1
|
Wynn J, Kürten N, Moiron M, Bouwhuis S. Selective disappearance based on navigational efficiency in a long-lived seabird. J Anim Ecol 2025; 94:535-544. [PMID: 39871090 PMCID: PMC11962229 DOI: 10.1111/1365-2656.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025]
Abstract
Whilst efficient movement through space is thought to increase the fitness of long-distance migrants, evidence that selection acts upon such traits remains elusive. Here, using 228 migratory tracks collected from 102 adult breeding common terns (Sterna hirundo) aged 3-22 years, we find evidence that older terns navigate more efficiently than younger terns and that efficient navigation leads to a reduced migration duration and earlier arrival at the breeding and wintering grounds. We additionally find that the age-specificity of navigational efficiency in adult breeding birds cannot be explained by within-individual change with age (i.e. learning), suggesting the selective disappearance of less navigationally efficient individuals. This suggests that, at least in common terns, learning of navigational skills may be largely absent in adulthood, and limited to the pre-breeding phase of life where tracking is more difficult. We propose that selection might explain parts of the age-specificity of navigational performance observed in migratory taxa more generally; discuss the causes and evolutionary implications of variation in navigational traits and the selective agents acting upon them; and highlight the necessity of longitudinal studies when considering changes in behaviour with age.
Collapse
Affiliation(s)
- Joe Wynn
- Institute of Avian ResearchWilhelmshavenGermany
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Maria Moiron
- Institute of Avian ResearchWilhelmshavenGermany
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | | |
Collapse
|
2
|
Joly N, Chiaradia A, Georges JY, Saraux C. Individual variability in the phenology of an asynchronous penguin species induces consequences on breeding and carry-over effects. Oecologia 2025; 207:16. [PMID: 39754672 DOI: 10.1007/s00442-024-05644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/01/2024] [Indexed: 01/06/2025]
Abstract
Phenology is a major component of animals' breeding, as they need to adjust their breeding timing to match optimal environmental conditions. While the effects of shifting phenology are well-studied on populations, few studies emphasise its ecological causes and consequences at the inter-individual level. Using a 20-year monitoring of more than 2500 breeding events from ~ 500 breeding little penguins (Eudyptula minor), a very asynchronously breeding seabird, we investigated the consequences of late breeding on present and next breeding events. We found that individuals breeding later had reduced breeding success, lighter chicks at fledging, lower probability of laying a second clutch, and decreased parents' post-breeding body condition. Importantly, we found important cycling effects where delayed breeding during a given year led to significantly later laying date, lower breeding probability and lower breeding success when they breed during the next season, suggesting potential carry-over effects from one season to the next. To further understand the causes of such variability in phenology while earlier breeding is associated with better individual fitness, we aimed to assess intrinsic differences amongst individuals. We showed that the heterogeneity in breeding timing was partly fixed, the laying date being a significantly repeatable behaviour (17%), asking for more studies on heritability or early-development effects. This extensive study highlights the combined roles of carry-over effects and intrinsic differences on individual phenology, with important implications on breeding capacity through life.
Collapse
Affiliation(s)
- Nicolas Joly
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 Rue Becquerel, 67000, Strasbourg, France.
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, PO Box 97, Cowes, VIC, 3922, Australia
| | - Jean-Yves Georges
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 Rue Becquerel, 67000, Strasbourg, France
| | - Claire Saraux
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, 23 Rue Becquerel, 67000, Strasbourg, France
| |
Collapse
|
3
|
Vohl S, Kristl M, Stergar J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro- and Nanoplastics: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1179. [PMID: 39057856 PMCID: PMC11279442 DOI: 10.3390/nano14141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.
Collapse
Affiliation(s)
| | | | - Janja Stergar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (S.V.); (M.K.)
| |
Collapse
|
4
|
Moiron M, Teplitsky C, Haest B, Charmantier A, Bouwhuis S. Micro-evolutionary response of spring migration timing in a wild seabird. Evol Lett 2024; 8:8-17. [PMID: 38370547 PMCID: PMC10872114 DOI: 10.1093/evlett/qrad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 02/20/2024] Open
Abstract
In the context of rapid climate change, phenological advance is a key adaptation for which evidence is accumulating across taxa. Among vertebrates, phenotypic plasticity is known to underlie most of this phenological change, while evidence for micro-evolution is very limited and challenging to obtain. In this study, we quantified phenotypic and genetic trends in timing of spring migration using 8,032 dates of arrival at the breeding grounds obtained from observations on 1,715 individual common terns (Sterna hirundo) monitored across 27 years, and tested whether these trends were consistent with predictions of a micro-evolutionary response to selection. We observed a strong phenotypic advance of 9.3 days in arrival date, of which c. 5% was accounted for by an advance in breeding values. The Breeder's equation and Robertson's Secondary Theorem of Selection predicted qualitatively similar evolutionary responses to selection, and these theoretical predictions were largely consistent with our estimated genetic pattern. Overall, our study provides rare evidence for micro-evolution underlying (part of) an adaptive response to climate change in the wild, and illustrates how a combination of adaptive micro-evolution and phenotypic plasticity facilitated a shift towards earlier spring migration in this free-living population of common terns.
Collapse
Affiliation(s)
- Maria Moiron
- Life-history Biology Department, Institute of Avian Research, Wilhelmshaven, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Birgen Haest
- Department of Bird Migration, Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Sandra Bouwhuis
- Life-history Biology Department, Institute of Avian Research, Wilhelmshaven, Germany
| |
Collapse
|
5
|
Ma YB, Xie ZY, Hamid N, Tang QP, Deng JY, Luo L, Pei DS. Recent advances in micro (nano) plastics in the environment: Distribution, health risks, challenges and future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106597. [PMID: 37311378 DOI: 10.1016/j.aquatox.2023.106597] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhuo-Yuan Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Qi-Ping Tang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Lin Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Keogan K, Daunt F, Wanless S, Phillips RA, Alvarez D, Anker-Nilssen T, Barrett RT, Bech C, Becker PH, Berglund PA, Bouwhuis S, Burr ZM, Chastel O, Christensen-Dalsgaard S, Descamps S, Diamond T, Elliott K, Erikstad KE, Harris M, Hentati-Sundberg J, Heubeck M, Kress SW, Langset M, Lorentsen SH, Major HL, Mallory M, Mellor M, Miles WTS, Moe B, Mostello C, Newell M, Nisbet I, Reiertsen TK, Rock J, Shannon P, Varpe Ø, Lewis S, Phillimore AB. Variation and correlation in the timing of breeding of North Atlantic seabirds across multiple scales. J Anim Ecol 2022; 91:1797-1812. [PMID: 35675093 DOI: 10.1111/1365-2656.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
Timing of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations. We combined 51 long-term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small-scale region, large-scale region and the whole North Atlantic. In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small-scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales. In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter-year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black-legged kittiwake Rissa tridactyla was the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver. Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.
Collapse
Affiliation(s)
- Katharine Keogan
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | | | | | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | | | | | - Robert T Barrett
- Department of Natural Sciences, Tromsø University Museum, Tromsø, Norway
| | - Claus Bech
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | - Zofia M Burr
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, Villiers en Bois, France
| | | | - Sebastien Descamps
- Norwegian Polar Institute, High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Tony Diamond
- University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Kjell-Einar Erikstad
- Department of Natural Sciences, Tromsø University Museum, Tromsø, Norway.,Norwegian Institute for Nature Research (NINA), Fram Centre Tromsø, Norway.,Centre for Conservation Biology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mike Harris
- Centre for Ecology & Hydrology, Penicuik, UK
| | - Jonas Hentati-Sundberg
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Heubeck
- Aberdeen Institute of Coastal Science and Management, University of Aberdeen, Aberdeen, UK
| | - Stephen W Kress
- National Audubon Society Seabird Institute, Bremen, Maine, USA
| | | | | | - Heather L Major
- University of New Brunswick, Saint John, New Brunswick, Canada
| | - Mark Mallory
- Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mick Mellor
- SOETAG, School of Biology, University of St Andrews, St Andrews, UK
| | - Will T S Miles
- SOETAG, School of Biology, University of St Andrews, St Andrews, UK
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Carolyn Mostello
- Massachusetts Division of Fisheries and Wildlife, Westborough, Massachusetts, USA
| | - Mark Newell
- Centre for Ecology & Hydrology, Penicuik, UK
| | - Ian Nisbet
- I. C. T. Nisbet & Company, North Falmouth, Massachusetts, USA
| | - Tone Kirstin Reiertsen
- Department of Natural Sciences, Tromsø University Museum, Tromsø, Norway.,Norwegian Institute for Nature Research (NINA), Fram Centre Tromsø, Norway
| | - Jennifer Rock
- Environment and Climate Change Canada, Canadian Wildlife Service, Sackville, New Brunswick, Canada
| | - Paula Shannon
- National Audubon Society Seabird Institute, Bremen, Maine, USA
| | - Øystein Varpe
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway.,Norwegian Institute of Nature Research (NINA), Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sue Lewis
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK.,Centre for Ecology & Hydrology, Penicuik, UK.,Edinburgh Napier University, Edinburgh, UK
| | - Albert B Phillimore
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| |
Collapse
|
7
|
Measuring fitness and inferring natural selection from long-term field studies: different measures lead to nuanced conclusions. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03176-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Whelan S, Hatch SA, Gaston AJ, Gilchrist HG, Elliott KH. Opposite, but insufficient, phenological responses to climate in two circumpolar seabirds: relative roles of phenotypic plasticity and selection. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shannon Whelan
- Department of Natural Resources Sciences McGill University Ste‐Anne‐de‐Bellevue QC Canada
| | - Scott A. Hatch
- Institute for Seabird Research and Conservation Anchorage AK USA
| | | | - H. Grant Gilchrist
- National Wildlife Research Centre, Science and Technology Branch, Environment and Climate Change Canada Ottawa ON Canada
| | - Kyle H. Elliott
- Department of Natural Resources Sciences McGill University Ste‐Anne‐de‐Bellevue QC Canada
| |
Collapse
|
9
|
Kürten N, Schmaljohann H, Bichet C, Haest B, Vedder O, González-Solís J, Bouwhuis S. High individual repeatability of the migratory behaviour of a long-distance migratory seabird. MOVEMENT ECOLOGY 2022; 10:5. [PMID: 35123590 PMCID: PMC8817581 DOI: 10.1186/s40462-022-00303-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Understanding the evolution of migration requires knowledge of the patterns, sources, and consequences of variation in migratory behaviour, a need exacerbated by the fact that many migratory species show rapid population declines and require knowledge-based conservation measures. We therefore need detailed knowledge on the spatial and temporal distribution of individuals across their annual cycle, and quantify how the spatial and temporal components of migratory behaviour vary within and among individuals. METHODS We tracked 138 migratory journeys undertaken by 64 adult common terns (Sterna hirundo) from a breeding colony in northwest Germany to identify the annual spatiotemporal distribution of these birds and to evaluate the individual repeatability of eleven traits describing their migratory behaviour. RESULTS Birds left the breeding colony early September, then moved south along the East Atlantic Flyway. Wintering areas were reached mid-September and located at the west and south coasts of West Africa as well as the coasts of Namibia and South Africa. Birds left their wintering areas late March and reached the breeding colony mid-April. The timing, total duration and total distance of migration, as well as the location of individual wintering areas, were moderately to highly repeatable within individuals (repeatability indexes: 0.36-0.75, 0.65-0.66, 0.93-0.94, and 0.98-1.00, respectively), and repeatability estimates were not strongly affected by population-level inter-annual variation in migratory behaviour. CONCLUSIONS We found large between-individual variation in common tern annual spatiotemporal distribution and strong individual repeatability of several aspects of their migratory behaviour.
Collapse
Affiliation(s)
- Nathalie Kürten
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany.
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Coraline Bichet
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Birgen Haest
- Department of Bird Migration, Swiss Ornithological Institute, 6204, Sempach, Switzerland
| | - Oscar Vedder
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Sandra Bouwhuis
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
10
|
Le Vaillant J, Potti J, Camacho C, Canal D, Martínez-Padilla J. Fluctuating selection driven by global and local climatic conditions leads to stasis in breeding time in a migratory bird. J Evol Biol 2021; 34:1541-1553. [PMID: 34415649 DOI: 10.1111/jeb.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
The origin of natural selection is linked to environmental heterogeneity, which influences variation in relative fitness among phenotypes. However, individuals in wild populations are exposed to a plethora of biotic and abiotic environmental factors. Surprisingly, the relative influence of multiple environmental conditions on the relative fitness of phenotypes has rarely been tested in wild populations. Identifying the main selection agent(s) is crucial when the target phenotype is tightly linked to reproduction and when temporal variation in selection is expected to affect evolutionary responses. By using individual-based data from a 29-year study of a short-lived migratory songbird, the pied flycatcher (Ficedula hypoleuca), we studied the relative influence of 28 temperature- and precipitation-based factors at local and global scales on selection on breeding time (egg laying) at the phenotypic level. Selection, estimated using the number of recruits as a proxy for fitness, penalized late breeders. Minimum temperatures in April and May were the environmental drivers that best explained selection on laying date. In particular, there was negative directional selection on laying date mediated by minimum temperature in April, being strongest in cold years. In addition, nonlinear selection on laying date was influenced by minimum temperatures in May, with selection on laying date changing from null to negative as the breeding season progressed. The intensity of selection on late breeders increased when minimum temperatures in May were highest. Our results illustrate the complex influence of environmental factors on selection on laying date in wild bird populations. Despite minimum temperature in April being the only variable that changed over time, its increase did not induce a shift in laying date in the population. In this songbird population, stabilizing selection has led to a three-decade stasis in breeding time. We suggest that variation in the effects of multiple climatic variables on selection may constrain phenotypic change.
Collapse
Affiliation(s)
- Justine Le Vaillant
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Sevilla, Spain
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Sevilla, Spain
| | - Carlos Camacho
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (CSIC), Jaca, Spain
| | - David Canal
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (CSIC), Jaca, Spain
| |
Collapse
|
11
|
Mofijur M, Ahmed SF, Rahman SMA, Arafat Siddiki SY, Islam ABMS, Shahabuddin M, Ong HC, Mahlia TMI, Djavanroodi F, Show PL. Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies. ENVIRONMENTAL RESEARCH 2021; 195:110857. [PMID: 33581088 DOI: 10.1016/j.envres.2021.110857] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 05/20/2023]
Abstract
The nature of micro- and nanoplastics and their harmful consequences has drawn significant attention in recent years in the context of environmental protection. Therefore, this paper aims to provide an overview of the existing literature related to this evolving subject, focusing on the documented human health and marine environment impacts of micro- and nanoplastics and including a discussion of the economic challenges and strategies to mitigate this waste problem. The study highlights the micro- and nanoplastics distribution across various trophic levels of the food web, and in different organs in infected animals which is possible due to their reduced size and their lightweight, multi-coloured and abundant features. Consequently, micro- and nanoplastics pose significant risks to marine organisms and human health in the form of cytotoxicity, acute reactions, and undesirable immune responses. They affect several sectors including aquaculture, agriculture, fisheries, transportation, industrial sectors, power generation, tourism, and local authorities causing considerable economic losses. This can be minimised by identifying key sources of environmental plastic contamination and educating the public, thus reducing the transfer of micro- and nanoplastics into the environment. Furthermore, the exploitation of the potential of microorganisms, particularly those from marine origins that can degrade plastics, could offer an enhanced and environmentally sound approach to mitigate micro- and nanoplastics pollution.
Collapse
Affiliation(s)
- M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - S M Ashrafur Rahman
- Biofuel Engine Research Facility, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Sk Yasir Arafat Siddiki
- Department of Chemical Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - A B M Saiful Islam
- Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - M Shahabuddin
- Carbon Technology Research Centre, School of Engineering, Information Technology and Physical Sciences, Federation University, 3842, Churchill, VIC, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Sauve D, Friesen VL, Charmantier A. The Effects of Weather on Avian Growth and Implications for Adaptation to Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.569741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Climate change is forecasted to generate a range of evolutionary changes and plastic responses. One important aspect of avian responses to climate change is how weather conditions may change nestling growth and development. Early life growth is sensitive to environmental effects and can potentially have long-lasting effects on adult phenotypes and fitness. A detailed understanding of both how and when weather conditions affect the entire growth trajectory of a nestling may help predict population changes in phenotypes and demography under climate change. This review covers three main topics on the impacts of weather variation (air temperature, rainfall, wind speed, solar radiation) on nestling growth. Firstly, we highlight why understanding the effects of weather on nestling growth might be important in understanding adaptation to, and population persistence in, environments altered by climate change. Secondly, we review the documented effects of weather variation on nestling growth curves. We investigate both altricial and precocial species, but we find a limited number of studies on precocial species in the wild. Increasing temperatures and rainfall have mixed effects on nestling growth, while increasing windspeeds tend to have negative impacts on the growth rate of open cup nesting species. Thirdly, we discuss how weather variation might affect the evolution of nestling growth traits and suggest that more estimates of the inheritance of and selection acting on growth traits in natural settings are needed to make evolutionary predictions. We suggest that predictions will be improved by considering concurrently changing selection pressures like urbanization. The importance of adaptive plastic or evolutionary changes in growth may depend on where a species or population is located geographically and the species’ life-history. Detailed characterization of the effects of weather on growth patterns will help answer whether variation in avian growth frequently plays a role in adaption to climate change.
Collapse
|
13
|
Garrett LJH, Myatt JP, Sadler JP, Dawson DA, Hipperson H, Colbourne JK, Dickey RC, Weber SB, Reynolds SJ. Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population. Sci Rep 2020; 10:20725. [PMID: 33244100 PMCID: PMC7691516 DOI: 10.1038/s41598-020-77517-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
When and where animals breed can shape the genetic structure and diversity of animal populations. The importance of drivers of genetic diversity is amplified in island populations that tend to have more delineated gene pools compared to continental populations. Studies of relatedness as a function of the spatial distribution of individuals have demonstrated the importance of spatial organisation for individual fitness with outcomes that are conditional on the overall genetic diversity of the population. However, few studies have investigated the impact of breeding timing on genetic structure. We characterise the fine-scale genetic structure of a geographically-isolated population of seabirds. Microsatellite markers provide evidence for largely transient within-breeding season temporal processes and limited spatial processes, affecting genetic structure in an otherwise panmictic population of sooty terns Onychoprion fuscatus. Earliest breeders had significantly different genetic structure from the latest breeders. Limited evidence was found for localised spatial structure, with a small number of individuals being more related to their nearest neighbours than the rest of the population. Therefore, population genetic structure is shaped by heterogeneities in collective movement in time and to a lesser extent space, that result in low levels of spatio-temporal genetic structure and the maintenance of genetic diversity.
Collapse
Affiliation(s)
- Lucy J H Garrett
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK. .,NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK. .,Department of Animal and Agriculture, Hartpury University, Gloucester, UK.
| | - Julia P Myatt
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Deborah A Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - John K Colbourne
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Roger C Dickey
- The Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Sam B Weber
- Ascension Island Government Conservation and Fisheries Department (AIGCFD), Ascension Island, UK.,Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - S James Reynolds
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.,The Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| |
Collapse
|
14
|
Moiron M, Araya-Ajoy YG, Teplitsky C, Bouwhuis S, Charmantier A. Understanding the Social Dynamics of Breeding Phenology: Indirect Genetic Effects and Assortative Mating in a Long-Distance Migrant. Am Nat 2020; 196:566-576. [PMID: 33064582 DOI: 10.1086/711045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPhenological traits, such as the timing of reproduction, are often influenced by social interactions between paired individuals. Such partner effects may occur when pair members affect each other's prebreeding environment. Partner effects can be environmentally and/or genetically determined, and quantifying direct and indirect genetic effects is important for understanding the evolutionary dynamics of phenological traits. Here, using 26 years of data from a pedigreed population of a migratory seabird, the common tern (Sterna hirundo), we investigate male and female effects on female laying date. We find that female laying date harbors both genetic and environmental variation and is additionally influenced by the environmental and, to a lesser extent, genetic component of its mate. We demonstrate this partner effect to be largely explained by male arrival date. Interestingly, analyses of mating patterns with respect to arrival date show mating to be strongly assortative, and using simulations we show that assortative mating leads to overestimation of partner effects. Our study provides evidence for partner effects on breeding phenology in a long-distance migrant while uncovering the potential causal pathways underlying the observed effects and raising awareness for confounding effects resulting from assortative mating or other common environmental effects.
Collapse
|
15
|
Dobson FS, Murie JO, Viblanc VA. Fitness Estimation for Ecological Studies: An Evaluation in Columbian Ground Squirrels. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Peng L, Fu D, Qi H, Lan CQ, Yu H, Ge C. Micro- and nano-plastics in marine environment: Source, distribution and threats - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134254. [PMID: 31514025 DOI: 10.1016/j.scitotenv.2019.134254] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 05/23/2023]
Abstract
Plastic litters have become the predominant components of marine debris due to extensive consumption plastics and mismanagement of plastic wastes. As part of the problem, microplastics (MPs) and nanoplastics (NPs) have generated special concerns due to their unique features that make them easy to transfer among oceans in the marine ecosystem, across different trophic levels inside the food web, and even across different tissues inside contaminated animals. Studies have demonstrated the almost omnipresence of MPs in the marine ecosystem, which present serious threats to the health of marine animals, causing symptoms such as malnutrition, inflammation, chemical poisoning, growth thwarting, decrease of fecundity, and death due to damages at individual, organ, tissue, cell, and molecule levels. The information on NPs in the marine ecosystem has been scarce due to the challenges in sampling and detecting these nano-scaled entities. In vitro and in vivo experiments have demonstrated that NPs have the potential to penetrate different biological barriers including the gastrointestinal barrier and the brain blood barrier and have been detected in many important organs such as brains, the circulation system and livers of sampled animals.
Collapse
Affiliation(s)
- Licheng Peng
- Department of Environmental Science, Hainan University, China
| | - Dongdong Fu
- Department of Environmental Science, Hainan University, China
| | - Huaiyuan Qi
- Department of Environmental Science, Hainan University, China
| | - Christopher Q Lan
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| | - Huamei Yu
- Department of Environmental Science, Hainan University, China
| | - Chengjun Ge
- Department of Environmental Science, Hainan University, China
| |
Collapse
|
17
|
Reed TE. Can Arctic seabirds adapt to climate change? Funct Ecol 2019. [DOI: 10.1111/1365-2435.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas E. Reed
- School of Biological, Earth and Environmental Sciences University College Cork, North Mall Cork Ireland
| |
Collapse
|
18
|
Froy H, Martin J, Stopher KV, Morris A, Morris S, Clutton-Brock TH, Pemberton JM, Kruuk LEB. Consistent within-individual plasticity is sufficient to explain temperature responses in red deer reproductive traits. J Evol Biol 2019; 32:1194-1206. [PMID: 31420999 DOI: 10.1111/jeb.13521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/20/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022]
Abstract
Warming global temperatures are affecting a range of aspects of wild populations, but the exact mechanisms driving associations between temperature and phenotypic traits may be difficult to identify. Here, we use a 36-year data set on a wild population of red deer to investigate the causes of associations between temperature and two important components of female reproduction: timing of breeding and offspring size. By separating within- versus between-individual associations with temperature for each trait, we show that within-individual phenotypic plasticity (changes within a female's lifetime) was entirely sufficient to generate the observed population-level association with temperature at key times of year. However, despite apparently adequate statistical power, we found no evidence of any variation between females in their responses (i.e. no "IxE" interactions). Our results suggest that female deer show plasticity in reproductive traits in response to temperatures in the year leading up to calving and that this response is consistent across individuals, implying no potential for either selection or heritability of plasticity. We estimate that the plastic response to rising temperatures explained 24% of the observed advance in mean calving date over the study period. We highlight the need for comparable analyses of other systems to determine the contribution of within-individual plasticity to population-level responses to climate change.
Collapse
Affiliation(s)
- Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Julien Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Katie V Stopher
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Alison Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Sean Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | | | - Loeske E B Kruuk
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
19
|
Sauve D, Divoky G, Friesen VL. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Drew Sauve
- Department of Biology Queen's University Kingston ON Canada
| | | | | |
Collapse
|
20
|
Bichet C, Vedder O, Sauer‐Gürth H, Becker PH, Wink M, Bouwhuis S. Contrasting heterozygosity‐fitness correlations across life in a long‐lived seabird. Mol Ecol 2019; 28:671-685. [DOI: 10.1111/mec.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Oscar Vedder
- Institute of Avian Research Wilhelmshaven Germany
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Hedwig Sauer‐Gürth
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | |
Collapse
|
21
|
Hamel S, Gaillard JM, Yoccoz NG, Bassar RD, Bouwhuis S, Caswell H, Douhard M, Gangloff EJ, Gimenez O, Lee PC, Smallegange IM, Steiner UK, Vedder O, Vindenes Y. General conclusion to the special issue Moving forward on individual heterogeneity. OIKOS 2018. [DOI: 10.1111/oik.05223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sandra Hamel
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| | | | - Nigel G. Yoccoz
- Dept of Arctic and Marine Biology; UiT The Arctic Univ. of Norway; Tromsø Norway
| | - Ron D. Bassar
- Dept of Biology; Williams College; Williamstown MA USA
| | - Sandra Bouwhuis
- Inst of Avian Research ‘Vogelwarte Helgoland’; Wilhelmshaven Germany
| | - Hal Caswell
- Inst. for Biodiversity and Ecosystem Dynamics; Univ. of Amsterdam; Amsterdam the Netherlands
| | | | - Eric J. Gangloff
- Station d’Ecologie Théorique et Expérimentale du CNRS; Moulis France
| | - Olivier Gimenez
- CEFE UMR 5175; CNRS, Univ. de Montpellier, Univ. Paul-Valéry Montpellier; Montpellier France
| | - Phylis C. Lee
- Psychology, Faculty of Natural Sciences; Univ. of Stirling; Stirling UK
| | - Isabel M. Smallegange
- Inst. for Biodiversity and Ecosystem Dynamics; Univ. of Amsterdam; Amsterdam the Netherlands
| | - Ulrich K. Steiner
- Max-Planck Odense Centre on the Biodemography of Aging, and Dept of Biology; Odense Denmark
| | - Oscar Vedder
- Inst of Avian Research ‘Vogelwarte Helgoland’; Wilhelmshaven Germany
- Groningen Inst. for Evolutionary Life Sciences; Univ. of Groningen; Groningen the Netherlands
| | | |
Collapse
|
22
|
Bonamour S, Teplitsky C, Charmantier A, Crochet PA, Chevin LM. Selection on skewed characters and the paradox of stasis. Evolution 2017; 71:2703-2713. [PMID: 28921508 DOI: 10.1111/evo.13368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/17/2023]
Abstract
Observed phenotypic responses to selection in the wild often differ from predictions based on measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show through mathematical modeling that, when a trait selected for an optimum phenotype has a skewed distribution, directional selection is detected even at evolutionary equilibrium, where it causes no change in the mean phenotype. When environmental effects are skewed, Lande and Arnold's (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed breeding values can displace the mean phenotype from the optimum, causing directional selection in the direction of the skew. These effects can be partitioned out using alternative selection estimates based on average derivatives of individual relative fitness, or additive genetic covariances between relative fitness and trait (Robertson-Price identity). We assess the validity of these predictions using simulations of selection estimation under moderate sample sizes. Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with avian laying date - repeatedly described as more evolutionarily stable than expected - so this skewness should be accounted for when investigating evolutionary dynamics in the wild.
Collapse
Affiliation(s)
- Suzanne Bonamour
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5, France
| | - Céline Teplitsky
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5, France
| | - Anne Charmantier
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5, France
| | - Pierre-André Crochet
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5, France
| | - Luis-Miguel Chevin
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5, France
| |
Collapse
|
23
|
Ouwehand J, Burger C, Both C. Shifts in hatch dates do not provide pied flycatchers with a rapid ontogenetic route to adjust offspring time schedules to climate change. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Janne Ouwehand
- Conservation Ecology GroupGroningen Institute for Evolutionary Life SciencesUniversity of Groningen Groningen The Netherlands
| | | | - Christiaan Both
- Conservation Ecology GroupGroningen Institute for Evolutionary Life SciencesUniversity of Groningen Groningen The Netherlands
| |
Collapse
|
24
|
Dobson FS, Becker PH, Arnaud CM, Bouwhuis S, Charmantier A. Plasticity results in delayed breeding in a long-distant migrant seabird. Ecol Evol 2017; 7:3100-3109. [PMID: 28480009 PMCID: PMC5415518 DOI: 10.1002/ece3.2777] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
A major question for conservationists and evolutionary biologists is whether natural populations can adapt to rapid environmental change through micro-evolution or phenotypic plasticity. Making use of 17 years of data from a colony of a long-distant migratory seabird, the common tern (Sterna hirundo), we examined phenotypic plasticity and the evolutionary potential of breeding phenology, a key reproductive trait. We found that laying date was strongly heritable (0.27 ± 0.09) and under significant fecundity selection for earlier laying. Paradoxically, and in contrast to patterns observed in most songbird populations, laying date became delayed over the study period, by about 5 days. The discrepancy between the observed changes and those predicted from selection on laying date was explained by substantial phenotypic plasticity. The plastic response in laying date did not vary significantly among individuals. Exploration of climatic factors showed individual responses to the mean sea surface temperature in Senegal in December prior to breeding: Common terns laid later following warmer winters in Senegal. For each 1°C of warming of the sea surface in Senegal, common terns delayed their laying date in northern Germany by 6.7 days. This suggests that warmer waters provide poorer wintering resources. We therefore found that substantial plastic response to wintering conditions can oppose natural selection, perhaps constraining adaptation.
Collapse
Affiliation(s)
- F. Stephen Dobson
- Centre d'Ecologie Fonctionnelle et EvolutiveUMR 5175 Campus CNRSMontpellier Cedex 5France
- Department of Biological SciencesAuburn UniversityAuburnALUSA
| | - Peter H. Becker
- Institute of Avian Research “Vogelwarte Helgoland”WilhelmshavenGermany
| | - Coline M. Arnaud
- Centre d'Ecologie Fonctionnelle et EvolutiveUMR 5175 Campus CNRSMontpellier Cedex 5France
| | - Sandra Bouwhuis
- Institute of Avian Research “Vogelwarte Helgoland”WilhelmshavenGermany
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et EvolutiveUMR 5175 Campus CNRSMontpellier Cedex 5France
| |
Collapse
|