1
|
Yan JL, Rosenbaum JR, Yang D, Dukas R. Optimal polyandry in fruit flies. Evolution 2025; 79:193-202. [PMID: 39401248 DOI: 10.1093/evolut/qpae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 02/05/2025]
Abstract
The study of polyandry has received increasing scientific attention with an emphasis on the fitness benefits and costs that females derive from mating with multiple males. There are still gaps in our understanding of how polyandry affects female fitness, however, as many previous studies compared the fitness outcomes of a single mating vs. 2 or 3 matings and did not separate the consequences of multiple mating from the costs of sexual harassment. We, therefore, conducted controlled mating trials with female fruit flies (Drosophila melanogaster) that could mate at either low (every 8 days), medium (every 4 days), or high (every other day) rates while controlling for exposure to harassment from males. We found that female lifetime fitness was highest under the high mating-rate followed by the medium mating-rate conditions. Moreover, we did not detect reductions in lifespan as a consequence of higher rates of polyandry. Our results demonstrate that even at realistically high rates, polyandry can lead to net fitness benefits for females, which can have major implications for sexual selection. Specifically, we discuss the significance of our findings as they relate to competition and the evolution of secondary sex characteristics in females, and sperm competition among males.
Collapse
Affiliation(s)
- Janice L Yan
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jack R Rosenbaum
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Dan Yang
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Harrison LM, Churchill ER, Fairweather M, Smithson CH, Chapman T, Bretman A. Ageing effects of social environments in 'non-social' insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220463. [PMID: 39463243 PMCID: PMC11513649 DOI: 10.1098/rstb.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 10/29/2024] Open
Abstract
It is increasingly clear that social environments have profound impacts on the life histories of 'non-social' animals. However, it is not yet well known how species with varying degrees of sociality respond to different social contexts and whether such effects are sex-specific. To survey the extent to which social environments specifically affect lifespan and ageing in non-social species, we performed a systematic literature review, focusing on invertebrates but excluding eusocial insects. We found 80 studies in which lifespan or ageing parameters were measured in relation to changes in same-sex or opposite-sex exposure, group size or cues thereof. Most of the studies focused on manipulations of adults, often reporting sex differences in lifespan following exposure to the opposite sex. Some studies highlighted the impacts of developmental environments or social partner age on lifespan. Several studies explored potential underlying mechanisms, emphasizing that studies on insects could provide excellent opportunities to interrogate the basis of social effects on ageing. We discuss what these studies can tell us about the social environment as a stressor, or trade-offs in resources prompted by different social contexts. We suggest fruitful avenues for further research of social effects across a wider and more diverse range of taxa.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Lauren M. Harrison
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Emily R. Churchill
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Megan Fairweather
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claire H. Smithson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
3
|
Di X, Yan B, Liu J, Wu C, Yu X, Smith CL, Yang M. Transgenerational effects of multiple mating in Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecol Evol 2023; 13:e10189. [PMID: 37325727 PMCID: PMC10266576 DOI: 10.1002/ece3.10189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Polyandrous mating can result in sexual conflict and/or promote the evolution of mating patterns. Does multiple mating by females support the genetic benefits hypothesis and can it be validated as an evolutionary strategy? If we are to decipher the consequences of sexual interactions and understand the interplay of sexual conflict and multiple generational benefits, the transgenerational effects need to be followed over multiple generations. We investigated the effects of three mating patterns, single mating, repeated mating, and multiple mating, on parental Spodoptera litura copulation behavior, and then identified the impact on the development, survival, and fecundity of the F1 and F2 generations. Fecundity was not significantly affected in the F1 generation but was substantially enhanced in the F2 generation. There was a reversal of offspring fitness across the F2 generations from the F1 generations in progeny produced by multiple mating. In addition, the intrinsic rate of increase, finite rate of increase and net reproductive rate in the F1 generation the multiple mating treatment was significantly lower than in the single mating treatment, but there was no apparent effect on the F2 generation. Repeated mating had no significant effects on progeny fitness. We postulate that multiple mating imposes cross-transgenerational effects and may ultimately influence multigenerational fitness in S. litura.
Collapse
Affiliation(s)
- Xue‐yuan Di
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Guizhou UniversityMinistry of AgricultureGuiyangChina
| | - Bin Yan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Guizhou UniversityMinistry of AgricultureGuiyangChina
| | - Jian‐feng Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Guizhou UniversityMinistry of AgricultureGuiyangChina
| | - Cheng‐xu Wu
- College of ForestryGuizhou UniversityGuiyangChina
| | - Xiao‐fei Yu
- College of Tobacco ScienceGuizhou UniversityGuiyangChina
| | - Cecil L. Smith
- Georgia Museum of Natural HistoryUniversity of GeorgiaAthensGeorgiaUSA
| | - Mao‐fa Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Guizhou UniversityMinistry of AgricultureGuiyangChina
- College of Tobacco ScienceGuizhou UniversityGuiyangChina
| |
Collapse
|
4
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
5
|
Douglas T, Anderson R, Saltz JB. Limits to male reproductive potential across mating bouts in Drosophila melanogaster. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Polyandrous mating increases offspring production and lifespan in female Drosophila arizonae. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2589-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Castrezana S, Faircloth BC, Bridges WC, Gowaty PA. Polyandry enhances offspring viability with survival costs to mothers only when mating exclusively with virgin males in Drosophila melanogaster. Ecol Evol 2017; 7:7515-7526. [PMID: 28944035 PMCID: PMC5606902 DOI: 10.1002/ece3.3152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 11/08/2022] Open
Abstract
A prominent hypothesis for polyandry says that male–male competitive drivers induce males to coerce already‐mated females to copulate, suggesting that females are more likely to be harassed in the presence of multiple males. This early sociobiological idea of male competitive drive seemed to explain why sperm‐storing females mate multiply. Here, we describe an experiment eliminating all opportunities for male–male behavioral competition, while varying females’ opportunities to mate or not with the same male many times, or with many other males only one time each. We limited each female subject's exposure to no more than one male per day over her entire lifespan starting at the age at which copulations usually commence. We tested a priori predictions about relative lifespan and daily components of RS of female Drosophila melanogaster in experimental social situations producing lifelong virgins, once‐mated females, lifelong monogamous, and lifelong polyandrous females, using a matched‐treatments design. Results included that (1) a single copulation enhanced female survival compared to survival of lifelong virgins, (2) multiple copulations enhanced the number of offspring for both monogamous and polyandrous females, (3) compared to females in lifelong monogamy, polyandrous females paired daily with a novel, age‐matched experienced male produced offspring of enhanced viability, and (4) female survival was unchallenged when monogamous and polyandrous females could re‐mate with age‐ and experienced‐matched males. (5) Polyandrous females daily paired with novel virgin males had significantly reduced lifespans compared to polyandrous females with novel, age‐matched, and experienced males. (6) Polyandrous mating enhanced offspring viability and thereby weakened support for the random mating hypothesis for female multiple mating. Analyzes of nonequivalence of variances revealed opportunities for within‐sex selection among females. Results support the idea that females able to avoid constraints on their behavior from simultaneous exposure to multiple males can affect both RS and survival of females and offspring.
Collapse
Affiliation(s)
- Sergio Castrezana
- Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles CA USA.,Smithsonian Tropical Research Institute Washington DC USA
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles CA USA
| | - William C Bridges
- Department of Mathematical Sciences Clemson University Clemson SC USA
| | - Patricia Adair Gowaty
- Department of Ecology and Evolutionary Biology University of California, Los Angeles Los Angeles CA USA.,Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA USA.,Smithsonian Tropical Research Institute Washington DC USA
| |
Collapse
|