1
|
Kosecka M, Oset M. A shift in substrate requirement might cause speciation of the lichenized fungi, Varicellaria hemisphaerica and V. lactea (Pertusariales, Ascomycota). Sci Rep 2024; 14:23514. [PMID: 39384908 PMCID: PMC11464505 DOI: 10.1038/s41598-024-74937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Proper species recognition is required to correctly estimate species preferences and their vulnerability or for eco-evolutionary inference. Varicellaria hemisphaerica and Varicellaria lactea are almost completely morphologically homogeneous species with unclear identification features. To evaluate the importance of morphological, chemical, and ecological characteristics used in recognition of these species, we tested 670 specimens, of which 42 were analyzed phylogenetically using nucITS rDNA, SSU rDNA, and LSU rDNA markers. This integrated taxonomical approach showed that V. hemisphaerica is distinct from V. lactea, and that substrate requirements, together with phylogenetic differences and the size of soredia, differentiate these species. The chemical composition of secondary lichen metabolites in both analyzed species showed similar variation and, therefore, this feature is not diagnostic in species recognition, although suggested by previous studies. The potential speciation of the two species seems to be caused by the shift in the substrate requirements.
Collapse
Affiliation(s)
- Magdalena Kosecka
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, Gdańsk, PL-80-308, Poland
| | - Magdalena Oset
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, Gdańsk, PL-80-308, Poland.
| |
Collapse
|
2
|
Valim HF, Grande FD, Wong ELY, Schmitt I. Circadian clock- and temperature-associated genes contribute to overall genomic differentiation along elevation in lichenized fungi. Mol Ecol 2024; 33:e17252. [PMID: 38146927 DOI: 10.1111/mec.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Circadian regulation is linked to local environmental adaptation, and many species with broad climatic niches display variation in circadian genes. Here, we hypothesize that lichenizing fungi occupying different climate zones tune their metabolism to local environmental conditions with the help of their circadian systems. We study two species of the genus Umbilicaria occupying similar climatic niches (Mediterranean and the cold temperate) in different continents. Using homology to Neurospora crassa genes, we identify gene sets associated with circadian rhythms (11 core, 39 peripheral genes) as well as temperature response (37 genes). Nucleotide diversity of these genes is significantly correlated with mean annual temperature, minimum temperature of the coldest month and mean temperature of the coldest quarter. Furthermore, we identify altitudinal clines in allele frequencies in several non-synonymous substitutions in core clock components, for example, white collar-like, frh-like and various ccg-like genes. A dN/dS approach revealed a few significant peripheral clock- and temperature-associated genes (e.g. ras-1-like, gna-1-like) that may play a role in fine-tuning the circadian clock and temperature-response machinery. An analysis of allele frequency changes demonstrated the strongest evidence for differentiation above the genomic background in the clock-associated genes in U. pustulata. These results highlight the likely relevance of the circadian clock in environmental adaptation, particularly frost tolerance, of lichens. Whether or not the fungal clock modulates the symbiotic interaction within the lichen consortium remains to be investigated. We corroborate the finding of genetic variation in clock components along altitude-not only latitude-as has been reported in other species.
Collapse
Affiliation(s)
- Henrique F Valim
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Edgar L Y Wong
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Magain N, Miadlikowska J, Goffinet B, Goward T, Pardo-De la Hoz C, Jüriado I, Simon A, Mercado-Díaz J, Barlow T, Moncada B, Lücking R, Spielmann A, Canez L, Wang L, Nelson P, Wheeler T, Lutzoni F, Sérusiaux E. High species richness in the lichen genus Peltigera ( Ascomycota, Lecanoromycetes): 34 species in the dolichorhizoid and scabrosoid clades of section Polydactylon, including 24 new to science. PERSOONIA 2023; 51:1-88. [PMID: 38665978 PMCID: PMC11041898 DOI: 10.3767/persoonia.2023.51.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/10/2022] [Indexed: 04/28/2024]
Abstract
Applying molecular methods to fungi establishing lichenized associations with green algae or cyanobacteria has repeatedly revealed the existence of numerous phylogenetic taxa overlooked by classical taxonomic approaches. Here, we report taxonomical conclusions based on multiple species delimitation and validation analyses performed on an eight-locus dataset that includes world-wide representatives of the dolichorhizoid and scabrosoid clades in section Polydactylon of the genus Peltigera. Following the recommendations resulting from a consensus species delimitation approach and additional species validation analysis (BPP) performed in this study, we present a total of 25 species in the dolichorhizoid clade and nine in the scabrosoid clade, including respectively 18 and six species that are new to science and formally described. Additionally, one combination and three varieties (including two new to science) are proposed in the dolichorhizoid clade. The following 24 new species are described: P. appalachiensis, P. asiatica, P. borealis, P. borinquensis, P. chabanenkoae, P. clathrata, P. elixii, P. esslingeri, P. flabellae, P. gallowayi, P. hawaiiensis, P. holtanhartwigii, P. itatiaiae, P. hokkaidoensis, P. kukwae, P. massonii, P. mikado, P. nigriventris, P. orientalis, P. rangiferina, P. sipmanii, P. stanleyensis, P. vitikainenii and P. willdenowii; the following new varieties are introduced: P. kukwae var. phyllidiata and P. truculenta var. austroscabrosa; and the following new combination is introduced: P. hymenina var. dissecta. Each species from the dolichorhizoid and scabrosoid clades is morphologically and chemically described, illustrated, and characterised with ITS sequences. Identification keys are provided for the main biogeographic regions where species from the two clades occur. Morphological and chemical characters that are commonly used for species identification in the genus Peltigera cannot be applied to unambiguously recognise most molecularly circumscribed species, due to high variation of thalli formed by individuals within a fungal species, including the presence of distinct morphs in some cases, or low interspecific variation in others. The four commonly recognised morphospecies: P. dolichorhiza, P. neopolydactyla, P. pulverulenta and P. scabrosa in the dolichorhizoid and scabrosoid clades represent species complexes spread across multiple and often phylogenetically distantly related lineages. Geographic origin of specimens is often helpful for species recognition; however, ITS sequences are frequently required for a reliable identification. Citation: Magain N, Miadlikowska J, Goffinet B, et al. 2023. High species richness in the lichen genus Peltigera (Ascomycota, Lecanoromycetes): 34 species in the dolichorhizoid and scabrosoid clades of section Polydactylon, including 24 new to science. Persoonia 51: 1-88. doi: 10.3767/persoonia.2023.51.01.
Collapse
Affiliation(s)
- N. Magain
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - J. Miadlikowska
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - B. Goffinet
- Ecology and Evolutionary Biology, Unit 3043, University of Connecticut, 75 North Eagleville road, Storrs CT, 06269-3043 USA
| | - T. Goward
- Beaty Biodiversity Museum, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - C.J. Pardo-De la Hoz
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - I. Jüriado
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu 50409, Estonia; Institute of Agricultural & Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - A. Simon
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
- Ecology and Evolutionary Biology, Unit 3043, University of Connecticut, 75 North Eagleville road, Storrs CT, 06269-3043 USA
| | - J.A. Mercado-Díaz
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois, 60605 USA
| | - T. Barlow
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - B. Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26B-54, Torre de Laboratorios, Herbario, Bogotá, Colombia; current address: Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
| | - R. Lücking
- Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
| | - A. Spielmann
- Laboratòrio de Botanica / Liquenologia, Instituto de Biociencias, Universidade Federal de Mato Grosso do Sul, Campo Grande – MS, Brazil
| | - L. Canez
- Laboratòrio de Botanica / Liquenologia, Instituto de Biociencias, Universidade Federal de Mato Grosso do Sul, Campo Grande – MS, Brazil
| | - L.S. Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming 650201, China
| | - P. Nelson
- Natural and Behavioral Sciences Division, University of Maine – Fort Kent, Fort Kent, ME, USA
| | - T. Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - F. Lutzoni
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - E. Sérusiaux
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
| |
Collapse
|
4
|
Mercado-Díaz JA, Lücking R, Moncada B, C St E Campbell K, Delnatte C, Familia L, Falcón-Hidalgo B, Motito-Marín A, Rivera-Queralta Y, Widhelm TJ, Thorsten Lumbsch H. Species assemblages of insular Caribbean Sticta (lichenized Ascomycota: Peltigerales) over ecological and evolutionary time scales. Mol Phylogenet Evol 2023:107830. [PMID: 37247703 DOI: 10.1016/j.ympev.2023.107830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/28/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Phylogenetic approaches to macroevolution have provided unique insight into evolutionary relationships, ancestral ranges, and diversification patterns for many taxa. Similar frameworks have also been developed to assess how environmental and/or spatial variables shape species diversity and distribution patterns at different spatial/temporal scales, but studies implementing these are still scarce for many groups, including lichens. Here, we combine phylogeny-based ancestral range reconstruction and diversification analysis with community phylogenetics to reconstruct evolutionary origins and assess patterns of taxonomic and phylogenetic relatedness between island communities of the lichenized fungal genus Sticta in the Caribbean. Sampling was carried out in the Greater Antilles (Cuba, Jamaica, Dominican Republic, and Puerto Rico) and Lesser Antilles (Dominica, Guadeloupe, and Martinique). Data for six molecular loci were obtained for 64 candidate Caribbean species and used to perform both macroevolutionary phylogenetics, which also included worldwide taxa, and phylobetadiversity analyses, which emphasized island-level communities. Our work uncovered high levels of island endemism (∼59%) in Caribbean Sticta. We estimate initial colonization of the region occurred about 19 Mya from a South American ancestor. Reverse migration events by Caribbean lineages to South America were also inferred. We found no evidence for increased diversification rates associated with range expansion into the Caribbean. Taxonomic and phylogenetic turnover between island-level communities was most strongly correlated with environmental variation rather than with geographic distance. We observed less dissimilarity among communities from the Dominican Republic and Jamaica than between these islands and the Lesser Antilles/Puerto Rico. High levels of hidden diversity and endemism in Caribbean Sticta reaffirm that islands are crucial for the maintenance of global biodiversity of lichenized fungi. Altogether, our findings suggest that strong evolutionary links exist between Caribbean and South American biotas but at regional scales, species assemblages exhibit complex taxonomic and phylogenetic relationships that are determined by local environments and shared evolutionary histories.
Collapse
Affiliation(s)
- Joel A Mercado-Díaz
- Committee on Evolutionary Biology, University of Chicago 1025 E. 57th Street, Chicago, Illinois 60637, U.S.A; Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Königin-Luise-Straße 6-8, 14195 Berlin, Germany.
| | - Bibiana Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26B-54, Torre de Laboratorios, Herbario, Bogotá, Colombia.
| | - Keron C St E Campbell
- Natural History Museum of Jamaica, Institute of Jamaica, 10-16 East Street, Kingston, Jamaica.
| | - Cesar Delnatte
- Biotope Amazonie, 3 rue Mezin Gildon, F-97354 Rémire-Montjoly, Guyane française.
| | - Lemuel Familia
- Departamento de Vida Silvestre, Ministerio de Medio Ambiente y Recursos Naturales, Avenida Cayetano Germosén esq. Avenida Gregorio Luperón, Ensanche El Pedregal, Santo Domingo, República Dominicana.
| | - Banessa Falcón-Hidalgo
- Jardín Botánico Nacional, Universidad de La Habana, Carretera "El Rocío" km 3.5, Calabazar, Boyeros, La Habana, Cuba.
| | - Angel Motito-Marín
- Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (BioEco), Código Postal 90100, José A. Saco 601, Esquina Barnada, Santiago de Cuba, Cuba.
| | - Yoira Rivera-Queralta
- Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (BioEco), Código Postal 90100, José A. Saco 601, Esquina Barnada, Santiago de Cuba, Cuba.
| | - Todd J Widhelm
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| | - H Thorsten Lumbsch
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| |
Collapse
|
5
|
Lücking R, Leavitt SD, Hawksworth DL. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00477-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractLichens are symbiotic associations resulting from interactions among fungi (primary and secondary mycobionts), algae and/or cyanobacteria (primary and secondary photobionts), and specific elements of the bacterial microbiome associated with the lichen thallus. The question of what is a species, both concerning the lichen as a whole and its main fungal component, the primary mycobiont, has faced many challenges throughout history and has reached new dimensions with the advent of molecular phylogenetics and phylogenomics. In this paper, we briefly revise the definition of lichens and the scientific and vernacular naming conventions, concluding that the scientific, Latinized name usually associated with lichens invariably refers to the primary mycobiont, whereas the vernacular name encompasses the entire lichen. Although the same lichen mycobiont may produce different phenotypes when associating with different photobionts or growing in axenic culture, this discrete variation does not warrant the application of different scientific names, but must follow the principle "one fungus = one name". Instead, broadly agreed informal designations should be used for such discrete morphologies, such as chloromorph and cyanomorph for lichens formed by the same mycobiont but with either green algae or cyanobacteria. The taxonomic recognition of species in lichen-forming fungi is not different from other fungi and conceptual and nomenclatural approaches follow the same principles. We identify a number of current challenges and provide recommendations to address these. Species delimitation in lichen-forming fungi should not be tailored to particular species concepts but instead be derived from empirical evidence, applying one or several of the following principles in what we call the LPR approach: lineage (L) coherence vs. divergence (phylogenetic component), phenotype (P) coherence vs. divergence (morphological component), and/or reproductive (R) compatibility vs. isolation (biological component). Species hypotheses can be established based on either L or P, then using either P or L (plus R) to corroborate them. The reliability of species hypotheses depends not only on the nature and number of characters but also on the context: the closer the relationship and/or similarity between species, the higher the number of characters and/or specimens that should be analyzed to provide reliable delimitations. Alpha taxonomy should follow scientific evidence and an evolutionary framework but should also offer alternative practical solutions, as long as these are scientifically defendable. Taxa that are delimited phylogenetically but not readily identifiable in the field, or are genuinely cryptic, should not be rejected due to the inaccessibility of proper tools. Instead, they can be provisionally treated as undifferentiated complexes for purposes that do not require precise determinations. The application of infraspecific (gamma) taxonomy should be restricted to cases where there is a biological rationale, i.e., lineages of a species complex that show limited phylogenetic divergence but no evidence of reproductive isolation. Gamma taxonomy should not be used to denote discrete phenotypical variation or ecotypes not warranting the distinction at species level. We revise the species pair concept in lichen-forming fungi, which recognizes sexually and asexually reproducing morphs with the same underlying phenotype as different species. We conclude that in most cases this concept does not hold, but the actual situation is complex and not necessarily correlated with reproductive strategy. In cases where no molecular data are available or where single or multi-marker approaches do not provide resolution, we recommend maintaining species pairs until molecular or phylogenomic data are available. This recommendation is based on the example of the species pair Usnea aurantiacoatra vs. U. antarctica, which can only be resolved with phylogenomic approaches, such as microsatellites or RADseq. Overall, we consider that species delimitation in lichen-forming fungi has advanced dramatically over the past three decades, resulting in a solid framework, but that empirical evidence is still missing for many taxa. Therefore, while phylogenomic approaches focusing on particular examples will be increasingly employed to resolve difficult species complexes, broad screening using single barcoding markers will aid in placing as many taxa as possible into a molecular matrix. We provide a practical protocol how to assess and formally treat taxonomic novelties. While this paper focuses on lichen fungi, many of the aspects discussed herein apply generally to fungal taxonomy. The new combination Arthonia minor (Lücking) Lücking comb. et stat. nov. (Bas.: Arthonia cyanea f. minor Lücking) is proposed.
Collapse
|
6
|
Leavitt SD, Hollinger J, Summerhays S, Munger I, Allen J, Smith B. Alpine lichen diversity in an isolated sky island in the Colorado Plateau, USA-Insight from an integrative biodiversity inventory. Ecol Evol 2021; 11:11090-11101. [PMID: 34429905 PMCID: PMC8366874 DOI: 10.1002/ece3.7896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022] Open
Abstract
Lichens are major components of high altitude/latitude ecosystems. However, accurately characterizing their biodiversity is challenging because these regions and habitats are often underexplored, there are numerous poorly known taxonomic groups, and morphological variation in extreme environments can yield conflicting interpretations. Using an iterative taxonomic approach based on over 800 specimens and incorporating both traditional morphology-based identifications and information from the standard fungal DNA barcoding marker, we compiled a voucher-based inventory of biodiversity of lichen-forming fungi in a geographically limited and vulnerable alpine community in an isolated sky island in the Colorado Plateau, USA-the La Sal Mountains. We used the newly proposed Assemble Species by Automatic Partitioning (ASAP) approach to empirically delimit candidate species-level lineages from family-level multiple sequence alignments. Specimens comprising DNA-based candidate species were evaluated using traditional taxonomically diagnostic phenotypic characters to identify specimens to integrative species hypotheses and link these, where possible, to currently described species. Despite the limited alpine habitat (ca. 3,250 ha), we document the most diverse alpine lichen community known to date from the southern Rocky Mountains, with up to 240 candidate species/species-level lineages of lichen-forming fungi. 139 species were inferred using integrative taxonomy, plus an additional 52 candidate species within 29 different putative species complexes. Over 68% of sequences could not be assigned to species-level rank with statistical confidence, corroborating the limited utility of current sequence repositories for species-level DNA barcoding of lichen-forming fungi. By integrating vouchered specimens, DNA sequence data, and photographic documentation, we provide an important baseline of lichen-forming fungal diversity for the limited alpine habitat in the Colorado Plateau. These data provide an important resource for subsequent research in the ecology and evolution of lichens alpine habitats, including DNA barcodes for most putative species/species-level lineages occurring in the La Sal Mountains, and vouchered collections representing any potentially undescribed species that can be used for future taxonomic studies.
Collapse
Affiliation(s)
- Steven D. Leavitt
- M.L. Bean Life Science Museum & Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - Jason Hollinger
- HerbariumDepartment of BiologyWestern Carolina UniversityCullowheeNorth CarolinaUSA
| | | | - Isaac Munger
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - Jonah Allen
- Department of BiologyBrigham Young UniversityProvoUtahUSA
| | - Barb Smith
- Wildlife Biologist/Botanist, Moab DistrictManti–La Sal National ForestMoabUtahUSA
| |
Collapse
|
7
|
Garrido-Benavent I, Pérez-Ortega S, de Los Ríos A, Mayrhofer H, Fernández-Mendoza F. Neogene speciation and Pleistocene expansion of the genus Pseudephebe (Parmeliaceae, lichenized fungi) involving multiple colonizations of Antarctica. Mol Phylogenet Evol 2020; 155:107020. [PMID: 33242583 DOI: 10.1016/j.ympev.2020.107020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
Widespread geographic distributions in lichens have been usually explained by the high dispersal capacity of their tiny diaspores. However, recent phylogenetic surveys have challenged this assumption and provided compelling evidence for cryptic speciation and more restricted distribution ranges in diverse lineages of lichen-forming fungi. To evaluate these scenarios, we focus on the fungal genus Pseudephebe (Parmeliaceae) which includes amphitropical species, a distribution pattern whose origin has been a matter of debate since first recognized in the nineteenth century. In our study, a six-locus dataset and a broad specimen sampling covering almost all Earth's continents is used to investigate species delimitation in Pseudephebe. Population structure, gene flow and dating analyses, as well as genealogical reconstruction methods, are employed to disentangle the most plausible transcontinental migration routes, and estimate the timing of the origin of the amphitropical distribution and the Antarctic populations. Our results demonstrate the existence of three partly admixed phylogenetic species that diverged between the Miocene and Pliocene, and whose Quaternary distribution has been strongly driven by glacial cycles. Pseudephebe minuscula is the only species showing an amphitropical distribution, with populations in Antarctica, whereas the restricted distribution of P. pubescens and an undescribed Alaskan species might reflect the survival of these species in European and North American refugia. Our microevolutionary analyses suggest a Northern Hemisphere origin for P. minuscula, which could have dispersed into the Southern Hemisphere directly and/or through "mountain-hopping" during the Pleistocene. The Antarctic populations of this species are sorted into two genetic clusters: populations of the Antarctic Peninsula were grouped together with South American ones, and the Antarctic Continental populations formed a second cluster with Bolivian and Svalbard populations. Therefore, our data strongly suggest that the current distribution of P. minuscula in Antarctica is the outcome of multiple, recent colonizations. In conclusion, our results stress the need for integrating species delimitation and population analyses to properly approach historical biogeography in lichen-forming fungi.
Collapse
Affiliation(s)
- Isaac Garrido-Benavent
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), Serrano 115 dpdo, E-28045 Madrid, Spain; Institute of Plant Sciences, Karl-Franzens-Universität Graz, Graz A-8010, Austria.
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), Serrano 115 dpdo, E-28045 Madrid, Spain
| | - Helmut Mayrhofer
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Graz A-8010, Austria
| | | |
Collapse
|
8
|
|
9
|
Spjut R, Simon A, Guissard M, Magain N, Sérusiaux E. The fruticose genera in the Ramalinaceae (Ascomycota, Lecanoromycetes): their diversity and evolutionary history. MycoKeys 2020; 73:1-68. [PMID: 32994702 PMCID: PMC7501315 DOI: 10.3897/mycokeys.73.47287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 07/19/2020] [Indexed: 02/08/2023] Open
Abstract
We present phylogenetic analyses of the fruticose Ramalinaceae based on extensive collections from many parts of the world, with a special focus on the Vizcaíno deserts in north-western Mexico and the coastal desert in Namibia. We generate a four-locus DNA sequence dataset for accessions of Ramalina and two additional loci for Niebla and Vermilacinia. Four genera are strongly supported: the subcosmopolitan Ramalina, the new genus Namibialina endemic to SW Africa, and a duo formed by Niebla and Vermilacinia, endemic to the New World except the sorediate V. zebrina that disjunctly occurs in Namibia. The latter three genera are restricted to coastal desert and chaparral where vegetation depends on moisture from ocean fog. Ramalina is subcosmopolitan and much more diverse in its ecology. We show that Ramalina and its sister genus Namibialina diverged from each other at c. 48 Myrs, whereas Vermilacinia and Niebla split at c. 30 Myrs. The phylogeny of the fruticose genera remains unresolved to their ancestral crustose genera. Species delimitation within Namibialina and Ramalina is rather straightforward. The phylogeny and taxonomy of Vermilacinia are fully resolved, except for the two youngest clades of corticolous taxa, and support current taxonomy, including four new taxa described here. Secondary metabolite variation in Niebla generally coincides with major clades which are comprised of species complexes with still unresolved phylogenetic relationships. A micro-endemism pattern of allopatric species is strongly suspected for both genera, except for the corticolous taxa within Vermilacinia. Both Niebla and saxicolous Vermilacinia have chemotypes unique to species clades that are largely endemic to the Vizcaíno deserts. The following new taxa are described: Namibialina gen. nov. with N. melanothrix (comb. nov.) as type species, a single new species of Ramalina (R. krogiae) and four new species of Vermilacinia (V. breviloba, V. lacunosa, V. pustulata and V. reticulata). The new combination V. granulans is introduced. Two epithets are re-introduced for European Ramalina species: R. crispans (= R. peruviana auct. eur.) and R. rosacea (= R. bourgeana auct. p.p). A lectotype is designated for Vermilacinia procera. A key to saxicolous species of Vermilacinia is presented.
Collapse
Affiliation(s)
- Richard Spjut
- World Botanical Associates, PO Box 81145, Bakersfield, California 93380, USA World Botanical Associates Bakersfield, CA United States of America
| | - Antoine Simon
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Martin Guissard
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Nicolas Magain
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| |
Collapse
|
10
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
11
|
Fačkovcová Z, Slovák M, Vďačný P, Melichárková A, Zozomová-Lihová J, Guttová A. Spatio-temporal formation of the genetic diversity in the Mediterranean dwelling lichen during the Neogene and Quaternary epochs. Mol Phylogenet Evol 2019; 144:106704. [PMID: 31821879 DOI: 10.1016/j.ympev.2019.106704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
Genetic patterns of lichenized fungi often display a mosaic-like and difficult to interpret structure blurring their evolutionary history. The genetic diversity and phylogeographic pattern of a mycobiont of the predominantly Mediterranean dwelling lichen Solenopsora candicans were investigated on the base of extensive sampling (361 individuals, 77 populations) across its entire distribution range. We tested whether the genetic pattern of S. candicans mirrors paleoclimatic and paleogeological events in the Mediterranean and adjacent regions. The divergence time estimates indicated a Tertiary origin for S. candicans, with formation of intraspecific diversity initiated in the Late Miocene. The distribution of the most divergent haplotypes, mostly of a pre-Pleistocene origin, was restricted to the eastern or western extremities of the Mediterranean exhibiting Kiermack disjunction. The population genetic diversity analyses indicated multiple diversity centres and refugia for S. candicans across the entire Mediterranean Basin. While the south Mediterranean regions harboured both the Tertiary and Quaternary born diversity, conforming to the 'cumulative refugia' paradigm, the Apennine and Balkan Peninsulas in the north hosted mostly younger Pleistocene haplotypes and lineages. The recent population expansion of S. candicans might have occurred in the middle Pleistocene with a population burst in the Apennine and Balkan peninsulas. The presence of unique haplotypes in Central Europe indicates the existence of extra-Mediterranean microrefugia. This study presents the first comprehensive lichen phylogeography from the Mediterranean region and simultaneously reports for the first time the glacial survival of a warm-adapted lichen in the temperate zone.
Collapse
Affiliation(s)
- Zuzana Fačkovcová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia.
| | - Marek Slovák
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Andrea Melichárková
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| | - Anna Guttová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovakia
| |
Collapse
|
12
|
Lücking R, Kirk PM, Hawksworth DL. Sequence-based nomenclature: a reply to Thines et al. and Zamora et al. and provisions for an amended proposal "from the floor" to allow DNA sequences as types of names. IMA Fungus 2018; 9:185-198. [PMID: 30018879 PMCID: PMC6048568 DOI: 10.5598/imafungus.2018.09.01.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
We reply to two recently published, multi-authored opinion papers by opponents of sequence-based nomenclature, namely Zamora et al. (IMA Fungus9: 167-175,2018) and Thines et al. (IMA Fungus9: 177-183, 2018). While we agree with some of the principal arguments brought forward by these authors, we address misconceptions and demonstrate that some of the presumed evidence presented in these papers has been wrongly interpreted. We disagree that allowing sequences as types would fundamentally alter the nature of types, since a similar nature of abstracted features as type is already allowed in the Code (Art. 40.5), namely an illustration. We also disagree that there is a high risk of introducing artifactual taxa, as this risk can be quantified at well below 5 %, considering the various types of high-throughput sequencing errors. Contrary to apparently widespread misconceptions, sequence-based nomenclature cannot be based on similarity-derived OTUs and their consensus sequences, but must be derived from rigorous, multiple alignment-based phylogenetic methods and quantitative, single-marker species recognition algorithms, using original sequence reads; it is therefore identical in its approach to single-marker studies based on physical types, an approach allowed by the Code. We recognize the limitations of the ITS as a single fungal barcoding marker, but point out that these result in a conservative approach, with "false negatives" surpassing "false positives"; a desirable feature of sequence-based nomenclature. Sequence-based nomenclature does not aim at accurately resolving species, but at naming sequences that represent unknown fungal lineages so that these can serve as a means of communication, so ending the untenable situation of an exponentially growing number of unlabeled fungal sequences that fill online repositories. The risks are outweighed by the gains obtained by a reference library of named sequences spanning the full array of fungal diversity. Finally, we elaborate provisions in addition to our original proposal to amend the Code that would take care of the issues brought forward by opponents to this approach. In particular, taking up the idea of the Candidatus status of invalid, provisional names in prokaryote nomenclature, we propose a compromise that would allow valid publication of voucherless, sequence-based names in a consistent manner, but with the obligate designation as "nom. seq." (nomen sequentiae). Such names would not have priority over specimen- or culture-based names unless either epitypified with a physical type or adopted for protection on the recommendation of a committee of the International Commission on the Taxonomy of Fungi following evaluation based on strict quality control of the underlying studies based on established rules or recommendations.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, D-14195 Berlin, Germany
| | - Paul M. Kirk
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Biodiversity Informatics & Spatial Analysis, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - David L. Hawksworth
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Jilin Agricultural University, Chanchung, Jilin province, 130118 China
| |
Collapse
|
13
|
Onuț-Brännström I, Benjamin M, Scofield DG, Heiðmarsson S, Andersson MGI, Lindström ES, Johannesson H. Sharing of photobionts in sympatric populations of Thamnolia and Cetraria lichens: evidence from high-throughput sequencing. Sci Rep 2018. [PMID: 29535321 PMCID: PMC5849601 DOI: 10.1038/s41598-018-22470-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this study, we explored the diversity of green algal symbionts (photobionts) in sympatric populations of the cosmopolitan lichen-forming fungi Thamnolia and Cetraria. We sequenced with both Sanger and Ion Torrent High-Throughput Sequencing technologies the photobiont ITS-region of 30 lichen thalli from two islands: Iceland and Öland. While Sanger recovered just one photobiont genotype from each thallus, the Ion Torrent data recovered 10-18 OTUs for each pool of 5 lichen thalli, suggesting that individual lichens can contain heterogeneous photobiont populations. Both methods showed evidence for photobiont sharing between Thamnolia and Cetraria on Iceland. In contrast, our data suggest that on Öland the two mycobionts associate with distinct photobiont communities, with few shared OTUs revealed by Ion Torrent sequencing. Furthermore, by comparing our sequences with public data, we identified closely related photobionts from geographically distant localities. Taken together, we suggest that the photobiont composition in Thamnolia and Cetraria results from both photobiont-mycobiont codispersal and local acquisition during mycobiont establishment and/or lichen growth. We hypothesize that this is a successful strategy for lichens to be flexible in the use of the most adapted photobiont for the environment.
Collapse
Affiliation(s)
- Ioana Onuț-Brännström
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mitchell Benjamin
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Douglas G Scofield
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX), Uppsala University, Uppsala, Sweden
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Akureyri Division, Borgir Nordurslod, Iceland
| | - Martin G I Andersson
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Eva S Lindström
- Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Onuţ-Brännström I, Tibell L, Johannesson H. A worldwide phylogeography of the whiteworm lichens Thamnolia reveals three lineages with distinct habitats and evolutionary histories. Ecol Evol 2017; 7:3602-3615. [PMID: 28515896 PMCID: PMC5433967 DOI: 10.1002/ece3.2917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
Thamnolia is a lichenized fungus with an extremely wide distribution, being encountered in arctic and alpine environments in most continents. In this study, we used molecular markers to investigate the population structure of the fungal symbiont and the associated photosynthetic partner of Thamnolia. By analyzing molecular, morphological, and chemical variation among 253 specimens covering the species distribution range, we revealed the existence of three mycobiont lineages. One lineage (Lineage A) is confined to the tundra region of Siberia and the Aleutian Islands, a second (Lineage B) is found in the high alpine region of the Alps and the Carpathians Mountains, and a third (Lineage C) has a worldwide distribution and covers both the aforementioned ecosystems. Molecular dating analysis indicated that the split of the three lineages is older than the last glacial maximum, but the distribution ranges and the population genetic analyses suggest an influence of last glacial period on the present‐day population structure of each lineage. We found a very low diversity of Lineage B, but a higher and similar one in Lineages A and C. Demographic analyses suggested that Lineage C has its origin in the Northern Hemisphere, possibly Scandinavia, and that it has passed through a bottleneck followed by a recent population expansion. While all three lineages reproduce clonally, recombination tests suggest rare or past recombination in both Lineages A and C. Moreover, our data showed that Lineage C has a comparatively low photobiont specificity, being found associated with four widespread Trebouxia lineages (three of them also shared with other lichens), while Lineages A and B exclusively harbor T. simplex s. lat. Finally, we did not find support for the recognition of taxa in Thamnolia based on either morphological or chemical characters.
Collapse
Affiliation(s)
- Ioana Onuţ-Brännström
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Leif Tibell
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Hanna Johannesson
- Department of Systematic Biology Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|