1
|
Bernos TA, Avlijaš S, Hill J, Morissette O, Ricciardi A, Mandrak NE, Jeffries KM. Genetic diversity and structure of a recent fish invasion: Tench ( Tinca tinca) in eastern North America. Evol Appl 2023; 16:173-188. [PMID: 36699124 PMCID: PMC9850014 DOI: 10.1111/eva.13520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/20/2023] Open
Abstract
Introduced and geographically expanding populations experience similar eco-evolutionary challenges, including founder events, genetic bottlenecks, and novel environments. Theory predicts that reduced genetic diversity resulting from such phenomena limits the success of introduced populations. Using 1900 SNPs obtained from restriction-site-associated DNA sequencing, we evaluated hypotheses related to the invasion history and connectivity of an invasive population of Tench (Tinca tinca), a Eurasian freshwater fish that has been expanding geographically in eastern North America for three decades. Consistent with the reported history of a single introduction event, our findings suggest that multiple introductions from distinct genetic sources are unlikely as Tench had a small effective population size (~114 [95% CI = 106-123] individuals), no strong population subdivision across time and space, and evidence of a recent genetic bottleneck. The large genetic neighbourhood size (220 km) and weak within-population genetic substructure suggested high connectivity across the invaded range, despite the relatively large area occupied. There was some evidence for a small decay in genetic diversity as the species expanded northward, but not southward, into new habitats. As eradicating the species within a ~112 km radius would be necessary to prevent recolonization, eradicating Tench is likely not feasible at watershed-and possibly local-scales. Management should instead focus on reducing abundance in priority conservation areas to mitigate adverse impacts. Our study indicates that introduced populations can thrive and exhibit relatively high levels of genetic diversity despite severe bottlenecks (<1.5% of the ancestral effective population size) and suggests that landscape heterogeneity and population demographics can generate variability in spatial patterns of genetic diversity within a single range expansion.
Collapse
Affiliation(s)
- Thaïs A. Bernos
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughScarboroughOntarioCanada
| | - Sunčica Avlijaš
- Redpath MuseumMcGill UniversityMontrealQuébecCanada
- Department of BiologyMcGill UniversityMontrealQuébecCanada
| | - Jaclyn Hill
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuébecCanada
| | - Olivier Morissette
- Département des Sciences FondamentalesUniversité du Québec à ChicoutimiChicoutimiQuébecCanada
| | | | - Nicholas E. Mandrak
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Kenneth M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
2
|
Gigliotti AK, Bowen WD, Hammill MO, Puryear WB, Runstadler J, Wenzel FW, Cammen KM. Sequence diversity and differences at the highly duplicated MHC-I gene reflect viral susceptibility in sympatric pinniped species. J Hered 2022; 113:525-537. [PMID: 35690352 PMCID: PMC9584807 DOI: 10.1093/jhered/esac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
Differences in disease susceptibility among species can result from rapid host-pathogen coevolution and differences in host species ecology that affect the strength and direction of natural selection. Among two sympatric pinniped species that differ in sociality and putative disease exposure, we investigate observed differences in susceptibility through an analysis of a highly variable, duplicated gene family involved in the vertebrate immune response. Using high-throughput amplicon sequencing, we characterize diversity at the two exons that encode the peptide binding region of the major histocompatibility complex class I (MHC-I) gene in harbor (N = 60) and gray (N = 90) seal populations from the Northwest Atlantic. Across species, we identified 106 full-length exon 2 and 103 exon 3 sequence variants and a minimum of 11 duplicated MHC-I loci. The sequence variants clustered in 15 supertypes defined by the physiochemical properties of the peptide binding region, including a putatively novel Northwest Atlantic MHC-I diversity sublineage. Trans-species polymorphisms, dN/dS ratios, and evidence of gene conversion among supertypes are consistent with balancing selection acting on this gene. High functional redundancy suggests particularly strong selection among gray seals at the novel Northwest Atlantic MHC-I diversity sublineage. At exon 2, harbor seals had a significantly greater number of variants per individual than gray seals, but fewer supertypes. Supertype richness and private supertypes are hypothesized to contribute to observed differences in disease resistance between species, as consistently, across the North Atlantic and many disease outbreaks, gray seals appear to be more resistant to respiratory viruses than harbor seals.
Collapse
Affiliation(s)
| | - W Don Bowen
- Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Michael O Hammill
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jonathan Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Frederick W Wenzel
- Protected Species Branch, NOAA, NMFS, Northeast Fisheries Science Center, Woods Hole, MA, USA
| | | |
Collapse
|
3
|
Hudson J, Bourne SD, Seebens H, Chapman MA, Rius M. The reconstruction of invasion histories with genomic data in light of differing levels of anthropogenic transport. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210023. [PMID: 35067090 PMCID: PMC8784929 DOI: 10.1098/rstb.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unravelling the history of range shifts is key for understanding past, current and future species distributions. Anthropogenic transport of species alters natural dispersal patterns and directly affects population connectivity. Studies have suggested that high levels of anthropogenic transport homogenize patterns of genetic differentiation and blur colonization pathways. However, empirical evidence of these effects remains elusive. We compared two range-shifting species (Microcosmus squamiger and Ciona robusta) to examine how anthropogenic transport affects our ability to reconstruct colonization pathways using genomic data. We first investigated shipping networks from the 18th century onwards, cross-referencing these with regions where the species have records to infer how each species has potentially been affected by different levels of anthropogenic transport. We then genotyped thousands of single-nucleotide polymorphisms from 280 M. squamiger and 190 C. robusta individuals collected across their extensive species' ranges and reconstructed colonization pathways. Differing levels of anthropogenic transport did not preclude the elucidation of population structure, though specific inferences of colonization pathways were difficult to discern in some of the considered scenario sets. We conclude that genomic data in combination with information of underlying introduction drivers provide key insights into the historic spread of range-shifting species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.
Collapse
Affiliation(s)
- J Hudson
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - S D Bourne
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - H Seebens
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - M A Chapman
- Department of Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - M Rius
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.,Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa.,Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc 14, Blanes 17300, Spain
| |
Collapse
|
4
|
Liu X, Schjøtt SR, Granquist SM, Rosing-Asvid A, Dietz R, Teilmann J, Galatius A, Cammen K, O Corry-Crowe G, Harding K, Härkönen T, Hall A, Carroll EL, Kobayashi Y, Hammill M, Stenson G, Frie AK, Lydersen C, Kovacs KM, Andersen LW, Hoffman JI, Goodman SJ, Vieira FG, Heller R, Moltke I, Tange Olsen M. Origin and expansion of the world's most widespread pinniped: range-wide population genomics of the harbour seal (Phoca vitulina). Mol Ecol 2022; 31:1682-1699. [PMID: 35068013 PMCID: PMC9306526 DOI: 10.1111/mec.16365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
The harbour seal (Phoca vitulina) is the most widely distributed pinniped, occupying a wide variety of habitats and climatic zones across the Northern Hemisphere. Intriguingly, the harbour seal is also one of the most philopatric seals, raising questions as to how it colonised virtually the whole of the Northern Hemisphere. To shed light on the origin, remarkable range expansion, population structure and genetic diversity of this species, we used genotyping-by-sequencing to analyse ~13,500 biallelic SNPs from 286 individuals sampled from 22 localities across the species' range. Our results point to a Northeast Pacific origin, colonisation of the North Atlantic via the Canadian Arctic, and subsequent stepping-stone range expansions across the North Atlantic from North America to Europe, accompanied by a successive loss of genetic diversity. Our analyses further revealed a deep divergence between modern North Pacific and North Atlantic harbour seals, with finer-scale genetic structure at regional and local scales consistent with strong philopatry. The study provides new insights into the harbour seal's remarkable ability to colonise and adapt to a wide range of habitats. Furthermore, it has implications for current harbour seal subspecies delineations and highlights the need for international and national red lists and management plans to ensure the protection of genetically and demographically isolated populations.
Collapse
Affiliation(s)
- Xiaodong Liu
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Denmark
| | | | - Sandra M Granquist
- Icelandic Seal Centre, Höfðabraut 6, 530, Hvammstangi, Iceland.,Marine and Freshwater Research Institute, Institute of Freshwater Fisheries Fornubúðir 5, 220, Hafnarfjörður, Iceland
| | | | - Rune Dietz
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jonas Teilmann
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Anders Galatius
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | | | - Greg O Corry-Crowe
- Wildlife Evolution and Behavior Program, Florida Atlantic University, USA
| | - Karin Harding
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | | | - Ailsa Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, UK, KY16 8LB
| | - Emma L Carroll
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Yumi Kobayashi
- Laboratory of Animal Ecology, Research Faculty of Agriculture, Hokkaido University, Japan
| | - Mike Hammill
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, P.O. Box 1000, Mont-Joli, QC, Canada
| | - Garry Stenson
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, P.O. Box 5667, St. John's NL, Canada
| | | | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | | - Joseph I Hoffman
- Department of Animal Behaviour, University of Bielefeld, 33501, Bielefeld, Germany.,British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Simon J Goodman
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Filipe G Vieira
- Center for Genomic Medicine, Copenhagen University Hospitalet, Denmark
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Denmark
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Denmark
| | - Morten Tange Olsen
- Section for Evolutionary Genomics, Globe Institute, University of Copenhagen, Denmark
| |
Collapse
|
5
|
von Thaden A, Cocchiararo B, Mueller SA, Reiners TE, Reinert K, Tuchscherer I, Janke A, Nowak C. Informing conservation strategies with museum genomics: Long-term effects of past anthropogenic persecution on the elusive European wildcat. Ecol Evol 2021; 11:17932-17951. [PMID: 35003648 PMCID: PMC8717334 DOI: 10.1002/ece3.8385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Like many carnivore species, European wildcats (Felis silvestris) have suffered severe anthropogenic population declines in the past, resulting in a strong population bottleneck at the beginning of the 20th century. In Germany, the species has managed to survive its near extinction in small isolated areas and is currently recolonizing former habitats owing to legal protection and concerted conservation efforts. Here, we SNP-genotyped and mtDNA-sequenced 56 historical and 650 contemporary samples to assess the impact of massive persecution on genetic diversity, population structure, and hybridization dynamics of wildcats. Spatiotemporal analyses suggest that the presumed postglacial differentiation between two genetically distinct metapopulations in Germany is in fact the result of the anthropogenic bottleneck followed by re-expansion from few secluded refugia. We found that, despite the bottleneck, populations experienced no severe genetic erosion, nor suffered from elevated inbreeding or showed signs of increased hybridization with domestic cats. Our findings have significant implications for current wildcat conservation strategies, as the data analyses show that the two presently recognized wildcat population clusters should be treated as a single conservation unit. Although current populations appear under no imminent threat from genetic factors, fostering connectivity through the implementation of forest corridors will facilitate the preservation of genetic diversity and promote long-term viability. The present study documents how museum collections can be used as essential resource for assessing long-term anthropogenic effects on natural populations, for example, regarding population structure and the delineation of appropriate conservation units, potentially informing todays' species conservation.
Collapse
Affiliation(s)
- Alina von Thaden
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Berardino Cocchiararo
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| | - Sarah Ashley Mueller
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Tobias Erik Reiners
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | - Katharina Reinert
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Department of Physical GeographyJohann Wolfgang Goethe‐UniversityFrankfurt am MainGermany
| | - Iris Tuchscherer
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
| | - Axel Janke
- Institute of Ecology, Evolution & DiversityJohann Wolfgang Goethe‐University, BiologicumFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
| | - Carsten Nowak
- Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| |
Collapse
|
6
|
Stokholm I, Puryear W, Sawatzki K, Knudsen SW, Terkelsen T, Becher P, Siebert U, Olsen MT. Emergence and radiation of distemper viruses in terrestrial and marine mammals. Proc Biol Sci 2021; 288:20211969. [PMID: 34702073 PMCID: PMC8548803 DOI: 10.1098/rspb.2021.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
Canine distemper virus (CDV) and phocine distemper virus (PDV) are major pathogens to terrestrial and marine mammals. Yet little is known about the timing and geographical origin of distemper viruses and to what extent it was influenced by environmental change and human activities. To address this, we (i) performed the first comprehensive time-calibrated phylogenetic analysis of the two distemper viruses, (ii) mapped distemper antibody and virus detection data from marine mammals collected between 1972 and 2018, and (iii) compiled historical reports on distemper dating back to the eighteenth century. We find that CDV and PDV diverged in the early seventeenth century. Modern CDV strains last shared a common ancestor in the nineteenth century with a marked radiation during the 1930s-1950s. Modern PDV strains are of more recent origin, diverging in the 1970s-1980s. Based on the compiled information on distemper distribution, the diverse host range of CDV and basal phylogenetic placement of terrestrial morbilliviruses, we hypothesize a terrestrial CDV-like ancestor giving rise to PDV in the North Atlantic. Moreover, given the estimated timing of distemper origin and radiation, we hypothesize a prominent role of environmental change such as the Little Ice Age, and human activities like globalization and war in distemper virus evolution.
Collapse
Affiliation(s)
- Iben Stokholm
- Evolutionary Genomics Section, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, Büsum 25761, Germany
| | - Wendy Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Kaitlin Sawatzki
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | - Thilde Terkelsen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, Büsum 25761, Germany
| | - Morten Tange Olsen
- Evolutionary Genomics Section, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark
| |
Collapse
|
7
|
Ferrante JA, Smith CH, Thompson LM, Hunter ME. Genome-wide SNP analysis of three moose subspecies at the southern range limit in the contiguous United States. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractGenome-wide evaluations of genetic diversity and population structure are important for informing management and conservation of trailing-edge populations. North American moose (Alces alces) are declining along portions of the southern edge of their range due to disease, species interactions, and marginal habitat, all of which may be exacerbated by climate change. We employed a genotyping by sequencing (GBS) approach in an effort to collect baseline information on the genetic variation of moose inhabiting the species’ southern range periphery in the contiguous United States. We identified 1920 single nucleotide polymorphisms (SNPs) from 155 moose representing three subspecies from five states: A. a. americana (New Hampshire), A. a. andersoni (Minnesota), and A. a. shirasi (Idaho, Montana, and Wyoming). Molecular analyses supported three geographically isolated clusters, congruent with currently recognized subspecies. Additionally, while moderately low genetic diversity was observed, there was little evidence of inbreeding. Results also indicated > 20% shared ancestry proportions between A. a. shirasi samples from northern Montana and A. a. andersoni samples from Minnesota, indicating a putative hybrid zone warranting further investigation. GBS has proven to be a simple and effective method for genome-wide SNP discovery in moose and provides robust data for informing herd management and conservation priorities. With increasing disease, predation, and climate related pressure on range edge moose populations in the United States, the use of SNP data to identify gene flow between subspecies may prove a powerful tool for moose management and recovery, particularly if hybrid moose are more able to adapt.
Collapse
|
8
|
Bubac CM, Cullingham CI, Fox JA, Bowen WD, den Heyer CE, Coltman DW. Genetic association with boldness and maternal performance in a free-ranging population of grey seals (Halichoerus grypus). Heredity (Edinb) 2021; 127:35-51. [PMID: 33927365 PMCID: PMC8249389 DOI: 10.1038/s41437-021-00439-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Individual variation in quantitative traits clearly influence many ecological and evolutionary processes. Moderate to high heritability estimates of personality and life-history traits suggest some level of genetic control over these traits. Yet, we know very little of the underlying genetic architecture of phenotypic variation in the wild. In this study, we used a candidate gene approach to investigate the association of genetic variants with repeated measures of boldness and maternal performance traits (weaning mass and lactation duration) collected over an 11- and 28-year period, respectively, in a free-ranging population of grey seals on Sable Island National Park Reserve, Canada. We isolated and re-sequenced five genes: dopamine receptor D4 (DRD4), serotonin transporter (SERT), oxytocin receptor (OXTR), and melanocortin receptors 1 (MC1R) and 5 (MC5R). We discovered single nucleotide polymorphisms (SNPs) in each gene; and, after accounting for loci in linkage disequilibrium and filtering due to missing data, we were able to test for genotype-phenotype relationships at seven loci in three genes (DRD4, SERT, and MC1R). We tested for association between these loci and traits of 180 females having extreme shy-bold phenotypes using mixed-effects models. One locus within SERT was significantly associated with boldness (effect size = 0.189) and a second locus within DRD4 with weaning mass (effect size = 0.232). Altogether, genotypes explained 6.52-13.66% of total trait variation. Our study substantiates SERT and DRD4 as important determinants of behaviour, and provides unique insight into the molecular mechanisms underlying maternal performance variation in a marine predator.
Collapse
Affiliation(s)
- Christine M. Bubac
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
| | - Catherine I. Cullingham
- grid.34428.390000 0004 1936 893XDepartment of Biology, Carleton University, Ottawa, ON Canada
| | - Janay A. Fox
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB Canada ,grid.14709.3b0000 0004 1936 8649Redpath Museum and Department of Biology, McGill University, Montreal, QC Canada
| | - W. Don Bowen
- grid.418256.c0000 0001 2173 5688Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, NS Canada ,grid.55602.340000 0004 1936 8200Biology Department, Dalhousie University, Halifax, NS Canada
| | - Cornelia E. den Heyer
- grid.418256.c0000 0001 2173 5688Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, NS Canada
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
9
|
Barr K, Beichman AC, Kalhori P, Rajbhandary J, Bay RA, Ruegg K, Smith TB. Persistent panmixia despite extreme habitat loss and population decline in the threatened tricolored blackbird ( Agelaius tricolor). Evol Appl 2021; 14:674-684. [PMID: 33767743 PMCID: PMC7980274 DOI: 10.1111/eva.13147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 01/25/2023] Open
Abstract
Habitat loss and alteration has driven many species into decline, often to the point of requiring protection and intervention to avert extinction. Genomic data provide the opportunity to inform conservation and recovery efforts with details about vital evolutionary processes with a resolution far beyond that of traditional genetic approaches. The tricolored blackbird (Agelaius tricolor) has suffered severe losses during the previous century largely due to anthropogenic impacts on their habitat. Using a dataset composed of a whole genome paired with reduced representation libraries (RAD-Seq) from samples collected across the species' range, we find evidence for panmixia using multiple methods, including PCA (no geographic clustering), admixture analyses (ADMIXTURE and TESS conclude K = 1), and comparisons of genetic differentiation (average FST = 0.029). Demographic modeling approaches recovered an ancient decline that had a strong impact on genetic diversity but did not detect any effect from the known recent decline. We also did not detect any evidence for selection, and hence adaptive variation, at any site, either geographic or genomic. These results indicate that species continues to have high vagility across its range despite population decline and habitat loss and should be managed as a single unit.
Collapse
Affiliation(s)
- Kelly Barr
- Center for Tropical ResearchInstitute of the Environment and SustainabilityUniversity of California, Los AngelesLos AngelesCAUSA
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Annabel C. Beichman
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Pooneh Kalhori
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Jasmine Rajbhandary
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Rachael A. Bay
- Department of Evolution and EcologyUniversity of California, DavisDavisCAUSA
| | - Kristen Ruegg
- Department of BiologyColorado State UniversityFort CollinsCOUSA
| | - Thomas B. Smith
- Center for Tropical ResearchInstitute of the Environment and SustainabilityUniversity of California, Los AngelesLos AngelesCAUSA
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
10
|
Cornwell BH. Gene flow in the anemone
Anthopleura elegantissima
limits signatures of local adaptation across an extensive geographic range. Mol Ecol 2020; 29:2550-2566. [DOI: 10.1111/mec.15506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
|
11
|
Wood SA, Murray KT, Josephson E, Gilbert J. Rates of increase in gray seal ( Halichoerus grypus atlantica) pupping at recolonized sites in the United States, 1988-2019. J Mammal 2020; 101:121-128. [PMID: 32099265 PMCID: PMC7035213 DOI: 10.1093/jmammal/gyz184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/28/2019] [Indexed: 11/14/2022] Open
Abstract
Gray seals were historically distributed along the northeastern coast of the United States, but bounties and lack of protection reduced numbers and they were rarely observed for most of the 20th century. Once protections were enacted, the population started to rebound. Here, we describe the recolonization and recovery of gray seals in the United States, focusing on the re-establishment of pupping sites. We fit individual generalized linear models to various time series (1988–2019) to estimate rates of increase in observed pup counts at four of the more data-rich sites. Annual rate of increase at individual sites ranged from −0.2% (95% CI: −2.3–1.9%) to 26.3% (95% CI: 21.6–31.4%). The increase in sites and number of pups born in the United States is driven by population growth and immigration from Canadian colonies and is part of a larger recovery of the Northwest Atlantic population. Wildlife protection, a healthy source population, habitat availability, and species traits that allow for dispersal and high productivity were all important factors in this recovery.
Collapse
Affiliation(s)
- Stephanie A Wood
- University of Massachusetts, Boston, Biology Department, Boston, MA, USA
| | | | | | - James Gilbert
- University of Maine, Department of Wildlife, Fisheries and Conservation Biology, Orono, ME, USA
| |
Collapse
|
12
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|