marczewski T, Ma YP, Zhang XM, Sun WB, Marczewski AJ. Why is population information crucial for taxonomy? A case study involving a hybrid swarm and related varieties. AOB PLANTS 2016; 8:plw070. [PMID: 27758764 PMCID: PMC5142052 DOI: 10.1093/aobpla/plw070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/14/2016] [Indexed: 05/14/2023]
Abstract
Hybridization has become a focal topic in evolutionary biology, and many taxonomists are aware that the process occurs more frequently than previously assumed. Nonetheless many species and varieties are still described without explicitly considering the possibility of hybridization, especially in countries that have relatively short scientific histories, but which often possess the highest species diversities. Furthermore, new taxa are often described based only on herbarium specimens, not taking into account information from wild populations, significantly decreasing the potential to detect morphologies arising from hybridization at this crucial descriptive stage. We used morphological data from a hybrid swarm involving two Rhododendron species to showcase possible character combinations in intermediates. Certain characters used to distinguish taxa were more variable within the same individual than between species, emphasizing the importance of population information for an adequate choice of characters. Most described varieties of the two species fell within the spectrum of hybrid morphology, suggesting that these taxa would be unlikely to have merited formal description if contemporary standards had been employed. In all investigated cases the hybrid nature of described varieties seems to have been detectable with adequate morphological data alone, if populations had been assessed. A post hoc assessment of taxa is often complicated, especially if certain types of information are not provided. To avoid accumulation of such invalid taxa, careful scrutiny should be employed for new descriptions. Hybrids (not hybrid species) described as taxa obscure valuable information about natural processes and impact negatively on further research that depends on taxonomic data.
Collapse
Affiliation(s)
- Tobias Marczewski
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Yong-Peng Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Xue-Mei Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - Wei-Bang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | | |
Collapse
|
11
|
Strong reproductive isolation despite occasional hybridization between a widely distributed and a narrow endemic Rhododendron species. Sci Rep 2016; 6:19146. [PMID: 26751844 PMCID: PMC4707479 DOI: 10.1038/srep19146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022] Open
Abstract
Reproductive isolation (RI) plays an important role for speciation, but assessing reproductive barriers at all life-cycle stages remains challenging. In plants, most studies addressing the topic have been focusing on herbs with short generation times. The present study attempted to quantify several reproductive barriers between a hybridizing species pair of long-lived woody rhododendrons. Consistent with findings of previous studies, pre-zygotic reproductive barriers contributed more to total RI than post-zygotic reproductive barriers. Especially in the more widespread species geographic isolation was an important barrier, and pollinator constancy contributed exceptionally to RI in both species. Additionally to strong pre-zygotic reproductive barriers, post-zygotic reproductive barriers were considerable, and had asymmetric tendencies favoring one of the species as maternal parent. Overall, despite occasional hybridization, the present study provides evidence for strong RI between R. cyanocarpum and R. delavayi.
Collapse
|