1
|
Ara MG, McCulloch GA, Dutoit L, Wallis GP, Ingram T. Genomics reveals repeated landlocking of diadromous fish on an isolated island. Ecol Evol 2024; 14:e10987. [PMID: 38371863 PMCID: PMC10870334 DOI: 10.1002/ece3.10987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
Landlocking of diadromous fish in freshwater systems can have significant genomic consequences. For instance, the loss of the migratory life stage can dramatically reduce gene flow across populations, leading to increased genetic structuring and stronger effects of local adaptation. These genomic consequences have been well-studied in some mainland systems, but the evolutionary impacts of landlocking in island ecosystems are largely unknown. In this study, we used a genotyping-by-sequencing (GBS) approach to examine the evolutionary history of landlocking in common smelt (Retropinna retropinna) on Chatham Island, a small isolated oceanic island 800 kilometres east of mainland New Zealand. We examined the relationship between Chatham Island and mainland smelt and used coalescent analyses to test the number and timing of landlocking events on Chatham Island. Our genomic analysis, based on 21,135 SNPs across 169 individuals, revealed that the Chatham Island smelt was genomically distinct from the mainland New Zealand fish, consistent with a single ancestral colonisation event of Chatham Island in the Pleistocene. Significant genetic structure was also evident within the Chatham Island smelt, with a diadromous Chatham Island smelt group, along with three geographically structured landlocked groups. Coalescent demographic analysis supported three independent landlocking events, with this loss of diadromy significantly pre-dating human colonisation. Our results illustrate how landlocking of diadromous fish can occur repeatedly across a narrow spatial scale, and highlight a unique system to study the genomic basis of repeated adaptation.
Collapse
Affiliation(s)
- Motia G. Ara
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
- Department of Marine Fisheries and OceanographyPatuakhali Science and Technology UniversityPatuakhaliBangladesh
| | | | - Ludovic Dutoit
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | | | - Travis Ingram
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
2
|
Dimitriou AC, Antoniou A, Alexiou I, Poulakakis N, Parmakelis A, Sfenthourakis S. Diversification within an oceanic Mediterranean island: Insights from a terrestrial isopod. Mol Phylogenet Evol 2022; 175:107585. [PMID: 35810970 DOI: 10.1016/j.ympev.2022.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Understanding intra-island patterns of evolutionary divergence, including cases of cryptic diversity, is a crucial step towards deciphering speciation processes. Cyprus is an oceanic island isolated for at least 5.3 Mya from surrounding continental regions, while it remains unclear whether it was ever connected to the mainland, even during the Messinian Salinity Crisis. The terrestrial isopod species Armadillo officinalis, that is widespread across the Mediterranean, offers the opportunity to explore intra-island divergence patterns that might exhibit geographical structure related also to the region's known paleogeography. Genome-wide ddRADseq, as well as Sanger sequencing for four mitochondrial and three nuclear loci data were generated for this purpose. In total, 71 populations from Cyprus, neighbouring continental sites, i.e., Israel, Lebanon and Turkey, and other Mediterranean regions, i.e. Greece, Italy, and Tunisia, were included in the analysis. Phylogenetic reconstructions and population structure analyses support the existence of at least six genetically discrete groups across the study area. Five of these distinct genetic clades occur on Cyprus, four of which are endemic to the island and one is widely distributed along the circum-Mediterranean countries. The sixth clade is distributed in Israel. The closest evolutionary relationship of endemic Cypriot populations is with those from Israel, while the evolutionary clade that is present in countries all around the Mediterranean is very shallow. Cladochronological analyses date the origin of the species on the island at ∼6 Mya. Estimated f4 and D statistics as well as FST values indicate the genetic isolation between the populations sampled from Cyprus and surrounding continental areas, while there is evident gene flow among populations within the island. Species delimitation and population genetic metrics support the existence of three distinct taxonomic units across the study area, two of which occur on the island and correspond to the endemic clade and the widespread circum-Mediterranean one, respectively, while the third corresponds to Israel's clade. The islands' paleogeographic history and recent human activities seem to have shaped current patterns of genetic diversity in this group of species.
Collapse
Affiliation(s)
- Andreas C Dimitriou
- Department of Biological Sciences, University of Cyprus, University Campus, 2109 Aglantzia, Nicosia, Cyprus.
| | - Aglaia Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, Irakleio, P.O. Box 2214, 71003 Crete, Greece
| | - Ioannis Alexiou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikos Poulakakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece
| | - Aristeidis Parmakelis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Sfenthourakis
- Department of Biological Sciences, University of Cyprus, University Campus, 2109 Aglantzia, Nicosia, Cyprus
| |
Collapse
|
3
|
Graham RE, Reyes-Betancort JA, Chapman MA, Carine MA. Inter-island differentiation and contrasting patterns of diversity in the iconic Canary Island sub-alpine endemic Echium wildpretii (Boraginaceae). SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1877847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rachael E. Graham
- Algae, Fungi and Plants Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - J. Alfredo Reyes-Betancort
- Jardín de Aclimatación de La Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), C/Retama 2, Puerto de la Cruz, 38400, Tenerife, Spain
| | - Mark A. Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mark A. Carine
- Algae, Fungi and Plants Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
4
|
Gramazio P, Jaén-Molina R, Vilanova S, Prohens J, Marrero Á, Caujapé-Castells J, Anderson GJ. Fostering Conservation via an Integrated Use of Conventional Approaches and High-Throughput SPET Genotyping: A Case Study Using the Endangered Canarian Endemics Solanum lidii and S. vespertilio (Solanaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:757. [PMID: 32754166 PMCID: PMC7381301 DOI: 10.3389/fpls.2020.00757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/12/2020] [Indexed: 05/29/2023]
Abstract
Islands provide unique opportunities to integrated research approaches to study evolution and conservation because boundaries are circumscribed, geological ages are often precise, and many taxa are greatly imperiled. We combined morphological and hybridization studies with high-throughput genotyping platforms to streamline relationships in the endangered monophyletic and highly diverse lineage of Solanum in the Canarian archipelago, where three endemic taxa are currently recognized. Inter-taxa hybridizations were performed, and morphological expression was assessed with a common-garden approach. Using the eggplant Single Primer Enrichment Technology (SPET) platform with 5,093 probes, 74 individuals of three endemic taxa (Solanum lidii, S. vespertilio subsp. vespertilio, and S. vespertilio subsp. doramae) were sampled for SNPs. While morphological and breeding studies showed clear distinctions and some continuous variation, inter-taxon hybrids were fertile and heterotic for vigor traits. SPET genotyping revealed 1,421 high-quality SNPs and supported four, not three, distinct taxonomic entities associated with post-emergence geological, ecological and geographic factors of the islands. Given the lack of barriers to hybridization among all the taxa and their molecular differences, great care must be taken in population management. Conservation strategies must take account of the sexual and breeding systems and genotypic distribution among populations to successfully conserve and restore threatened/endangered island taxa, as exemplified by Solanum on the Canary Islands.
Collapse
Affiliation(s)
- Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Ruth Jaén-Molina
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Águedo Marrero
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juli Caujapé-Castells
- Jardín Botánico Canario “Viera y Clavijo” – Unidad Asociada al CSIC, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gregory J. Anderson
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
5
|
Comparative Analysis of Complete Mitochondrial Genomes of Three Gerres Fishes (Perciformes: Gerreidae) and Primary Exploration of Their Evolution History. Int J Mol Sci 2020; 21:ijms21051874. [PMID: 32182936 PMCID: PMC7084342 DOI: 10.3390/ijms21051874] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial genome is a powerful molecule marker to explore phylogenetic relationships and reveal molecular evolution in ichthyological studies. Gerres species play significant roles in marine fishery, but its evolution has received little attention. To date, only two Gerres mitochondrial genomes were reported. In the present study, three mitogenomes of Gerres (Gerres filamentosus, Gerres erythrourus, and Gerres decacanthus) were systemically investigated. The lengths of the mitogenome sequences were 16,673, 16,728, and 16,871 bp for G. filamentosus, G. erythrourus, and G. decacanthus, respectively. Most protein-coding genes (PCGs) were initiated with the typical ATG codon and terminated with the TAA codon, and the incomplete termination codon T/TA could be detected in the three species. The majority of AT-skew and GC-skew values of the 13 PCGs among the three species were negative, and the amplitude of the GC-skew was larger than the AT-skew. The genetic distance and Ka/Ks ratio analyses indicated 13 PCGs were suffering purifying selection and the selection pressures were different from certain deep-sea fishes, were which most likely due to the difference in their living environment. The phylogenetic tree was constructed by molecular method (Bayesian Inference (BI) and maximum Likelihood (ML)), providing further supplement to the scientific classification of fish. Three Gerres species were differentiated in late Cretaceous and early Paleogene, and their evolution might link with the geological events that could change their survival environment.
Collapse
|
6
|
Mairal M, Caujapé-Castells J, Pellissier L, Jaén-Molina R, Álvarez N, Heuertz M, Sanmartín I. A tale of two forests: ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. ANNALS OF BOTANY 2018; 122:1005-1017. [PMID: 29905771 PMCID: PMC6266103 DOI: 10.1093/aob/mcy107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/25/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Various studies and conservationist reports have warned about the contraction of the last subtropical Afro-Macaronesian forests. These relict vegetation zones have been restricted to a few oceanic and continental islands around the edges of Africa, due to aridification. Previous studies on relict species have generally focused on glacial effects on narrow endemics; however, little is known about the effects of aridification on the fates of previously widespread subtropical lineages. METHODS Nuclear microsatellites and ecological niche modelling were used to understand observed patterns of genetic diversity in two emblematic species, widely distributed in these ecosystems: Canarina eminii (a palaeoendemic of the eastern Afromontane forests) and Canarina canariensis (a palaeoendemic of the Canarian laurel forests). The software DIYABC was used to test alternative demographic scenarios and an ensemble method was employed to model potential distributions of the selected plants from the end of the deglaciation to the present. KEY RESULTS All the populations assessed experienced a strong and recent population decline, revealing that locally widespread endemisms may also be alarmingly threatened. CONCLUSIONS The detected extinction debt, as well as the extinction spiral to which these populations are subjected, demands urgent conservation measures for the unique, biodiversity-rich ecosystems that they inhabit.
Collapse
Affiliation(s)
- Mario Mairal
- Real Jardín Botánico (RJB), CSIC, Plaza de Murillo, Madrid, Spain
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico ‘Viera y Clavijo’ – Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain
| | - Juli Caujapé-Castells
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico ‘Viera y Clavijo’ – Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Ruth Jaén-Molina
- Departamento de Biodiversidad Molecular y Banco de ADN, Jardín Botánico ‘Viera y Clavijo’ – Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain
| | - Nadir Álvarez
- Department of Ecology and Evolution, Institute of Biology, University of Lausanne, Biophore Dorigny, Lausanne, Switzerland
| | | | - Isabel Sanmartín
- Real Jardín Botánico (RJB), CSIC, Plaza de Murillo, Madrid, Spain
| |
Collapse
|
7
|
Curto M, Schachtler C, Puppo P, Meimberg H. Using a new RAD-sequencing approach to study the evolution of Micromeria in the Canary islands. Mol Phylogenet Evol 2018; 119:160-169. [DOI: 10.1016/j.ympev.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 10/25/2022]
|
8
|
Curto M, Puppo P, Kratschmer S, Meimberg H. Genetic diversity and differentiation patterns in Micromeria from the Canary Islands are congruent with multiple colonization dynamics and the establishment of species syngameons. BMC Evol Biol 2017; 17:198. [PMID: 28830342 PMCID: PMC5568322 DOI: 10.1186/s12862-017-1031-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/02/2017] [Indexed: 01/24/2023] Open
Abstract
Background Especially on islands closer to the mainland, such as the Canary Islands, different lineages that originated by multiple colonization events could have merged by hybridization, which then could have promoted radiation events (Herben et al., J Ecol 93: 572–575, 2005; Saunders and Gibson, J Ecol 93: 649–652, 2005; Caujapé-Castells, Jesters, red queens, boomerangs and surfers: a molecular outlook on the diversity of the Canarian endemic flora, 2011). This is an alternative to the scenario where evolution is mostly driven by drift (Silvertown, J Ecol 92: 168–173, 2004; Silvertown et al., J Ecol 93: 653–657, 2005). In the former case hybridization should be reflected in the genetic structure and diversity patterns of island species. In the present work we investigate Micromeria from the Canary Islands by extensively studying their phylogeographic pattern based on 15 microsatellite loci and 945 samples. These results are interpreted according to the hypotheses outlined above. Results Genetic structure assessment allowed us to genetically differentiate most Micromeria species and supported their current classification. We found that populations on younger islands were significantly more genetically diverse and less differentiated than those on older islands. Moreover, we found that genetic distance on younger islands was in accordance with an isolation-by-distance pattern, while on the older islands this was not the case. We also found evidence of introgression among species and islands. Conclusions These results are congruent with a scenario of multiple colonizations during the expansion onto new islands. Hybridization contributes to the grouping of multiple lineages into highly diverse populations. Thus, in our case, islands receive several colonization events from different sources, which are combined into sink populations. This mechanism is in accordance with the surfing syngameon hypothesis. Contrary to the surfing syngameon current form, our results may reflect a slightly different effect: hybridization might always be related to colonization within the archipelago as well, making initial genetic diversity to be high to begin with. Thus the emergence of new islands promotes multiple colonization events, contributing to the establishment of hybrid swarms that may enhance adaptive ability and radiation events. With time, population sizes grow and niches start to fill. Consequently, gene-flow is not as effective at maintaining the species syngameon, which allows genetic differentiation and reproductive isolation to be established between species. This process contributes to an even further decrease in gene-flow between species. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1031-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, A-1180, Vienna, Austria. .,CIBIO, Research Center in Biodiversity and Genetic Resources / InBio Associated Laboratory, University of Porto, Campus Vairão, 4485-661, Vairão, Portugal.
| | - P Puppo
- CIBIO, Research Center in Biodiversity and Genetic Resources / InBio Associated Laboratory, University of Porto, Campus Vairão, 4485-661, Vairão, Portugal
| | - S Kratschmer
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, A-1180, Vienna, Austria
| | - H Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, A-1180, Vienna, Austria
| |
Collapse
|
9
|
Sun Y, Vargas-Mendoza CF. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands. FRONTIERS IN PLANT SCIENCE 2017; 8:1180. [PMID: 28713419 PMCID: PMC5492869 DOI: 10.3389/fpls.2017.01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.
Collapse
Affiliation(s)
- Ye Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | | |
Collapse
|
10
|
Yang JY, Ojeda DI, Santos-Guerra A, Molina RJ, Caujapé-Castells J, Cronk Q. Population differentiation in relation to conservation: nuclear microsatellite variation in the Canary Island endemic Lotus sessilifolius (Fabaceae). CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0778-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|