1
|
Xiao L, Hu AQ, Wang MN, Cheng Z, Chi KB, Long CL, Liu JG. Monoclonality and Low Genetic Diversity in Vanilla shenzhenica: Highlighting Urgent Need for Genetic Preservation of China's Only Endangered Vanilla. Int J Mol Sci 2025; 26:3451. [PMID: 40244380 PMCID: PMC11989421 DOI: 10.3390/ijms26073451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Long-term clonality has profound consequences for genetic structure despite offering an alternative means of reproductive assurance under unfavorable conditions for sexual reproduction. Vanilla shenzhenica Z. J. Liu & S. C. Chen (Orchidaceae), the only endangered Vanilla species in China, exhibits a clear tendency towards asexual propagation, as evidenced by its small, fragmented wild populations. To develop effective conservation strategies for this species, it is essential to assess the extent of clonality and evaluate genetic diversity both within and among populations. In this study, we sampled 43 individuals from cultivated and wild populations of V. shenzhenica and analyzed their phylogenetic relationships, genetic structure, and diversity based on single-nucleotide polymorphisms (SNPs). Our results indicate that all the studied wild populations are predominantly sustained by vegetative growth, each forming a monoclonal patch with a single genotype. The overall genetic diversity within V. shenzhenica is low likely due to a combination of factors, including clonality, reduced effective population size, and environmental disturbances. These findings underscore the urgent need for the conservation management of this species. Conservation plans should prioritize ex situ conservation efforts, focusing on promoting assisted sexual reproduction to produce viable seeds and offspring that combine diverse genotypes from different populations. This study provides valuable insights in relation to effective conservation planning for endangered clonal species.
Collapse
Affiliation(s)
- Li Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; (L.X.); (Z.C.)
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (A.-Q.H.); (M.-N.W.); (K.-B.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, China
| | - Ai-Qun Hu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (A.-Q.H.); (M.-N.W.); (K.-B.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Mei-Na Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (A.-Q.H.); (M.-N.W.); (K.-B.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Zhuo Cheng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; (L.X.); (Z.C.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, China
| | - Kuan-Bo Chi
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (A.-Q.H.); (M.-N.W.); (K.-B.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| | - Chun-Lin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; (L.X.); (Z.C.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100081, China
- Institute of National Security Studies, Minzu University of China, Beijing 100081, China
| | - Jin-Gang Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (A.-Q.H.); (M.-N.W.); (K.-B.C.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| |
Collapse
|
2
|
Nehemia A. Genetic diversity, population genetic structure and demographic history of the Ribbontail stingray Taeniura lymma (Fabricius, 1775) (elasmobranchii: myliobatiformes: dasyatidae) along the Tanzanian coastline. Mitochondrial DNA A DNA Mapp Seq Anal 2025; 35:93-101. [PMID: 39552554 DOI: 10.1080/24701394.2024.2427841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
The Ribbontail stingray Taeniura lymma is an economically important fish and attractive species for the aquarium trade industry. Overfishing, habitat degradation, and pollution, however, pose a threat to this species. This study used partial mitochondrial cytochrome oxidase subunit I (COI) sequences (603 base pairs long) from 96 samples of T. lymma collected at five fish-landing sites (Deep Sea-Tanga, Malindi-Unguja, Kaole-Bagamoyo, Kivukoni-Dar es Salaam, and Bandarini-Mtwara) located along the coast of Tanzania to determine the species' genetic diversity, population genetic structure, and demographic history. The findings revealed an average nucleotide diversity of 0.24 ± 0.16% and a haplotype diversity of 0.75 ± 0.04. Nucleotide and haplotype diversities were relatively low at Kaole-Bagamoyo compared to the other studied localities. An Analysis of Molecular Variance (AMOVA) indicated limited but statistically significant genetic differences among populations (Overall FST = 0.09, p < 0.01). Pairwise AMOVA revealed genetic difference between the Deep Sea-Tanga population and all other populations studied with exception of Malindi-Unguja. Analyses of mismatch distribution, demographic history, and a haplotype network support a scenario of historical population expansion in the studied species. Immediate effort is required to protect population exhibiting low genetic diversity in this commercially important ray.
Collapse
Affiliation(s)
- Alex Nehemia
- Department of Biosciences, College of Natural and Applied Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
3
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:934-960. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
4
|
Lavanchy E, Cumer T, Topaloudis A, Ducrest AL, Simon C, Roulin A, Goudet J. Too big to purge: persistence of deleterious Mutations in Island populations of the European Barn Owl (Tyto alba). Heredity (Edinb) 2024; 133:437-449. [PMID: 39397112 PMCID: PMC11589586 DOI: 10.1038/s41437-024-00728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
A key aspect of assessing the risk of extinction/extirpation for a particular wild species or population is the status of inbreeding, but the origin of inbreeding and the current mutational load are also two crucial factors to consider when determining survival probability of a population. In this study, we used samples from 502 barn owls from continental and island populations across Europe, with the aim of quantifying and comparing the level of inbreeding between populations with differing demographic histories. In addition to comparing inbreeding status, we determined whether inbreeding is due to non-random mating or high co-ancestry within the population. We show that islands have higher levels of inbreeding than continental populations, and that this is mainly due to small effective population sizes rather than recent consanguineous mating. We assess the probability that a region is autozygous along the genome and show that this probability decreased as the number of genes present in that region increased. Finally, we looked for evidence of reduced selection efficiency and purging in island populations. Among island populations, we found an increase in numbers of both neutral and deleterious minor alleles, possibly as a result of drift and decreased selection efficiency but we found no evidence of purging.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Alexandros Topaloudis
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Marchal S, Choukér A, Bereiter-Hahn J, Kraus A, Grimm D, Krüger M. Challenges for the human immune system after leaving Earth. NPJ Microgravity 2024; 10:106. [PMID: 39557881 PMCID: PMC11574097 DOI: 10.1038/s41526-024-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024] Open
Abstract
From the start of life on Earth, several immune defense mechanisms have evolved to guarantee cellular integrity, homeostasis, and host survival. All these sophisticated balances as shaped by and towards the environmental needs have occurred over hundreds of millions of years. Human spaceflight involves various health hazards, such as higher levels of radiation, altered gravity, isolation and confinement, living in tight quarters, and stress associated with being away from home. A growing body of evidence points towards immunological changes in astronauts, including heightened pro-inflammatory responses, reactivation of latent viruses, and cell-mediated alterations, reflecting a dysbalanced state in astronauts. Simultaneously, enhanced pathogenicity, virulence, and drug resistance properties of microorganisms tip the scale out of favor for prolonged stay in space. As we have learned from the past, we see potential for the human immune system, forged and maintained throughout evolutionary history, to adapt to the space exposome. It is unlikely that this will happen in the short time frames set for current space exploration missions. Instead, major risks to astronaut health need to be addressed first, before humans can safely evolve into the space environment.
Collapse
Affiliation(s)
- Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, LMU University Hospital, LMU Munich, Marchioninistr. 15, Munich, Germany
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Armin Kraus
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany.
| |
Collapse
|
6
|
Rapalai BL, Simmons LW, Evans TA, Kennington WJ. Genetic and Phenotypic Divergence in a Dung Beetle 50 Years After Its Introduction to Australia. Ecol Evol 2024; 14:e70536. [PMID: 39524314 PMCID: PMC11550911 DOI: 10.1002/ece3.70536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Species translocations are increasingly being used in conservation and for biological control. The success of a translocation can be strongly influenced by the evolutionary processes occurring during the early phase of the introduction and the subsequent spread to new regions. In this study, morphological variation and population genetic structure were assessed in the African dung beetle Digitonthophagus gazella, a species that was intentionally introduced to Australia for biological control in 1968 and subsequently spread widely across the northern part of the continent. A dataset based on 1594 neutral single nucleotide polymorphism (SNP) loci that were genotyped in 187 individuals from 12 sites revealed significant genetic divergences between sites (global F ST = 0.118) and provides evidence of restricted gene flow among established populations at small to moderate spatial scales (74-500 km). Geometric morphometric analyses revealed significant divergence among populations in the shape of the foretibia, a trait ecologically important for tunnelling in soil and dung. Moreover, phenotypic divergence in this trait for both sexes was significantly higher than genetic differentiation at selectively neutral loci (P ST > F ST), suggesting that directional selection is contributing to the phenotypic divergences among populations. Our study shows how population structure can establish quickly in an introduced species and highlights the importance of considering local adaptation when performing translocations on established populations.
Collapse
Affiliation(s)
- Boikhutso Lerato Rapalai
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Leigh W. Simmons
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Theodore A. Evans
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - W. Jason Kennington
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
7
|
Silver‐Gorges I, Shamblin BM, Ashford M, Bower P, Fuentes MMPB. Potential drivers and implications of a balanced breeding sex ratio in a small population of an imperiled species with environmental sex determination. Ecol Evol 2024; 14:e70166. [PMID: 39224154 PMCID: PMC11366973 DOI: 10.1002/ece3.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Small populations of imperiled species are susceptible to the negative consequences of skewed sex-ratios. In imperiled species with environmental sex determination such as sea turtles, examining sex ratios across a range of environments and population abundance levels can provide insight into factors that influence population resilience, which can then be the foci of management plans for these species. Breeding sex ratios (the ratio of actively breeding males to females during a reproductive season; BSRs) extrapolated from genetic parentage analyses are a common approach for enumerating sex ratios in sea turtles. Such analyses also allow for the characterization of multiple paternity within sea turtle clutches, which should reflect BSRs and breeding behaviors. We characterized the first BSR for a breeding assemblage of loggerhead sea turtles (Caretta caretta) belonging to the temperate, low-abundance Northern Gulf of Mexico Recovery Unit using genotypes of 16 microsatellite loci from nesting females and hatchlings. Unlike prior studies at both more-tropical and more-temperate, and higher-abundance, Recovery Units in this region, we found a balanced BSR of 1.3:1 males:female and a low incidence (~17%) of multiple paternity. This suggests that there are relatively few males breeding at this assemblage and within this Recovery Unit. Beaches in this region are expected to produce substantial numbers of male hatchlings based on sand temperature data. The relative dearth of mature males may then be due to hydrologic disturbances that disproportionately affect the fitness and survival of male hatchlings, or due to demographic stochasticity. More work is needed to study the factors that might influence male hatchling production and fitness in this region, particularly as climate change is predicted to lead to feminization in global sea turtle populations. Our work demonstrates the broad utility of characterizing BSRs and other sex ratios across a range of populations in imperiled, environmentally sensitive species.
Collapse
Affiliation(s)
- Ian Silver‐Gorges
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Brian M. Shamblin
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Mason Ashford
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Paityn Bower
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Mariana M. P. B. Fuentes
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
8
|
Le Roux R, Colmonero-Costeira I, Deikumah JP, Thompson LJ, Russo IRM, Jansen van Vuuren B, Willows-Munro S. High conservation importance of range-edge populations of Hooded Vultures (Necrosyrtes monachus). Sci Rep 2024; 14:18040. [PMID: 39098950 PMCID: PMC11298522 DOI: 10.1038/s41598-024-68756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Critically endangered Hooded Vultures (Necrosyrtes monachus Temminck, 1823), like many vulture species globally, are experiencing rapid population declines due to anthropogenic factors such as poisonings, human persecution, trading for belief-based use, and habitat loss/degradation. The Hooded Vulture is widespread across sub-Saharan Africa. Although it is considered one of the most abundant vultures in West Africa, this vulture species is less common in East and southern Africa, with the population at the southern-most edge of the distribution (in South Africa and Eswatini) estimated at only 100-200 mature individuals. The distribution of Hooded Vultures has contracted dramatically in southern Africa, with breeding populations largely confined to protected areas such as the Greater Kruger National Park. This study aimed to investigate the genetic diversity of the southern African range-edge population and assess if the recent contraction in the distribution has resulted in the population experiencing a genetic bottleneck. Sixteen microsatellite loci were amplified for samples collected along the Olifants River in the Greater Kruger National Park (n = 30). The genetic diversity in the South African population was compared to samples (n = 30) collected in Ghana, where Hooded Vultures are more abundant. Contrary to expectations, the South African peripheral Hooded Vulture population showed higher levels of heterozygosity (HO = 0.495) than the Ghanaian population (HO = 0.315). Neither population showed signs of recent bottleneck events when tested using demographic modelling and Approximate Bayesian computation (ABC). However, both populations showed high levels of inbreeding and relatedness. Our results suggest that despite being a small peripheral population, the South African Hooded Vulture population showed a similar level of genetic diversity as individuals sampled from a core population within the species distribution (in Ghana). This study supports the need for Hooded Vulture conservation efforts in the southern African region and highlights the evolutionary importance of range-edge populations.
Collapse
Affiliation(s)
- Rynhardt Le Roux
- Centre for Functional Biodiversity, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Ivo Colmonero-Costeira
- ONE, Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, The Museum Ave, Cardiff, CF10 3AX, UK
- Department of Life Sciences, CIAS, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Justus P Deikumah
- Department of Conservation Biology and Entomology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Lindy J Thompson
- Centre for Functional Biodiversity, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, South Africa
- Southern African Wildlife College, Private Bag X3015, Hoedspruit, 1380, South Africa
| | - Isa-Rita M Russo
- ONE, Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, The Museum Ave, Cardiff, CF10 3AX, UK
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological and Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Sandi Willows-Munro
- Centre for Functional Biodiversity, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
9
|
Whinfield J, Warren K, Vogelnest L, Vaughan-Higgins R. Applying a modified streamlined disease risk analysis framework to a platypus conservation translocation, with special consideration for the conservation of ecto- and endoparasites. Int J Parasitol Parasites Wildl 2024; 24:100948. [PMID: 38966858 PMCID: PMC11222941 DOI: 10.1016/j.ijppaw.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Platypuses are the world's most evolutionarily distinct mammal and have several host-specific ecto- and endoparasites. With platypus populations declining, consideration should also be given to preserving these high conservation priority parasites alongside their charismatic host. A disease risk analysis (DRA) was performed for a platypus conservation translocation, using a modified streamlined methodology that incorporated a parasite conservation framework. DRA frameworks rarely consider parasite conservation. Rather, parasites are typically considered myopically in terms of the potential harm they may cause their host. To address this, a previously proposed parasite conservation framework was incorporated into an existing streamlined DRA methodology. Incorporation of the two frameworks was achieved readily, although there is opportunity for further refinement of this process. This DRA is significant as it is the first performed for any monotreme species, and implements the emerging approach of balancing the health and disease risk of the host with parasite conservation.
Collapse
Affiliation(s)
- Jessica Whinfield
- The Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Kristin Warren
- The Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | | |
Collapse
|
10
|
Kaminski M, Brown JI, Seibert SR, Hernández F, Duya MV, Fontanilla IKC, Roshier D, Miles A, Joseph L, Peters JL, Lavretsky P. Determining evolutionary origin and phylogenetic relationships of mallard-like ducks of Oceania, greater Indonesia, and the Philippines with ddRAD-seq data. Mol Phylogenet Evol 2024; 197:108085. [PMID: 38688441 DOI: 10.1016/j.ympev.2024.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AIM We aim to determine the evolutionary origins and population genetics of mallard-like ducks of Oceania, greater Indonesia, and the Philippines. LOCATION Oceania, greater Indonesia, and the Philippines. TAXON Mallard (Anas platyrhynchos), Pacific black duck (A. superciliosa spp.), and Philippine duck (A. luzonica) METHODS: Thousands of nuclear ddRAD-seq loci and the mitochondrial DNA control region were assayed across individuals representative of each species' range. We assessed population structure and phylogenetic relationships, as well as estimated demographic histories to reconstruct the biogeographical history of each species. RESULTS Philippine and Pacific black ducks represent unique genetic lineages that diverged from the mallard 1-2 million years ago. We find no support for the Philippine duck representing a hybrid species as once posited; however, their low levels of genetic diversity requires further attention. We find a lack of substructure among Philippine ducks. However, we found pronounced differentiation between subspecies of Pacific black ducks, especially between A. s. superciliosa from New Zealand and A. s. rogersi from Australia, Papua New Guinea, and Timor-Leste, Indonesia. Anas superciliosa pelewensis gave mixed results; individuals from the Solomon Islands were differentiated from the other subspecies, but those from the island of Aunu'u, American Samoa, were genetically more similar to A. s. rogersi than A. s. pelewensis samples from the Solomon Islands. Finally, we find limited evidence of interspecific gene flow at evolutionary scales, and mallard introgression among contemporary samples. MAIN CONCLUSIONS Mallard-like ducks radiated across Oceania, greater Indonesia, and the Philippines within the last 2 million years. Only the Pacific black duck showed unique sub-structuring that largely followed known sub-species ranges, except for A. s. pelewensis. We posit that the high interrelatedness among Solomon Island samples suggests that their genetic distinctiveness may simply be the result of high levels of genetic drift. In contrast, we conclude that mainland Australian Pacific black ducks were the most likely source for the recent colonization of American Samoa. As a result, our findings suggest that either the A. s. pelewensis subspecies designations and/or its geographical range may require re-evaluation. Continued re-evaluation of evolutionary and taxonomic relationships is necessary when attempting to reconstruct and understand biogeographical histories, with important implications towards any attempts to implement conservation strategies.
Collapse
Affiliation(s)
- Marissa Kaminski
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA; Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, USA.
| | - Joshua I Brown
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA; Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA
| | - Sara R Seibert
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Flor Hernández
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Melizar V Duya
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Ian Kendrich C Fontanilla
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - David Roshier
- School of Animal and Veterinary Science, University of Adelaide, Roseworthy SA, Australia
| | - Adam Miles
- Department of Marine and Wildlife Resources, Pago Pago, 96799, American Samoa
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Jeffrey L Peters
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
11
|
Otalora K, Riera JL, Tavecchia G, Rotger A, Igual JM, Trotta JRP, Baldo L. Population genetics and phylogeographic history of the insular lizard Podarcis lilfordi (Gunther, 1874) from the Balearic Islands based on genome-wide polymorphic data. Ecol Evol 2024; 14:e11407. [PMID: 38799398 PMCID: PMC11116764 DOI: 10.1002/ece3.11407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Islands provide a great system to explore the processes that maintain genetic diversity and promote local adaptation. We explored the genomic diversity of the Balearic lizard Podarcis lilfordi, an endemic species characterized by numerous small insular populations with large phenotypic diversity. Using the newly available genome for this species, we characterized more than 300,000 SNPs, merging genotyping-by-sequencing (GBS) data with previously published restriction site-associated DNA sequencing (RAD-Seq) data, providing a dataset of 16 island populations (191 individuals) across the range of species distribution (Menorca, Mallorca, and Cabrera). Results indicate that each islet hosts a well-differentiated population (F ST = 0.247 ± 0.09), with no recent immigration/translocation events. Contrary to expectations, most populations harbor a considerable genetic diversity (mean nucleotide diversity, P i = 0.144 ± 0.021), characterized by overall low inbreeding values (F IS < 0.1). While the genetic diversity significantly decreased with decreasing islet surface, maintenance of substantial genetic diversity even in tiny islets suggests variable selection or other mechanisms that buffer genetic drift. Maximum-likelihood tree based on concatenated SNP data confirmed the existence of the two major independent lineages of Menorca and Mallorca/Cabrera. Multiple lines of evidence, including admixture and root testing, robustly placed the origin of the species in the Mallorca Island, rather than in Menorca. Outlier analysis mainly retrieved a strong signature of genome differentiation between the two major archipelagos, especially in the sexual chromosome Z. A set of proteins were target of multiple outliers and primarily associated with binding and catalytic activity, providing interesting candidates for future selection studies. This study provides the framework to explore crucial aspects of the genetic basis of phenotypic divergence and insular adaptation.
Collapse
Affiliation(s)
- Katherin Otalora
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biology Faculty University of Barcelona (UB) Barcelona Spain
- Fundación FUNMAJO, EBA, RAIEC, Biodiversity Branch Tunja Boyacá Colombia
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biology Faculty University of Barcelona (UB) Barcelona Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit (GEDA-IMEDEA, CSIC-UIB) Esporles Spain
| | - Andreu Rotger
- Animal Demography and Ecology Unit (GEDA-IMEDEA, CSIC-UIB) Esporles Spain
| | - José Manuel Igual
- Animal Demography and Ecology Unit (GEDA-IMEDEA, CSIC-UIB) Esporles Spain
| | - Jean-Remi Paul Trotta
- CNAG-CRG, Centre for Genomic Regulation (CRG) Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biology Faculty University of Barcelona (UB) Barcelona Spain
- Institute for Research on Biodiversity (IRBio) University of Barcelona (UB) Barcelona Spain
| |
Collapse
|
12
|
Roycroft E, Ford F, Ramm T, Schembri R, Breed WG, Burns PA, Rowe KC, Moritz C. Speciation across biomes: Rapid diversification with reproductive isolation in the Australian delicate mice. Mol Ecol 2024; 33:e17301. [PMID: 38385302 DOI: 10.1111/mec.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Phylogeographic studies of continental clades, especially when combined with palaeoclimate modelling, provide powerful insight into how environment drives speciation across climatic contexts. Australia, a continent characterized by disparate modern biomes and dynamic climate change, provides diverse opportunity to reconstruct the impact of past and present environments on diversification. Here, we use genomic-scale data (1310 exons and whole mitogenomes from 111 samples) to investigate Pleistocene diversification, cryptic diversity, and secondary contact in the Australian delicate mice (Hydromyini: Pseudomys), a recent radiation spanning almost all Australian environments. Across northern Australia, we find no evidence for introgression between cryptic lineages within Pseudomys delicatulus sensu lato, with palaeoclimate models supporting contraction and expansion of suitable habitat since the last glacial maximum. Despite multiple contact zones, we also find little evidence of introgression at a continental scale, with the exception of a potential hybrid zone in the mesic biome. In the arid zone, combined insights from genetic data and palaeomodels support a recent expansion in the arid specialist P. hermannsburgensis and contraction in the semi-arid P. bolami. In the face of repeated secondary contact, differences in sperm morphology and chromosomal rearrangements are potential mechanisms that maintain species boundaries in these recently diverged species. Additionally, we describe the western delicate mouse as a new species and recommend taxonomic reinstatement of the eastern delicate mouse. Overall, we show that speciation in an evolutionarily young and widespread clade has been driven by environmental change, and potentially maintained by divergence in reproductive morphology and chromosome rearrangements.
Collapse
Affiliation(s)
- Emily Roycroft
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Fred Ford
- Biodiversity Conservation and Science, New South Wales Department of Planning and Environment, Queanbeyan, New South Wales, Australia
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Till Ramm
- Zoo Leipzig, Leipzig, Germany
- Museum für Naturkunde Berlin, Berlin, Germany
| | - Rhiannon Schembri
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - William G Breed
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Phoebe A Burns
- Wildlife Conservation and Science, Zoos Victoria, Parkville, Victoria, Australia
| | - Kevin C Rowe
- Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Bessell TJ, Stuart-Smith RD, Johnson OJ, Barrett NS, Lynch TP, Trotter AJ, Stuart-Smith J. Population parameters and conservation implications for one of the world's rarest marine fishes, the red handfish (Thymichthys politus). JOURNAL OF FISH BIOLOGY 2024; 104:1122-1135. [PMID: 38193568 DOI: 10.1111/jfb.15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Population estimates are required for effective conservation of many rare marine species, but can be difficult to obtain. The critically endangered red handfish (Thymichthys politus) is a coastal anglerfish known only from two fragmented populations in southeast Tasmania, Australia. It is at a high risk of extinction due to low numbers, loss of habitat, and the impacts of climate change. To aid conservation efforts, we provide the first empirical population size estimates of red handfish and investigate other important aspects of the species' life history, such as growth, habitat association, and movement. We surveyed both red handfish local populations via underwater visual census on scuba over 3 years and used photographic mark-recapture techniques to estimate biological parameters. In 2020, the local adult population size was estimated to be 94 (95% confidence interval [CI] 40-231) adults at one site, and 7 (95% CI 5-10) at the other site, suggesting an estimated global population of 101 adults. Movement of individuals was extremely limited at 48.5 m (± 77.7 S.D.) per year. We also found evidence of declining fish density, a declining proportion of juveniles, and increasing average fish size during the study. These results provide a serious warning that red handfish are likely sliding toward extinction, and highlight the urgent need to expand efforts for ex situ captive breeding to bolster numbers in the wild and maintain captive insurance populations, and to protect vital habitat to safeguard the species' ongoing survival in the wild.
Collapse
Affiliation(s)
- Tyson J Bessell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Olivia J Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tim P Lynch
- CSIRO, Ocean and Atmosphere, Hobart, Tasmania, Australia
| | - Andrew J Trotter
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jemina Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Masila EM, Ogada SO, Ogali IN, Kennedy GM, Too EK, Ommeh CS. Mitochondrial DNA D-Loop Polymorphisms among the Galla Goats Reveals Multiple Maternal Origins with Implication on the Functional Diversity of the HSP70 Gene. Genet Res (Camb) 2024; 2024:5564596. [PMID: 38348366 PMCID: PMC10861283 DOI: 10.1155/2024/5564596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Despite much attention given to the history of goat evolution in Kenya, information on the origin, demographic history, dispersal route, and genetic diversity of Galla goats remains unclear. Here, we examined the genetic background, diversity, demographic history, and population genetic variation of Galla goats using mtDNA D-loop and HSP70 single-nucleotide polymorphism markers. The results revealed 90 segregating sites and 68 haplotypes in a 600-bp mtDNA D-loop sequence. The overall mean mitochondrial haplotype diversity was 0.993. The haplotype diversities ranged between 0.8939 ± 0.0777 and 1.0000 ± 0.0221 in all populations supporting high genetic diversity. Mitochondrial phylogenetic analysis revealed three Galla goat haplogroups (A, G, and D), supporting multiple maternal ancestries, of which haplogroup A was the most predominant. Analysis of molecular variance (AMOVA) showed considerable variation within populations at 94.39%, evidence of high genetic diversity. Bimodal mismatch distribution patterns were observed while most populations recorded negative results for Tajima and Fu's Fs neutrality tests supporting population expansion. Genetic variation among populations was also confirmed using HSP70 gene fragment sequences, where six polymorphic sites which defined 21 haplotypes were discovered. Analysis of molecular variance revealed a significant FST index value of 0.134 and a high FIS index value of 0.746, an indication of inbreeding. This information will pave the way for conservation strategies and informed breeding to improve Galla or other goat breeds for climate-smart agriculture.
Collapse
Affiliation(s)
- Ednah M. Masila
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Juja, Kenya
- Veterinary Science Research Institute (VSRI), Kenya Agricultural Livestock and Research Organization (KALRO), P.O. Box 32-00902, Nairobi, Kenya
| | - Stephen O. Ogada
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Juja, Kenya
| | - Irene N. Ogali
- Veterinary Science Research Institute (VSRI), Kenya Agricultural Livestock and Research Organization (KALRO), P.O. Box 32-00902, Nairobi, Kenya
| | - Grace M. Kennedy
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Juja, Kenya
| | - Eric K. Too
- Veterinary Science Research Institute (VSRI), Kenya Agricultural Livestock and Research Organization (KALRO), P.O. Box 32-00902, Nairobi, Kenya
| | - Cecily S. Ommeh
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Juja, Kenya
| |
Collapse
|
15
|
Yang Z, Zhao A, Teng M, Li M, Wang H, Wang X, Liu Z, Zeng Q, Hu L, Hu J, Bao Z, Huang X. Signatures of selection in Mulinia lateralis underpinning its rapid adaptation to laboratory conditions. Evol Appl 2024; 17:e13657. [PMID: 38357357 PMCID: PMC10866071 DOI: 10.1111/eva.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Mingxuan Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Liping Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Yantai Marine Economic Research InstituteYantaiChina
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding EngineeringSanya Oceanographic Institution, Ocean University of ChinaSanyaChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
16
|
Kim KR, Sung MS, Hwang Y, Jeong JH, Yu JN. Assessment of the Genetic Diversity and Structure of the Korean Endemic Freshwater Fish Microphysogobio longidorsalis (Gobioninae) Using Microsatellite Markers: A First Glance from Population Genetics. Genes (Basel) 2024; 15:69. [PMID: 38254959 PMCID: PMC10815670 DOI: 10.3390/genes15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Microphysogobio longidorsalis is endemic to South Korea and inhabits small areas of the Namhangang, Bukhangang, and Imjingang Rivers in the Hangang River water system. Endemic species usually are more vulnerable than species with a wide distribution. Notably, there is a lack of basic conservation data for M. longidorsalis. We analyzed 19 microsatellite loci in six populations of M. longidorsalis in South Korea to characterize their population structure and genetic diversity. The genetic diversity of the microsatellites was 0.741-0.779, which is lower than that of other freshwater fishes. The pairwise genetic differentiation of microsatellite (FST) values ranged from 0.007 to 0.041, suggesting low genetic differentiation between the populations. The Jojongicheon stream population (CP) had an effective population size of <100. Therefore, conservation efforts are required to prevent inbreeding depression in M. longidorsalis. Discriminant analysis of principal components showed that the Hangang River water system would be a single management unit (MU). Our findings provide fundamental genetic insights for the formulation of conservation strategies for M. longidorsalis.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Mu-Sung Sung
- Muldeuli Research, Icheon 12607, Republic of Korea;
| | - Yujin Hwang
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Ju Hui Jeong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| |
Collapse
|
17
|
Abdulmalik-Labe OP, Eduardo AJL, Quilang JP. Genetic diversity and divergence among native and translocated populations of the golden flathead goby Glossogobius aureus (Gobiiformes: Gobiidae) in Philippine lakes. PLoS One 2023; 18:e0293076. [PMID: 38096142 PMCID: PMC10721109 DOI: 10.1371/journal.pone.0293076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/03/2023] [Indexed: 12/17/2023] Open
Abstract
The golden flathead goby Glossogobius aureus is a native species in the Philippines, Australia, Japan, Taiwan, and many other countries in Asia. In the Philippines, it is an important food fish as it is commonly caught in major lakes. In this study, a total of 307 specimens morphologically identified as G. aureus were sampled from nine major lakes in the Philippines and were sequenced for their mitochondrial cytochrome b (cyt b) gene. Two hundred sixty of the 307 cyt b sequences had sequence similarities of ≥ 99% with G. aureus reference sequence in GenBank, while the remaining 47 (all from Lake Lanao) had sequence similarities of only 95% and were thus designated as Glossogobius cf. aureus and treated as a separate population. The sequences were then analyzed to examine the pattern of genetic diversity, relatedness, divergence, and demographic history among native and translocated populations of the species. Twenty-nine haplotypes were recovered, of which four haplotypes were shared among three to seven populations. Only one haplotype each was found in the native population in Lake Buhi and translocated population in Lake Paoay. Low haplotype and low nucleotide diversities were found for the populations in Laguna de Bay, Lanao, Bato, Buhi, Paoay, and Sebu lakes, which indicate founder event for the introduced populations in Lanao, Paoay, and Sebu lakes and recent genetic bottleneck for the native populations in Laguna de Bay, Bato, and Buhi. In contrast, high haplotype but low nucleotide diversities were found for the native populations of Taal, Naujan, and Buluan lakes, signifying a recent bottleneck followed by population expansion. Pairwise FST values showed generally large (FST = 0.168-0.249) to very large (FST = 0.302-1.000) genetic divergence between populations except between Laguna de Bay and Lake Bato, Laguna de Bay and Lake Buhi, and Lake Bato and Lake Buhi populations, which showed nonsignificant genetic differentiation. Lake Buluan and Lake Sebu populations showed moderate genetic differentiation (FST = 0.098). Neutrality tests showed significant negative Tajima's D and Fu's FS values only for the population from Laguna de Bay, which suggests that the population is undergoing expansion. These results are important for establishing scientifically sound strategies for effective conservation and sustainable exploitation of G. aureus in the Philippines.
Collapse
Affiliation(s)
- Onaya P. Abdulmalik-Labe
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Biology Department, College of Natural Sciences and Mathematics, Mindanao State University, Marawi City, Philippines
| | - Andrew Jason L. Eduardo
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Jonas P. Quilang
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
18
|
Cunningham-Eurich I, Kontou D, Yordanova M, Maeda-Obregon A, Favreau E, Wang J, Hart AG, Sumner S. Using citizen science data to assess the population genetic structure of the common yellowjacket wasp, Vespula vulgaris. INSECT MOLECULAR BIOLOGY 2023; 32:634-647. [PMID: 37599385 DOI: 10.1111/imb.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/22/2023] [Indexed: 08/22/2023]
Abstract
Monitoring insect genetic diversity and population structure has never been more important to manage the biodiversity crisis. Citizen science has become an increasingly popular tool to gather ecological data affordably across a wide range of spatial and temporal scales. To date, most insect-related citizen science initiatives have focused on occurrence and abundance data. Here, we show that poorly preserved insect samples collected by citizen scientists can yield population genetic information, providing new insights into population connectivity, genetic diversity and dispersal behaviour of little-studied insects. We analysed social wasps collected by participants of the Big Wasp Survey, a citizen science project that aims to map the diversity and distributions of vespine wasps in the UK. Although Vespula vulgaris is a notorious invasive species around the world, it remains poorly studied in its native range. We used these data to assess the population genetic structure of the common yellowjacket V. vulgaris at different spatial scales. We found a single, panmictic population across the UK with little evidence of population genetic structuring; the only possible limit to gene flow is the Irish sea, resulting in significant differentiation between the Northern Ireland and mainland UK populations. Our results suggest that queens disperse considerable distances from their natal nests to found new nests, resulting in high rates of gene flow and thus little differentiation across the landscape. Citizen science data has made it feasible to perform this study, and we hope that it will encourage future projects to adopt similar practices in insect population monitoring.
Collapse
Affiliation(s)
- Iona Cunningham-Eurich
- Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Danai Kontou
- Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Monika Yordanova
- Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Emeline Favreau
- Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Jinliang Wang
- Institute of Zoology, Zoological Society of London, London, UK
| | - Adam G Hart
- Department of Natural and Social Science, University of Gloucestershire, UK
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, University College London, London, UK
| |
Collapse
|
19
|
Lévêque L, Amin RJ, Buettel J, Carver S, Brook B. A secure future? Human urban and agricultural land use benefits a flightless island-endemic rail despite climate change. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230386. [PMID: 37388316 PMCID: PMC10300668 DOI: 10.1098/rsos.230386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Identifying environmental characteristics that limit species' distributions is important for contemporary conservation and inferring responses to future environmental change. The Tasmanian native hen is an island endemic flightless rail and a survivor of a prehistoric extirpation event. Little is known about the regional-scale environmental characteristics influencing the distribution of native hens, or how their future distribution might be impacted by environmental shifts (e.g. climate change). Using a combination of local fieldwork and species distribution modelling, we assess environmental factors shaping the contemporary distribution of the native hen, and project future distribution changes under predicted climate change. We find 37% of Tasmania is currently suitable for the native hens, owing to low summer precipitation, low elevation, human-modified vegetation and urban areas. Moreover, in unsuitable regions, urban areas can create 'oases' of habitat, able to support populations with high breeding activity by providing resources and buffering against environmental constraints. Under climate change predictions, native hens were predicted to lose only 5% of their occupied range by 2055. We conclude that the species is resilient to climate change and benefits overall from anthropogenic landscape modifications. As such, this constitutes a rare example of a flightless rail to have adapted to human activity.
Collapse
Affiliation(s)
| | | | | | - Scott Carver
- University of Tasmania, Hobart, Tasmania, Australia
| | - Barry Brook
- University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Jia Y, Fu Q, Li B, Xu Y, Tariq A. Polymorphism analysis of major histocompatibility complex (MHC) DQB gene in the Asiatic black bear (Ursus thibetanus). MAMMAL RES 2023. [DOI: 10.1007/s13364-023-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Haji M, Bakuza JS. Climate Change Vulnerability Assessment for the Rondo Dwarf Galago in Coastal Forests, Tanzania. ENVIRONMENTAL MANAGEMENT 2023; 71:145-158. [PMID: 35195785 DOI: 10.1007/s00267-022-01605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Negative effects of climate change on organisms and their habitats pose significant conservation challenges especially for species already under siege from other threats like habitat loss, pollution and diseases. This study assessed the extent to which the Rondo dwarf galago (Paragalago rondoensis), an endangered primate in the coastal forests in eastern Tanzania is threatened by climate change. Past and projected temperature and precipitation records from Tanzania Meteorological Authority were overlaid with P. rondoensis distribution range to assess the species exposure to climate extremes. Traits predisposing it to climate change were also obtained from published literature and experts on the organism's biology to determine its sensitivity. The P. rondoensis vulnerability to climate change was obtained by feeding exposure and sensitivity data into Natureserve's Climate Change Vulnerability Index (CCVI) software. Results indicated that most of Rondo galago's habitat and distribution range will be exposed to a temperature increase of 1 to 1.3 °C by 2050, which if combined with other threats, is likely to further endanger the species survival. Due to its diet specialization on insects, which are moisture-dependent, any extreme decrease in humidity will reduce its diet availability thereby threatening the species further. Moreover, Rondo galago's limited habitats and distribution range in the East African tropical coastal forests, raises the species threat level. Rondo galago's conservation should be enhanced through creation of corridors to facilitate its possible shifts to conducive and safer habitats in the event of extreme weather. Climate change aspects should also be integrated into the species conservation strategies.
Collapse
Affiliation(s)
- Mohamed Haji
- Aga Khan Education Services Tanzania, P.O. Box 125, Fire Road, Upanga, Dar es Salaam, Tanzania
- Centre for Climate Change Studies, University of Dar es Salaam, P.O. Box 35181, Dar es Salaam, Tanzania
| | - Jared Sylivester Bakuza
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, University of Dar es Salaam, P.O. Box 2329, Dar es Salaam, Tanzania.
| |
Collapse
|
22
|
Muneeb M, Feng S, Henschel A. Transfer learning for genotype-phenotype prediction using deep learning models. BMC Bioinformatics 2022; 23:511. [PMID: 36447153 PMCID: PMC9710151 DOI: 10.1186/s12859-022-05036-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND For some understudied populations, genotype data is minimal for genotype-phenotype prediction. However, we can use the data of some other large populations to learn about the disease-causing SNPs and use that knowledge for the genotype-phenotype prediction of small populations. This manuscript illustrated that transfer learning is applicable for genotype data and genotype-phenotype prediction. RESULTS Using HAPGEN2 and PhenotypeSimulator, we generated eight phenotypes for 500 cases/500 controls (CEU, large population) and 100 cases/100 controls (YRI, small populations). We considered 5 (4 phenotypes) and 10 (4 phenotypes) different risk SNPs for each phenotype to evaluate the proposed method. The improved accuracy with transfer learning for eight different phenotypes was between 2 and 14.2 percent. The two-tailed p-value between the classification accuracies for all phenotypes without transfer learning and with transfer learning was 0.0306 for five risk SNPs phenotypes and 0.0478 for ten risk SNPs phenotypes. CONCLUSION The proposed pipeline is used to transfer knowledge for the case/control classification of the small population. In addition, we argue that this method can also be used in the realm of endangered species and personalized medicine. If the large population data is extensive compared to small population data, expect transfer learning results to improve significantly. We show that Transfer learning is capable to create powerful models for genotype-phenotype predictions in large, well-studied populations and fine-tune these models to populations were data is sparse.
Collapse
Affiliation(s)
- Muhammad Muneeb
- grid.440568.b0000 0004 1762 9729Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Al Saada St - Zone 1, Abu Dhabi, United Arab Emirates
| | - Samuel Feng
- grid.449223.a0000 0004 1754 9534Department of Science and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- grid.440568.b0000 0004 1762 9729Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Al Saada St - Zone 1, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Brooks E, Slender AL, Cu S, Breed MF, Stangoulis JCR. A range-wide analysis of population structure and genomic variation within the critically endangered spiny daisy (Acanthocladium dockeri). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractUnderstanding population structure and genetic diversity is important for designing effective conservation strategies. As a critically endangered shrub, the six remaining extant populations of spiny daisy (Acanthocladium dockeri) are restricted to country roadsides in the mid-north of South Australia, where the species faces many ongoing abiotic and biotic threats to survival. Currently the spiny daisy is managed by selecting individuals from the extant populations and translocating them to establish insurance populations. However, there is little information available on the genetic differentiation between populations and diversity within source populations, which are essential components of planning translocations. To help fill this knowledge gap, we analysed population structure within and among all six of its known wild populations using 7,742 SNPs generated by a genotyping-by-sequencing approach. Results indicated that each population was strongly differentiated, had low levels of genetic diversity, and there was no evidence of inter-population gene flow. Individuals within each population were generally closely related, however, the Melrose population consisted entirely of clones. Our results suggest genetic rescue should be applied to wild spiny daisy populations to increase genetic diversity that will subsequently lead to greater intra-population fitness and adaptability. As a starting point, we suggest focussing on improving seed viability via inter-population crosses such as through hand pollination experiments to experimentally assess their sexual compatibility with the hope of increasing spiny daisy sexual reproduction and long-term reproductive fitness.
Collapse
|
24
|
Guo YH, Halasan LC, Wang HY, Lin HC. High migratory propensity constitutes a single stock of an exploited cutlassfish species in the Northwest Pacific: A microsatellite approach. PLoS One 2022; 17:e0265548. [PMID: 35298539 PMCID: PMC8929604 DOI: 10.1371/journal.pone.0265548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
Cutlassfishes, also known as hairtails, include multiple predatory fishes of the family Trichiuridae. They constitute a top marine fish commodity globally, yet the knowledge about their composition and intraspecific genetic structures is still limited. Trichiurus japonicus accounts for a major amount in the northwest Pacific fishery. Previous studies based on mitochondrial DNA markers reported incongruences in its population structure, hence prompting the need for high-resolution markers and avoiding possible shortcomings in its management. Here we genotyped ten novel de novo-assembled transcriptome-derived microsatellite markers on a total of 150 samples across five major fishing grounds (encompassing latitudes 22-39°N). These markers presented a high number of alleles and heterozygosity compared to other marine fishes, corresponding to the large effective population size of ~20,000 per location and cohort differentiation. Population structuring analyses suggested T. japonicus to be a homogenous well-mixed population. This configuration is likely attributed to the majority of its effective population migrates across locations, and the absence of oceanographic barriers at the continental shelves. Qingdao with reportedly high ocean productivity could be a genetic pseudosink based on the high heterozygosity and migratory preference. Moreover, the results of sign tests suggest that T. japonicus experienced a recent bottleneck likely concurrent with historical glaciation events. Further, we demonstrated satisfactory cross-amplifications of our markers on several congeners, indicating a great promise to use these markers to study the population genetics of trichiurids. Together, our findings will serve as an essential groundwork for enhancing resource conservation and management of cutlassfishes.
Collapse
Affiliation(s)
- Yu-Hong Guo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Lorenzo C. Halasan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hui-Yu Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Chin Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Mursyidin DH, Makruf MI, Badruzsaufari, Noor A. Molecular diversity of exotic durian (Durio spp.) germplasm: a case study of Kalimantan, Indonesia. J Genet Eng Biotechnol 2022; 20:39. [PMID: 35230532 PMCID: PMC8888783 DOI: 10.1186/s43141-022-00321-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Background Durian of Indonesia, specifically Durio zibethinus, is a potential agricultural commodity for domestic and international markets. However, its quality is still less competitive or significantly lower to fulfill the export market, compared to a similar one from other countries. This study aimed to determine and analyze the genetic diversity and relationship of the exotic durian (Durio spp.) germplasm originally from Kalimantan, Indonesia, using the rbcL marker. Results Based on this marker, the durian germplasm has a low genetic diversity (π%=0.24). It may strongly correspond with the variability sites or mutation present in the region. In this case, the rbcL region of the durian germplasm has generated 23 variable sites with a transition/transversion (Ti/Tv) bias value of 1.00. However, following the phylogenetic and principal component analyses, this germplasm is separated into four main clades and six groups, respectively. In this case, D. zibethinus was very closely related to D. exleyanus. Meanwhile, D. lowianus and D. excelsus were the farthest. In further analysis, 29 durians were very closely related, and the farthest was shown by Durian Burung (D. acutifolius) and Kalih Haliyang (D. kutejensis) as well as Pampaken Burung Kecil (D. kutejensis) and Durian Burung (D. acutifolius) with a divergence coefficient of 0.011. The Pearson correlation analysis confirms that 20 pairs of individual durians have a strong relation, shown by, e.g., Maharawin Hamak and Durian Burung as well as Mantuala Batu Hayam and Durian Burung Besar. Conclusion While the durian has a low genetic diversity, the phylogenetic analyses revealed that this germplasm originally from Kalimantan, Indonesia, shows unique relationships. These findings may provide a beneficial task in supporting the durian genetic conservation and breeding practices in the future, locally and globally.
Collapse
|
26
|
Devillard S, Jacquier M, Vandel JM, Léger F, Duhayer J, Pardonnet S, Say L, Ruette S. Genetic variability and population size covary positively across nine badgers (Meles meles) populations in France. MAMMAL RES 2022. [DOI: 10.1007/s13364-021-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
|
28
|
Ozone Induces Distress Behaviors in Fig Wasps with a Reduced Chance of Recovery. INSECTS 2021; 12:insects12110995. [PMID: 34821795 PMCID: PMC8619363 DOI: 10.3390/insects12110995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Ecological interactions among organisms underpin the stability of ecological networks, which are responsible for species biodiversity in ecosystems. These interactions are currently threatened by environmental risks, mainly due to human activities, such as air pollution. Among air pollutants, tropospheric ozone (O3) is known to disrupt chemical communication between plants and their pollinators. Alarmingly, its concentration is likely to increase by two–four-fold in the next two decades. However, the direct effects of O3 on the behavior of pollinators themselves have not been investigated so far, even though insect behavior is key to their ecological interactions. In this study, we evaluated the potential effects of O3 at different field-realistic concentrations on the behavior of the fig wasp Blastophaga psenes, the exclusive pollinator of the Mediterranean fig species Ficus carica. We found that O3, even at low concentrations, induced abnormal motility in fig wasps, and that exposed individuals might only have a reduced chance of recovery. Overall, our findings indicate that O3 can affect pollinator behavior, which may have detrimental implications for pollination systems. Abstract Among anthropogenic environmental risks, air pollution has the potential to impact animal and plant physiology, as well as their interactions and the long-term survival of populations, which could threaten the functioning of ecosystems. What is especially alarming is that the concentration of tropospheric ozone (O3) has dramatically increased since pre-industrial times. However, the direct effects of O3 on the behavior of pollinators themselves have not been investigated so far even though insect behavior is key to their ecological interactions, which underpin the stability of ecological networks responsible for species biodiversity in ecosystems. In this study, we aim to determine the potential effects of O3 episodes at different field-realistic concentrations (0, 40, 80, 120, and 200 ppb for 60 min) on the behavior of the fig wasp Blastophaga psenes by monitoring exposed individuals hourly for 5 h after exposure. We found that ozone episodes induced major changes in insect behavior, which were already significant at 80 ppb with individuals displaying abnormal motility. The tracking over time clearly showed that exposed individuals might only have a reduced chance of recovery, with a decreasing proportion of active fig wasps despite the cessation of an O3 episode. These findings illustrate that O3 episodes can affect pollinator behavior, which may have detrimental implications for pollination systems. It is, therefore, of importance to assess the effects of O3 on insect behavior in order to predict how it could modify ecological interactions and species biodiversity in ecosystems.
Collapse
|
29
|
Voicu AA, Krützen M, Bilgin Sonay T. Short Tandem Repeats as a High-Resolution Marker for Capturing Recent Orangutan Population Evolution. FRONTIERS IN BIOINFORMATICS 2021; 1:695784. [PMID: 36303734 PMCID: PMC9581056 DOI: 10.3389/fbinf.2021.695784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The genus Pongo is ideal to study population genetics adaptation, given its remarkable phenotypic divergence and the highly contrasting environmental conditions it’s been exposed to. Studying its genetic variation bears the promise to reveal a motion picture of these great apes’ evolutionary and adaptive history, and also helps us expand our knowledge of the patterns of adaptation and evolution. In this work, we advance the understanding of the genetic variation among wild orangutans through a genome-wide study of short tandem repeats (STRs). Their elevated mutation rate makes STRs ideal markers for the study of recent evolution within a given population. Current technological and algorithmic advances have rendered their sequencing and discovery more accurate, therefore their potential can be finally leveraged in population genetics studies. To study patterns of population variation within the wild orangutan population, we genotyped the short tandem repeats in a population of 21 individuals spanning four Sumatran and Bornean (sub-) species and eight Southeast Asian regions. We studied the impact of sequencing depth on our ability to genotype STRs and found that the STR copy number changes function as a powerful marker, correctly capturing the demographic history of these populations, even the divergences as recent as 10 Kya. Moreover, gene ontology enrichments for genes close to STR variants are aligned with local adaptations in the two islands. Coupled with more advanced STR-compatible population models, and selection tests, genomic studies based on STRs will be able to reduce the gap caused by the missing heritability for species with recent adaptations.
Collapse
Affiliation(s)
| | - Michael Krützen
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Tugce Bilgin Sonay
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
- *Correspondence: Tugce Bilgin Sonay,
| |
Collapse
|
30
|
Poommouang A, Kriangwanich W, Buddhachat K, Brown JL, Piboon P, Chomdej S, Kampuansai J, Mekchay S, Kaewmong P, Kittiwattanawong K, Nganvongpanit K. Genetic diversity in a unique population of dugong (Dugong dugon) along the sea coasts of Thailand. Sci Rep 2021; 11:11624. [PMID: 34078973 PMCID: PMC8172547 DOI: 10.1038/s41598-021-90947-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
Dugong (Dugong dugon) populations have been shrinking globally, due in large part to habitat fragmentation, degradation and ocean pollution, and today are listed as Vulnerable by the IUCN. Thus, determining genetic diversity in the remaining populations is essential for conservation planning and protection. In this study, measures of inter-simple sequence repeat (ISSR) markers and mtDNA D-loop typing were used to evaluate the genetic diversity of 118 dugongs from skin samples of deceased dugongs collected in Thai waters over a 29-year period. Thirteen ISSR primers revealed that dugongs from the Andaman Sea and Gulf of Thailand exhibited more genetic variation in the first 12 years of the study (1990-2002) compared to the last decade (2009-2019). Dugongs from the Andaman Sea, Trang, Satun and some areas of Krabi province exhibited greater diversity compared to other coastal regions of Thailand. Eleven haplotypes were identified, and when compared to other parts of the world (235 sequences obtained from NCBI), five clades were apparent from a total 353 sequences. Moreover, dugongs from the Andaman Sea were genetically distinct, with a separate haplotype belonging to two clades found only in Thai waters that separated from other groups around 1.2 million years ago. Genetic diversity of dugongs in present times was less than that of past decades, likely due to increased population fragmentation. Because dugongs are difficult to keep and breed in captivity, improved in situ conservation actions are needed to sustain genetically healthy wild populations, and in particular, the specific genetic group found only in the Andaman Sea.
Collapse
Affiliation(s)
- Anocha Poommouang
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Wannapimol Kriangwanich
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai, 50100, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Promporn Piboon
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | - Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Excellence Center in Veterinary Bioscience, Chiang Mai, 50100, Thailand.
| |
Collapse
|
31
|
Horníková M, Marková S, Lanier HC, Searle JB, Kotlík P. A dynamic history of admixture from Mediterranean and Carpathian glacial refugia drives genomic diversity in the bank vole. Ecol Evol 2021; 11:8215-8225. [PMID: 34188881 PMCID: PMC8216894 DOI: 10.1002/ece3.7652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023] Open
Abstract
Understanding the historical contributions of differing glacial refugia is key to evaluating the roles of microevolutionary forces, such as isolation, introgression, and selection in shaping genomic diversity in present-day populations. In Europe, where both Mediterranean and extra-Mediterranean (e.g., Carpathian) refugia of the bank vole (Clethrionomys glareolus) have been identified, mtDNA indicates that extra-Mediterranean refugia were the main source of colonization across the species range, while Mediterranean peninsulas harbor isolated, endemic lineages. Here, we critically evaluate this hypothesis using previously generated genomic data (>6,000 SNPs) for over 800 voles, focusing on genomic contributions to bank voles in central Europe, a key geographic area in considering range-wide colonization. The results provide clear evidence that both extra-Mediterranean (Carpathian) and Mediterranean (Spanish, Calabrian, and Balkan) refugia contributed to the ancestry and genomic diversity of bank vole populations across Europe. Few strong barriers to dispersal and frequent admixture events in central Europe have led to a prominent mid-latitude peak in genomic diversity. Although the genomic contribution of the centrally located Carpathian refugium predominates, populations in different parts of Europe have admixed origins from Mediterranean (28%-47%) and the Carpathian (53%-72%) sources. We suggest that the admixture from Mediterranean refugia may have provisioned adaptive southern alleles to more northern populations, facilitating the end-glacial spread of the admixed populations and contributing to increased bank vole diversity in central Europe. This study adds critical details to the complex end-glacial colonization history of this well-studied organism and underscores the importance of genomic data in phylogeographic interpretation.
Collapse
Affiliation(s)
- Michaela Horníková
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
- Department of Zoology, Faculty of Science Charles University Prague Czech Republic
| | - Silvia Marková
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
| | - Hayley C Lanier
- Department of Biology, Program in Ecology & Evolutionary Biology University of Oklahoma Norman OK USA
- Sam Noble Museum University of Oklahoma Norman OK USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Liběchov Czech Republic
| |
Collapse
|
32
|
Peterson EM, Green FB, Smith PN. Toxic responses of blue orchard mason bees (Osmia lignaria) following contact exposure to neonicotinoids, macrocyclic lactones, and pyrethroids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111681. [PMID: 33396013 DOI: 10.1016/j.ecoenv.2020.111681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Analysis of particulate matter originating from beef cattle feed yards on the High Plains of the United States has revealed occurrence of multiple pesticides believed to potentially impact non-Apis pollinators. Among these pesticides are those that are highly toxic to Apis mellifera (honey bees). However, little non-Apis bee species toxicity data exist; especially pertaining to beef cattle feed yard-derived pesticides. Therefore, we conducted a series of 96-h contact toxicity tests with blue orchard mason bees (Osmia lignaria) using three neonicotinoids, two pyrethroids, and two macrocyclic lactones. Neonicotinoids (thiamethoxam, imidacloprid, and clothianidin) were most toxic with LD50 values ranging from 2.88 to 26.35 ng/bee, respectively. Macrocyclic lactones (abamectin and ivermectin) were also highly toxic to O. lignaria with LD50 estimates of 5.51-32.86 ng/bee. Pyrethroids (permethrin and bifenthrin) were relatively less toxic with LD50 values greater than 33 ng/bee. Sensitivity ratios for each pesticide were calculated to relate O. lignaria LD50 values to existing honey bee toxicity data. All three neonicotinoids were more toxic to O. lignaria than A. mellifera, but pyrethroids and abamectin were relatively less toxic. Additionally, three of seven pesticides (43%) resulted in significantly different mass normalized LD50 values for male and female O. lignaria. These results indicate that non-Apis pollinators may be highly susceptible to pesticides originating from beef cattle feed yards, necessitating consideration of more stringent regulatory protections than those based on A. mellifera pesticide sensitivity.
Collapse
Affiliation(s)
- Eric M Peterson
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX 79409, United States
| | - Frank B Green
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX 79409, United States
| | - Philip N Smith
- Texas Tech University, Department of Environmental Toxicology, Lubbock, TX 79409, United States.
| |
Collapse
|
33
|
|
34
|
Population Genetic Diversity and Structure of Ancient Tree Populations of Cryptomeria japonica var. sinensis Based on RAD-seq Data. FORESTS 2020. [DOI: 10.3390/f11111192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research highlights: Our study is the first to explore the genetic composition of ancient Cryptomeria trees across a distribution range in China. Background and objectives: Cryptomeria japonica var. sinensis is a native forest species of China; it is widely planted in the south of the country to create forests and for wood production. Unlike Cryptomeria in Japan, genetic Chinese Cryptomeria has seldom been studied, although there is ample evidence of its great ecological and economic value. Materials and methods: Because of overcutting, natural populations are rare in the wild. In this study, we investigated seven ancient tree populations to explore the genetic composition of Chinese Cryptomeria through ddRAD-seq technology. Results: The results reveal a lower genetic variation but higher genetic differentiation (Ho = 0.143, FST = 0.1204) than Japanese Cryptomeria (Ho = 0.245, FST = 0.0455). The 86% within-population variation is based on an analysis of molecular variance (AMOVA). Significant excess heterozygosity was detected in three populations and some outlier loci were found; these were considered to be the consequence of selection or chance. Structure analysis and dendrogram construction divided the seven ancient tree populations into four groups corresponding to the geographical provinces in which the populations are located, but there was no obvious correlation between genetic distance and geographic distance. A demographic history analysis conducted by a Stairway Plot showed that the effective population size of Chinese Cryptomeria had experienced a continuing decline from the mid-Pleistocene to the present. Our findings suggest that the strong genetic drift caused by climate fluctuation and intense anthropogenic disturbance together contributed to the current low diversity and structure. Considering the species’ unfavorable conservation status, strategies are urgently required to preserve the remaining genetic resources.
Collapse
|
35
|
Kumar KS, Chandrika SK, George S. Genetic structure and demographic history of Indirana semipalmata, an endemic frog species of the Western Ghats, India. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:365-378. [PMID: 33030068 DOI: 10.1080/24701394.2020.1830077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The evolutionary potential of a species mainly depends on the level of genetic variation in their populations. Maintenance of gene variation enables populations to adapt more quickly to environmental changes. The geographical gaps also influence the distribution and evolutionary history of many mountain frogs in the world. Hence, a sound knowledge in population genetic structure of a species will help understand its population dynamics and develop conservation strategies. In the context of facing threats to the amphibian fauna of Western Ghats due to habitat loss, we used both mitochondrial and nuclear DNA markers to investigate the genetic structure of an endemic frog species of the Western Ghats (Indirana semipalmata) with restricted distribution. The present study showed the importance of mountain gaps in shaping the species' structuring in the Western Ghats. Though a high genetic diversity was observed for the species when considering a single unit in the southern Western Ghats, the restricted gene flow on/between either side of the Shencottah gap with genetic clustering of the sampled populations may warrant a unique management plan for the species. The habitat fragmentation of the Western Ghats through anthropogenic activities may result in severe setbacks to the survival of the species in the future.
Collapse
Affiliation(s)
- Kiran S Kumar
- Interdisciplinary Biology Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Sivakumar K Chandrika
- Technical Services, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sanil George
- Interdisciplinary Biology Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
36
|
Low genetic polymorphism in the re-introduced Eurasian beaver (Castor fiber) population in Finland: implications for conservation. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00487-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Background
Reduction of genetic diversity can lead to reduced fitness of species, such as the loss of adaptability to changing environments. The native Eurasian beaver (Castor fiber) was hunted to extinction from Finland and many other countries in Europe in the nineteenth century. In Finland, the species was re-introduced in the 1930s with only a few individuals from Norway. Re-introductions were performed also in other countries of northern Europe and as a result, Eurasian beaver populations have undergone population bottlenecks leading to low levels of genetic diversity.
Materials and Methods
Here, 200 Eurasian beaver samples from Finland, Estonia, Lithuania, and Russian Karelia were investigated using 12 microsatellite markers to examine the level of genetic diversity and relationship between the populations.
Results
While Russian and Estonian populations were genetically the closest, the Finnish population was clearly distinct from all others and had the lowest genetic variability among the study populations. This may be deleterious to the population especially in a changing environment.
Conclusions
Genetic rescue could be the best solution to increase the genetic diversity and improve the future prospects of the population, although more studies are required to resolve the optimal source population.
Collapse
|
37
|
Ecological genomics of adaptation to unpredictability in experimental rotifer populations. Sci Rep 2019; 9:19646. [PMID: 31873145 PMCID: PMC6927961 DOI: 10.1038/s41598-019-56100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Elucidating the genetic basis of phenotypic variation in response to different environments is key to understanding how populations evolve. Facultatively sexual rotifers can develop adaptive responses to fluctuating environments. In a previous evolution experiment, diapause-related traits changed rapidly in response to two selective regimes (predictable vs unpredictable) in laboratory populations of the rotifer Brachionus plicatilis. Here, we investigate the genomic basis of adaptation to environmental unpredictability in these experimental populations. We identified and genotyped genome-wide polymorphisms in 169 clones from both selective regimes after seven cycles of selection using genotyping by sequencing (GBS). Additionally, we used GBS data from the 270 field clones from which the laboratory populations were established. This GBS dataset was used to identify candidate SNPs under selection. A total of 76 SNPs showed divergent selection, three of which are candidates for being under selection in the particular unpredictable fluctuation pattern studied. Most of the remaining SNPs showed strong signals of adaptation to laboratory conditions. Furthermore, a genotype-phenotype association approach revealed five SNPs associated with two key life-history traits in the adaptation to unpredictability. Our results contribute to elucidating the genomic basis for adaptation to unpredictable environments and lay the groundwork for future evolution studies in rotifers.
Collapse
|
38
|
Hawke T, Bino G, Kingsford RT. A silent demise: Historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Martin A, Carver S, Proft K, Fraser TA, Polkinghorne A, Banks S, Burridge CP. Isolation, marine transgression and translocation of the bare-nosed wombat ( Vombatus ursinus). Evol Appl 2019; 12:1114-1123. [PMID: 31293627 PMCID: PMC6597867 DOI: 10.1111/eva.12785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022] Open
Abstract
Island populations can represent genetically distinct and evolutionarily important lineages relative to mainland conspecifics. However, phenotypic divergence of island populations does not necessarily reflect genetic divergence, particularly for lineages inhabiting islands periodically connected during Pleistocene low sea stands. Marine barriers may also not be solely responsible for any divergence that is observed. Here, we investigated genetic divergence among and within the three phenotypically distinct subspecies of bare-nosed wombats (Vombatus ursinus) in south-east Australia that are presently-but were not historically-isolated by marine barriers. Using genome-wide single nucleotide polymorphisms, we identified three genetically distinct groups (mainland Australia, Bass Strait island, and Tasmania) corresponding to the recognized subspecies. However, isolation by distance was observed in the Tasmanian population, indicating additional constraints on gene flow can contribute to divergence in the absence of marine barriers, and may also explain genetic structuring among fragmented mainland populations. We additionally confirm origins and quantify the genetic divergence of an island population 46 years after the introduction of 21 individuals from the Vulnerable Bass Strait subspecies. In the light of our findings, we make recommendations for the maintenance of genetic variation and fitness across the species range.
Collapse
Affiliation(s)
- Alynn Martin
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Kirstin Proft
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Tamieka A. Fraser
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
- Animal Research CentreUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Adam Polkinghorne
- Animal Research CentreUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Sam Banks
- College of Engineering, IT and EnvironmentCharles Darwin UniversityCasuarinaNorthern TerritoryAustralia
| | | |
Collapse
|
40
|
Inbreeding depression causes reduced fecundity in Golden Retrievers. Mamm Genome 2019; 30:166-172. [PMID: 31115595 PMCID: PMC6606663 DOI: 10.1007/s00335-019-09805-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Inbreeding depression has been demonstrated to impact vital rates, productivity, and performance in human populations, wild and endangered species, and in recent years, the domestic species. In all cases, standardized, high-quality phenotype data on all individuals are invaluable for longitudinal analyses such as those required to evaluate vital rates of a study cohort. Further, many investigators agree upon the preference for and utility of genomic measures of inbreeding in lieu of pedigree-based estimates of inbreeding. We evaluated the association of measures of reproductive fitness in 93 Golden Retrievers enrolled in the Golden Retriever Lifetime Study with a genomic measurement of inbreeding, FROH. We demonstrate a statistically significant negative correlation between fecundity and FROH. This work sets the stage for larger scale analyses to investigate genomic regions associated with fecundity and other measures of fitness.
Collapse
|
41
|
Isolation on a remote island: genetic and morphological differentiation of a cosmopolitan odonate. Heredity (Edinb) 2018; 122:893-905. [PMID: 30542146 DOI: 10.1038/s41437-018-0165-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 11/08/2022] Open
Abstract
Although low levels of genetic structure are expected in highly widespread species, geographical and/or ecological factors can limit species distributions and promote population structure and morphological differentiation. In order to determine the effects of geographical isolation on population genetic structure and wing morphology, 281 individuals of the cosmopolitan odonate Pantala flavescens were collected from four continental (Central and South America) and five insular sites (Polynesian islands and the Maldives). COI sequences and eight microsatellite loci were used to characterize genetic diversity and genetic structure between and within locations. Linear and geometric morphometry were used to evaluate differences in the size and shape of wings. Genetic analysis showed a global genetic difference between the continental and insular sites. American locations did not show genetic structure, even in locations separated by a distance of 5000 km. Easter Island showed the lowest values of genetic diversity (mainly mitochondrial diversity) and the highest values of genetic differences compared to other insular and continental sites. Individuals from Easter Island showed smaller forewings, a different abdomen length to thorax length ratio, and a different configuration of anal loop in the hindwings. Thus, the greater isolation, smaller area, and young geological age seem to have determined the genetic and morphological differences in P. flavescens of Easter Island, where selection could promote a loss of migratory behavior and may improve other life history traits, such as reproduction. This work provides new insight into how microevolutionary processes operate in isolated populations of cosmopolitan species.
Collapse
|
42
|
Abstract
Cancer is ubiquitous in wildlife, affecting animals from bivalves to pachyderms and cetaceans. Reports of increasing frequency demonstrate that neoplasia is associated with substantial mortality in wildlife species. Anthropogenic activities and global weather changes are shaping new geographical limitations for many species, and alterations in living niches are associated with visible examples of genetic bottlenecks, toxin exposures, oncogenic pathogens, stress and immunosuppression, which can all contribute to cancers in wild species. Nations that devote resources to monitoring the health of wildlife often do so for human-centric reasons, including for the prediction of the potential for zoonotic disease, shared contaminants, chemicals and medications, and for observing the effect of exposure from crowding and loss of habitat. Given the increasing human footprint on land and in the sea, wildlife conservation should also become a more important motivating factor. Greater attention to the patterns of the emergence of wildlife cancer is imperative because growing numbers of species are existing at the interface between humans and the environment, making wildlife sentinels for both animal and human health. Therefore, monitoring wildlife cancers could offer interesting and novel insights into potentially unique non-age-related mechanisms of carcinogenesis across species.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Dalen Agnew
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michael K Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
43
|
Amaike Y, Murakami T, Masuda R. Low genetic diversity in an isolated red fox (Vulpes vulpes) population on Mt. Hakodate, Japan, revealed by microsatellite analyses of fecal samples. MAMMAL STUDY 2018. [DOI: 10.3106/ms2017-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yosuke Amaike
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060–0810, Japan
| | - Takahiro Murakami
- Institute of Decision Science for Sustainable Society, Kyushu University, Fukuoka 819–0395, Japan
| | - Ryuichi Masuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060–0810, Japan
| |
Collapse
|
44
|
Living on the edge – The predicted impact of renewed hunting on moose in national parks in Poland. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Crane NL, Tariel J, Caselle JE, Friedlander AM, Robertson DR, Bernardi G. Clipperton Atoll as a model to study small marine populations: Endemism and the genomic consequences of small population size. PLoS One 2018; 13:e0198901. [PMID: 29949612 PMCID: PMC6021044 DOI: 10.1371/journal.pone.0198901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023] Open
Abstract
Estimating population sizes and genetic diversity are key factors to understand and predict population dynamics. Marine species have been a difficult challenge in that respect, due to the difficulty in assessing population sizes and the open nature of such populations. Small, isolated islands with endemic species offer an opportunity to groundtruth population size estimates with empirical data and investigate the genetic consequences of such small populations. Here we focus on two endemic species of reef fish, the Clipperton damselfish, Stegastes baldwini, and the Clipperton angelfish, Holacanthus limbaughi, on Clipperton Atoll, tropical eastern Pacific. Visual surveys, performed over almost two decades and four expeditions, and genetic surveys based on genomic RAD sequences, allowed us to estimate kinship and genetic diversity, as well as to compare population size estimates based on visual surveys with effective population sizes based on genetics. We found that genetic and visual estimates of population numbers were remarkably similar. S. baldwini and H. limbaughi had population sizes of approximately 800,000 and 60,000, respectively. Relatively small population sizes resulted in low genetic diversity and the presence of apparent kinship. This study emphasizes the importance of small isolated islands as models to study population dynamics of marine organisms.
Collapse
Affiliation(s)
- Nicole L. Crane
- Department of Biology, Cabrillo College, Aptos, CA, United States of America
| | - Juliette Tariel
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer E. Caselle
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Alan M. Friedlander
- Pristine Seas, National Geographic Society, Washington, DC, United States of America
- Fisheries Ecology Research Lab, Department of Biology, University of Hawaii, Honolulu, HI, United States of America
| | | | - Giacomo Bernardi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
46
|
Tay YC, Ng DJJ, Loo JB, Huang D, Cai Y, Yeo DCJ, Meier R. Roads to isolation: Similar genomic history patterns in two species of freshwater crabs with contrasting environmental tolerances and range sizes. Ecol Evol 2018; 8:4657-4668. [PMID: 29760905 PMCID: PMC5938456 DOI: 10.1002/ece3.4017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 11/07/2022] Open
Abstract
Freshwater species often show high levels of endemism and risk of extinction owing to their limited dispersal abilities. This is exemplified by the stenotopic freshwater crab, Johora singaporensis which is one of the world's 100 most threatened species, and currently inhabits less than 0.01 km2 of five low order hill streams within the highly urbanized island city‐state of Singapore. We compared populations of J. singaporensis with that of the non‐threatened, widespread, abundant, and eurytopic freshwater crab, Parathelphusa maculata, and found surprisingly high congruence between their population genomic histories. Based on 2,617 and 2,470 genome‐wide SNPs mined via the double‐digest restriction‐associated DNA sequencing method for ~90 individuals of J. singaporensis and P. maculata, respectively, the populations are strongly isolated (FST = 0.146–0.371), have low genetic diversity for both species (also for COI), and show signatures of recent genetic bottlenecks. The most genetically isolated populations for both species are separated from other populations by one of the oldest roads in Singapore. These results suggest that anthropogenic developments may have impacted stream‐dependent species in a uniform manner, regardless of ubiquity, habitat preference, or dispersal modes of the species. While signs of inbreeding were not detected for the critically endangered species, the genetic distinctiveness and low diversity of the populations call for genetic rescue and connecting corridors between the remaining fragments of the natural habitat.
Collapse
Affiliation(s)
- Ywee Chieh Tay
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore
| | - Daniel Jia Jun Ng
- National Biodiversity Centre National Parks Board Singapore City Singapore
| | - Jun Bin Loo
- School of Chemical and Life Sciences Singapore Polytechnic Singapore City Singapore
| | - Danwei Huang
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore
| | - Yixiong Cai
- National Biodiversity Centre National Parks Board Singapore City Singapore
| | - Darren Chong Jinn Yeo
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Rudolf Meier
- Department of Biological Sciences National University of Singapore Singapore City Singapore.,Tropical Marine Science Institute National University of Singapore Singapore City Singapore.,Lee Kong Chian Natural History Museum National University of Singapore Singapore City Singapore
| |
Collapse
|
47
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Martin HC, Batty EM, Hussin J, Westall P, Daish T, Kolomyjec S, Piazza P, Bowden R, Hawkins M, Grant T, Moritz C, Grutzner F, Gongora J, Donnelly P. Insights into Platypus Population Structure and History from Whole-Genome Sequencing. Mol Biol Evol 2018; 35:1238-1252. [PMID: 29688544 PMCID: PMC5913675 DOI: 10.1093/molbev/msy041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10-9/bp/generation (95% CI 4.1 × 10-9-1.2 × 10-8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.
Collapse
Affiliation(s)
- Hilary C Martin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Elizabeth M Batty
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julie Hussin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Portia Westall
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Tasman Daish
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen Kolomyjec
- School of Biological Sciences, Lake Superior State University, Sault Sainte Marie, MI
| | - Paolo Piazza
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Tom Grant
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Craig Moritz
- Research School of Biology and Centre for Biodiversity Analysis, The Australian National University, Acton, ACT, Australia
| | - Frank Grutzner
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jaime Gongora
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Jenkins DA, Yannic G, Schaefer JA, Conolly J, Lecomte N. Population structure of caribou in an ice-bound archipelago. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Deborah. A. Jenkins
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada
- Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques; University of Moncton; Moncton NB Canada
| | - Glenn Yannic
- University of Grenoble Alpes; University of Savoie Mont Blanc; CNRS; LECA (Laboratoire d'Ecologie Alpine); Le Bourget-du-Lac France
| | | | - James Conolly
- Department of Anthropology; Trent University; Peterborough ON Canada
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques; University of Moncton; Moncton NB Canada
| |
Collapse
|
50
|
de Alencar JLM, Kaltchuk-Santos E, Fachinetto J, Tacuatiá LO, Forni-Martins ER, Stiehl-Alves EM, de Souza-Chies TT. Genetic and ecological niche modeling of Calydorea crocoides (Iridaceae): an endemic species of Subtropical Highland Grasslands. Genet Mol Biol 2018; 41:327-340. [PMID: 29668016 PMCID: PMC5913728 DOI: 10.1590/1678-4685-gmb-2017-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
Evolutionary analyses have been widely used for evaluation of genetic diversity of natural populations and correlate these data to the fitness of the species, especially in the case of threatened species. Calydorea crocoides occurs in a restricted area at altitudes from 800 to 1500 m in southern Brazil and is considered endangered. A study assessing genetic diversity, cytogenetic features and ecological niche was performed aiming to characterize C. crocoides by multidisciplinary approaches. Molecular data highlighted that most of the total variation (76%; p < 0.001) was found within populations and the parameters of genetic diversity were high at the species level (PPB = 98.97%; I = 0.4319; h = 0.2821). Gene flow (Nm) was estimated in 0.97 individuals per generation. Cytogenetically, C. crocoides presents a bimodal karyotype and low asymmetry. DAPI banding pattern was uniform, but the CMA-signal evidenced a pericentric inversion in the population ESC688. The species presents high pollen viability and two different morphologies of pollen grains. Our data showed high levels of polymorphism maintained in this species that could ensure conservationist practices in which the main goal is to preserve the evolutionary potential of the species through the maintenance of genetic diversity.
Collapse
Affiliation(s)
| | - Eliane Kaltchuk-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Fachinetto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luana Olinda Tacuatiá
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Eudes Maria Stiehl-Alves
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tatiana Teixeira de Souza-Chies
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|