1
|
Mouton A, Bird DJ, Li G, Craven BA, Levine JM, Morselli M, Pellegrini M, Van Valkenburgh B, Wayne RK, Murphy WJ. Genetic and Anatomical Determinants of Olfaction in Dogs and Wild Canids. Mol Biol Evol 2025; 42:msaf035. [PMID: 39950968 PMCID: PMC11950533 DOI: 10.1093/molbev/msaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 03/29/2025] Open
Abstract
Understanding the anatomical and genetic basis of complex phenotypic traits has long been a challenge for biological research. Domestic dogs offer a compelling model as they demonstrate more phenotypic variation than any other vertebrate species. Dogs have been intensely selected for specific traits and abilities, directly or indirectly, over the past 15,000 years since their initial domestication from the gray wolf. Because olfaction plays a central role in critical tasks, such as the detection of drugs, diseases, and explosives, as well as human rescue, we compared relative olfactory capacity across dog breeds and assessed changes to the canine olfactory system to their direct ancestors, wolves, and coyotes. We conducted a cross-disciplinary survey of olfactory anatomy, olfactory receptor (OR) gene variation, and OR gene expression in domestic dogs. Through comparisons to their closest wild canid relatives, the gray wolf and coyote, we show that domestic dogs might have lost functional OR genes commensurate with a documented reduction in nasal morphology as an outcome of the domestication process prior to breed formation. Critically, within domestic dogs alone, we found no genetic or morphological profile shared among functional or genealogical breed groupings, such as scent hounds, that might indicate evidence of any human-directed selection for enhanced olfaction. Instead, our results suggest that superior scent detection dogs likely owe their success to advantageous behavioral traits and training rather than an "olfactory edge" provided by morphology or genes.
Collapse
Affiliation(s)
- Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- InBios-Conservation Genetics Lab, University of Liege, Liège, Belgium
| | - Deborah J Bird
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Gang Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025; 93:38-61. [PMID: 39774934 PMCID: PMC11850509 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Diversity of the MHC class II DRB gene in the wolverine (Carnivora: Mustelidae: Gulo gulo) in Finland. PLoS One 2022; 17:e0267609. [PMID: 35536786 PMCID: PMC9089919 DOI: 10.1371/journal.pone.0267609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
The wolverine (Gulo gulo) in Finland has undergone significant population declines in the past. Since major histocompatibility complex (MHC) genes encode proteins involved in pathogen recognition, the diversity of these genes provides insights into the immunological fitness of regional populations. We sequenced 862 amplicons (242 bp) of MHC class II DRB exon 2 from 32 Finnish wolverines and identified 11 functional alleles and three pseudogenes. A molecular phylogenetic analysis indicated trans-species polymorphism, and PAML and MEME analyses indicated positive selection, suggesting that the Finnish wolverine DRB genes have evolved under balancing and positive selection. In contrast to DRB gene analyses in other species, allele frequencies in the Finnish wolverines clearly indicated the existence of two regional subpopulations, congruent with previous studies based on neutral genetic markers. In the Finnish wolverine, rapid population declines in the past have promoted genetic drift, resulting in a lower genetic diversity of DRB loci, including fewer alleles and positively selected sites, than other mustelid species analyzed previously. Our data suggest that the MHC region in the Finnish wolverine population was likely affected by a recent bottleneck.
Collapse
|
4
|
Kang M, Ahn B, Youk S, Cho HS, Choi M, Hong K, Do JT, Song H, Jiang H, Kennedy LJ, Park C. High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Stefanović M, Ćirović D, Bogdanović N, Knauer F, Heltai M, Szabó L, Lanszki J, Zhelev CD, Schaschl H, Suchentrunk F. Positive selection on the MHC class II DLA-DQA1 gene in golden jackals (Canis aureus) from their recent expansion range in Europe and its effect on their body mass index. BMC Ecol Evol 2021; 21:122. [PMID: 34134625 PMCID: PMC8207625 DOI: 10.1186/s12862-021-01856-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background In Europe, golden jackals (Canis aureus) have been expanding their range out of the southern and southeastern Balkans towards central Europe continually since the 1960s. Here, we investigated the level of functional diversity at the MHC class II DLA-DQA1 exon 2 in golden jackal populations from Bulgaria, Serbia, and Hungary. Specifically, we tested for positive selection on and geographic variation at that locus due to adaptation to supposedly regionally varying pathogenic landscapes. To test for potential fitness effects of different protein variants on individual body condition, we used linear modeling of individual body mass indexes (bmi) and accounted for possible age, sex, geographical, and climatic effects. The latter approach was performed, however, only on Serbian individuals with appropriate data. Results Only three different DLA-DQA1 alleles were detected, all coding for different amino-acid sequences. The neutrality tests revealed no significant but positive values; there was no signal of spatial structuring and no deviation from the Hardy–Weinberg equilibrium across the studied range of expansion. However, we found a signal of trans-species polymorphism and significant test results for positive selection on three codons. Our information-theory based linear modeling results indicated an effect of ambient temperature on the occurrence of individual DLA-DQA1 genotypes in individuals from across the studied expansion range, independent from geographical position. Our linear modeling results of individual bmi values indicated that yearlings homozygous for DLA-DQA1*03001 reached values typical for adults contrary to yearlings carrying other genotypes (protein combinations). This suggested better growth rates and thus a possible fitness advantage of yearlings homozygous for DLA-DQA1*03001. Conclusions Our results indicate a demographic (stochastic) signal of reduced DLA-DQA1 exon 2 variation, in line with the documented historical demographic bottleneck. At the same time, however, allelic variation was also affected by positive selection and adaptation to varying ambient temperature, supposedly reflecting geographic variation in the pathogenic landscape. Moreover, an allele effect on body mass index values of yearlings suggested differential fitness associated with growth rates. Overall, a combination of a stochastic effect and positive selection has shaped and is still shaping the variation at the studied MHC locus. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01856-z.
Collapse
Affiliation(s)
- Milomir Stefanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.,Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Neda Bogdanović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Miklós Heltai
- Institute for Wildlife Conservation, Szent István University, Páter Károly utca 1, Gödöllő, 2100, Hungary
| | - László Szabó
- Institute for Wildlife Conservation, Szent István University, Páter Károly utca 1, Gödöllő, 2100, Hungary
| | - József Lanszki
- Ecological Research Group, University of Kaposvár, PO Box 16, 7401, Kaposvár, Hungary
| | | | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
6
|
Structure of the upper teeth of the red fox (Vulpes vulpes) and Arctic fox (Vulpes lagopus) and analysis of dental variability in insular forms. RUSSIAN JOURNAL OF THERIOLOGY 2021. [DOI: 10.15298/rusjtheriol.20.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Lee C, Day J, Goodman SM, Pedrono M, Besnard G, Frantz L, Taylor PJ, Herrera MJ, Gongora J. Genetic origins and diversity of bushpigs from Madagascar (Potamochoerus larvatus, family Suidae). Sci Rep 2020; 10:20629. [PMID: 33244111 PMCID: PMC7693328 DOI: 10.1038/s41598-020-77279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 11/08/2022] Open
Abstract
The island of Madagascar, situated off the southeast coast of Africa, shows the first evidence of human presence ~ 10,000 years ago; however, other archaeological data indicates a settlement of the modern peoples of the island distinctly more recent, perhaps > 1500 years ago. Bushpigs of the genus Potamochoerus (family Suidae), are today widely distributed in Madagascar and presumed to have been introduced from Africa at some stage by human immigrants to the island. However, disparities about their origins in Madagascar have been presented in the literature, including the possibility of endemic subspecies, and few empirical data are available. Furthermore, the separation of bushpigs in Madagascar from their mainland relatives may have favoured the evolution of a different repertoire of immune genes first due to a founder effect and then as a response to distinct pathogens compared to their ancestors. Molecular analysis confirmed the species status of the bushpig in Madagascar as P. larvatus, likely introduced from the central region of southern Africa, with no genetic evidence for the recognition of eastern and western subspecies as suggested from previous cranial morphology examination. Investigation of the immunologically important SLA-DQB1 peptide-binding region showed a different immune repertoire of bushpigs in Madagascar compared to those on the African mainland, with seventeen exon-2 haplotypes unique to bushpigs in Madagascar (2/28 haplotypes shared). This suggests that the MHC diversity of the Madagascar populations may have enabled Malagasy bushpigs to adapt to new environments.
Collapse
Affiliation(s)
- Carol Lee
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jenna Day
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Steven M Goodman
- Field Museum of Natural History, Chicago, IL, 60605, USA
- Association Vahatra, 101, Antananarivo, Madagascar
| | - Miguel Pedrono
- UMR ASTRE, INRAE, CIRAD, Université de Montpellier, 34398, Montpellier Cedex 5, France
| | - Guillaume Besnard
- CNRS, UPS, IRD, Laboratoire Evolution et Diversité Biologique, UMR5174, Université Toulouse III Paul Sabatier, 31062, Toulouse, France
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Peter J Taylor
- School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, Limpopo Province, South Africa
- Afromontane Research Unit and Zoology Department, University of the Free State, Qwa Qwa campus, Phuthaditjhaba, 9866, South Africa
| | - Michael J Herrera
- Archaeological Studies Program, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Jaime Gongora
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
Prôa M, Nanova O. Severe population bottleneck and cranial morphology change in the Mednyi Island subspecies of Arctic fox Vulpes lagopus (Carnivora: Canidae). MAMMALIA 2020. [DOI: 10.1515/mammalia-2018-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Arctic foxes, Vulpes lagopus living on Mednyi Island suffered a drastic decline in population size in the late 1970s due to an outbreak of mange epizootic. This dramatic fall in numbers rendered the subspecies endangered, and the concomitant loss of variability resulted in a population bottleneck. Here, we investigate whether differences in cranial morphology between Mednyi Island Arctic foxes and Bering Island Arctic foxes could be attributed to the severe population bottleneck suffered by the Mednyi population in the 1970s. We used morphometric traits as proxies for genetic data to provide estimates of FST. Results show higher FST estimates for the Mednyi population than for the Bering population, which we interpret as a bottleneck signature. FST results also indicate a pattern of divergence between the two populations consistent with random genetic drift. Bottleneck detection is critical for the interpretation of the demographic history of the endangered Mednyi Island Arctic fox, with consequences for conservation management.
Collapse
Affiliation(s)
- Miguel Prôa
- Centro de Investigação em Antropologia e Saúde, Departamento de Ciências da Vida , Universidade de Coimbra , Apartado 3046 , 3001-401 Coimbra , Portugal
| | - Olga Nanova
- Zoological Museum , M.V. Lomonosov Moscow State University , Bol’shaya Nikitskaya, 2 , Moscow 125009 , Russia
| |
Collapse
|
9
|
Goltsman ME, Sushko ED, Doronina L, Kruchenkova EP. An Individual-Based Model of the Population Dynamics of the Arctic Fox (Vulpes lagopus semenovi) on Mednyi Island, Commander Islands, North Pacific. BIOL BULL+ 2020. [DOI: 10.1134/s106235901908003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bartocillo AMF, Nishita Y, Abramov AV, Masuda R. Molecular evolution of MHC class II DRB exon 2 in Japanese and Russian raccoon dogs, Nyctereutes procyonoides (Carnivora: Canidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractRaccoon dogs, Nyctereutes procyonoides, are native to East Asia, but have been introduced into western Russia and eastern Europe. To determine allelic diversity and elucidate the evolution of major histocompatibility complex (MHC) class II genes in the raccoon dog, we analysed a 237-bp region of DRB exon 2 from 36 individuals of native and introduced populations from Japan and Russia. We detected 23 DRB alleles (Nypr-DRBs), 22 of which were novel. Some alleles were found across the species’ range, while others were geographically restricted. For both native and introduced populations, the ratio of non-synonymous to synonymous substitution rates for codons at predicted antigen-binding sites was significantly greater than 2, indicating that Nypr-DRBs have evolved under positive selection. Mixed effect model evolution analysis and an algorithm to detect recombination showed five positively selected codons and one recombination breakpoint, respectively. Overall, our results suggest that the diversity of MHC class II DRB in N. procyonoides was influenced and maintained by recombination, pathogen-driven positive selection, geographical barriers and the founder effect. A Bayesian phylogenetic tree revealed no evidence of trans-species polymorphism (TSP), but instead showed monophyly for the Nypr-DRB alleles within a larger clade of canid sequences. The lack of TSP may have been due to long-term divergence of raccoon dogs from other canids, or to their having encountered different sets of pathogens due to occupying a different ecological niche.
Collapse
Affiliation(s)
- Aye Mee F Bartocillo
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Yoshinori Nishita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Alexei V Abramov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. Saint Petersburg, Russia
| | - Ryuichi Masuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita-Ku, Sapporo, Japan
| |
Collapse
|
11
|
Pisano SRR, Zimmermann F, Rossi L, Capt S, Akdesir E, Bürki R, Kunz F, Origgi FC, Ryser-Degiorgis MP. Spatiotemporal spread of sarcoptic mange in the red fox (Vulpes vulpes) in Switzerland over more than 60 years: lessons learnt from comparative analysis of multiple surveillance tools. Parasit Vectors 2019; 12:521. [PMID: 31690337 PMCID: PMC6833187 DOI: 10.1186/s13071-019-3762-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sarcoptic mange is a contagious skin disease of wild and domestic mammals caused by the mite Sarcoptes scabiei. Reports of sarcoptic mange in wildlife increased worldwide in the second half of the 20th century, especially since the 1990s. The aim of this study was to provide new insights into the epidemiology of mange by (i) documenting the emergence of sarcoptic mange in the red fox (Vulpes vulpes) in the last decades in Switzerland; and (ii) describing its spatiotemporal spread combining data obtained through different surveillance methods. METHODS Retrospective analysis of archived material together with prospective data collection delivered a large dataset from the 19th century to 2018. Methods included: (i) a review of historical literature; (ii) screening of necropsy reports from general health surveillance (1958-2018); (iii) screening of data on mange (1968-1992) collected during the sylvatic rabies eradication campaign; (iv) a questionnaire survey (<1980-2017) and (v) evaluation of camera-trap bycatch data (2005-2018). RESULTS Sarcoptic mange in red foxes was reported as early as 1835 in Switzerland. The first case diagnosed in the framework of the general health surveillance was in 1959. Prior to 1980, sarcoptic mange occurred in non-adjacent surveillance districts scattered all over the country. During the period of the rabies epidemic (1970s-early 1990s), the percentage of foxes tested for rabies with sarcoptic mange significantly decreased in subregions with rabies, whereas it remained high in the few rabies-free subregions. Sarcoptic mange re-emerged in the mid-1990s and continuously spread during the 2000-2010s, to finally extend to the whole country in 2017. The yearly prevalence of mange in foxes estimated by camera-trapping ranged from 0.1-12%. CONCLUSIONS Sarcoptic mange has likely been endemic in Switzerland as well as in other European countries at least since the mid-19th century. The rabies epidemics seem to have influenced the pattern of spread of mange in several locations, revealing an interesting example of disease interaction in free-ranging wildlife populations. The combination of multiple surveillance tools to study the long-term dynamics of sarcoptic mange in red foxes in Switzerland proved to be a successful strategy, which underlined the usefulness of questionnaire surveys.
Collapse
Affiliation(s)
- Simone Roberto Rolando Pisano
- Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| | - Fridolin Zimmermann
- KORA – Carnivore Ecology and Wildlife Management, Thunstrasse 31, 3074 Muri, Switzerland
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simon Capt
- Info Fauna, Swiss Centre for the Cartography of the Fauna, Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Ezgi Akdesir
- Swiss Rabies Centre, Institute of Virology and Immunology (IVI), Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| | - Roland Bürki
- KORA – Carnivore Ecology and Wildlife Management, Thunstrasse 31, 3074 Muri, Switzerland
| | - Florin Kunz
- KORA – Carnivore Ecology and Wildlife Management, Thunstrasse 31, 3074 Muri, Switzerland
| | - Francesco Carlo Origgi
- Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| | - Marie-Pierre Ryser-Degiorgis
- Centre for Fish and Wildlife Health (FIWI), Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, PO Box, 3001 Bern, Switzerland
| |
Collapse
|
12
|
Martín-Serra A, Nanova O, Varón-González C, Ortega G, Figueirido B. Phenotypic integration and modularity drives skull shape divergence in the Arctic fox ( Vulpes lagopus) from the Commander Islands. Biol Lett 2019; 15:20190406. [PMID: 31551067 DOI: 10.1098/rsbl.2019.0406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phenotypic integration and modularity influence morphological disparity and evolvability. However, studies addressing how morphological integration and modularity change for long periods of genetic isolation are scarce. Here, we investigate patterns of phenotypic integration and modularity in the skull of phenotypically and genetically distinct populations of the Artic fox (Vulpes lagopus) from the Commander Islands of the Aleutian belt (i.e. Bering and Mednyi) that were isolated ca 10 000 years by ice-free waters of the Bering sea. We use three-dimensional geometric morphometrics to quantify the strength of modularity and integration from inter-individual variation (static) and from fluctuating asymmetry (random developmental variation) in both island populations compared to the mainland population (i.e. Chukotka) and we investigated how changes in morphological integration and modularity affect disparity and the directionality of trait divergence. Our results indicate a decrease in morphological integration concomitant to an increase in disparity at a developmental level, from mainland to the smallest and farthest population of Mednyi. However, phenotypic integration is higher in both island populations accompanied by a reduction in disparity compared to the population of mainland at a static level. This higher integration may have favoured morphological adaptive changes towards specific feeding behaviours related to the extreme environmental settings of islands. Our study demonstrates how shifts in phenotypic integration and modularity can facilitate phenotypic evolvability at the intraspecific level that may lead to lineage divergence at macroevolutioanry scales.
Collapse
Affiliation(s)
- Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29700 Málaga, Spain
| | - Olga Nanova
- Zoological Museum, M.V. Lomonosov Moscow State University, Bolshaya Nikitskaya 2, Moscow, Russia
| | - Ceferino Varón-González
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UMPC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 42 rue Buffon, CP50, 75005 Paris, France
| | - Germán Ortega
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29700 Málaga, Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29700 Málaga, Spain
| |
Collapse
|
13
|
Lan H, Zhou T, Wan QH, Fang SG. Genetic Diversity and Differentiation at Structurally Varying MHC Haplotypes and Microsatellites in Bottlenecked Populations of Endangered Crested Ibis. Cells 2019; 8:E377. [PMID: 31027280 PMCID: PMC6523929 DOI: 10.3390/cells8040377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
Investigating adaptive potential and understanding the relative roles of selection and genetic drift in populations of endangered species are essential in conservation. Major histocompatibility complex (MHC) genes characterized by spectacular polymorphism and fitness association have become valuable adaptive markers. Herein we investigate the variation of all MHC class I and II genes across seven populations of an endangered bird, the crested ibis, of which all current individuals are offspring of only two pairs. We inferred seven multilocus haplotypes from linked alleles in the Core Region and revealed structural variation of the class II region that probably evolved through unequal crossing over. Based on the low polymorphism, structural variation, strong linkage, and extensive shared alleles, we applied the MHC haplotypes in population analysis. The genetic variation and population structure at MHC haplotypes are generally concordant with those expected from microsatellites, underlining the predominant role of genetic drift in shaping MHC variation in the bottlenecked populations. Nonetheless, some populations showed elevated differentiation at MHC, probably due to limited gene flow. The seven populations were significantly differentiated into three groups and some groups exhibited genetic monomorphism, which can be attributed to founder effects. We therefore propose various strategies for future conservation and management.
Collapse
Affiliation(s)
- Hong Lan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Department of Agriculture, Zhejiang Open University, Hangzhou 310012, China.
| | - Tong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Amaike Y, Nishita Y, Uraguchi K, Masuda R. Genetic Diversity of MHC Class II DRB1 Exon 2 in the Red Fox (Vulpes vulpes) on Hokkaido, Japan. Zoolog Sci 2018; 35:402-410. [DOI: 10.2108/zs170211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yosuke Amaike
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Yoshinori Nishita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kohji Uraguchi
- Hokkaido Institute of Public Health, Kita 19, Nishi 12, Kita-ku, Sapporo 060-0819, Japan
| | - Ryuichi Masuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
15
|
Marshall HD, Langille BL, Hann CA, Whitney HG. Patterns of MHC-DRB1 polymorphism in a post-glacial island canid, the Newfoundland red fox (Vulpes vulpes deletrix), suggest balancing selection at species and population timescales. Immunogenetics 2016; 68:381-9. [PMID: 26894280 PMCID: PMC4842217 DOI: 10.1007/s00251-016-0907-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/04/2016] [Indexed: 11/29/2022]
Abstract
As the only native insular Newfoundland canid between the extinction of the wolf in the 1930s and the recent arrival of coyotes, the red fox (Vulpes vulpes deletrix Bangs 1898) poses interesting questions about genetic distinctiveness and the post-glacial colonization history of the island’s depauperate mammalian fauna. Here, we characterized genetic variability at the major histocompatibility complex (MHC) class II DR β1 domain (DRB1) locus in 28 red foxes from six sampling localities island-wide and compared it with mitochondrial control region (CR) diversity and DRB1 diversity in other canids. Our goals were to describe novel DRB1 alleles in a new canid population and to make inferences about the role of selection in maintaining their diversity. As in numerous studies of vertebrates, we found an order-of-magnitude higher nucleotide diversity at the DRB1 locus compared with the CR and significantly positive nonsynonymous-to-synonymous substitution ratios, indicative of selection in the distant past. Although the evidence is weaker, the Ewens-Watterson test of neutrality and the geographical distribution of variation compared with the CR suggest a role for selection over the evolutionary timescale of populations. We report the first genetic data from the DRB1 locus in the red fox and establish baseline information regarding immunogenetic variation in this island canid population which should inform continued investigations of population demography, adaptive genetic diversity, and wildlife disease in red foxes and related species.
Collapse
Affiliation(s)
- H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada.
| | - Barbara L Langille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Crystal A Hann
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Hugh G Whitney
- Animal Health Division, Forestry and Agrifoods Agency, Box 7400, St. John's, Newfoundland, A1E 3Y5, Canada
| |
Collapse
|
16
|
Brzeski KE, Harrison RB, Waddell WT, Wolf KN, Rabon DR, Taylor SS. Infectious disease and red wolf conservation: assessment of disease occurrence and associated risks. J Mammal 2015; 96:751-761. [PMID: 32287383 PMCID: PMC7107507 DOI: 10.1093/jmammal/gyv080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/09/2015] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases pose a significant threat to global biodiversity and may contribute to extinction. As such, establishing baseline disease prevalence in vulnerable species where disease could affect persistence is important to conservation. We assessed potential disease threats to endangered red wolves (Canis rufus) by evaluating regional (southeastern United States) disease occurrences in mammals and parasite prevalence in red wolves and sympatric coyotes (Canis latrans) in North Carolina. Common viral pathogens in the southeast region, such as canine distemper and canine parvovirus, and numerous widespread endoparasites could pose a threat to the red wolf population. The most prevalent parasites in red wolves and sympatric coyotes were heartworm (Dirofilaria immitis), hookworm (Ancylostoma caninum), and Ehrlichia spp.; several red wolves and coyotes were also positive for bacteria causing Lyme disease (Borrelia burgdorferi). Coyotes had a more species-rich parasite community than red wolves, suggesting they could harbor more parasites and act as a disease reservoir. Species identity and sex did not significantly affect parasite loads, but young canids were less likely to have heartworm and more likely to have high levels of endoparasites. Continued disease monitoring is important for red wolf recovery because low levels of genetic variability may compromise the wolves' abilities to combat novel pathogens from closely related species, such as domestic dogs and coyotes.
Collapse
|
17
|
Richmond JQ, Wood DA, Stanford JW, Fisher RN. Testing for multiple invasion routes and source populations for the invasive brown treesnake (Boiga irregularis) on Guam: implications for pest management. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0733-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Drift rather than selection dominates MHC class II allelic diversity patterns at the biogeographical range scale in natterjack toads Bufo calamita. PLoS One 2014; 9:e100176. [PMID: 24937211 PMCID: PMC4061088 DOI: 10.1371/journal.pone.0100176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 05/23/2014] [Indexed: 12/31/2022] Open
Abstract
Study of major histocompatibility complex (MHC) loci has gained great popularity in recent years, partly due to their function in protecting vertebrates from infections. This is of particular interest in amphibians on account of major threats many species face from emergent diseases such as chytridiomycosis. In this study we compare levels of diversity in an expressed MHC class II locus with neutral genetic diversity at microsatellite loci in natterjack toad (Bufo (Epidalea) calamita) populations across the whole of the species' biogeographical range. Variation at both classes of loci was high in the glacial refugium areas (REF) and much lower in postglacial expansion areas (PGE), especially in range edge populations. Although there was clear evidence that the MHC locus was influenced by positive selection in the past, congruence with the neutral markers suggested that historical demographic events were the main force shaping MHC variation in the PGE area. Both neutral and adaptive genetic variation declined with distance from glacial refugia. Nevertheless, there were also some indications from differential isolation by distance and allele abundance patterns that weak effects of selection have been superimposed on the main drift effect in the PGE zone.
Collapse
|
19
|
Niskanen AK, Kennedy LJ, Ruokonen M, Kojola I, Lohi H, Isomursu M, Jansson E, Pyhäjärvi T, Aspi J. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol Ecol 2014; 23:875-89. [DOI: 10.1111/mec.12647] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 02/03/2023]
Affiliation(s)
- A. K. Niskanen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - L. J. Kennedy
- Centre for Integrated Genomic Medical Research; University of Manchester; Stopford Building Oxford Road Manchester M13 9PT UK
| | - M. Ruokonen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - I. Kojola
- Finnish Game and Fisheries Research Institute; Paavo Havaksen tie 3 PO Box 413 FI-90014 Oulu Finland
| | - H. Lohi
- Department of Veterinary Biosciences; Research Programs Unit; Molecular Neurology; Folkhälsan Institute of Genetics; Biomedicum Helsinki; University of Helsinki; PO Box 63 FI-00014 Helsinki Finland
| | - M. Isomursu
- Fish and Wildlife Health Research Unit; Finnish Food Safety Authority Evira; PO Box 517 FI-90101 Oulu Finland
| | - E. Jansson
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - T. Pyhäjärvi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - J. Aspi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| |
Collapse
|
20
|
Müller N, Ostner J, Schülke O, Walter L. Towards the non-invasive assessment of MHC genotype in wild primates: analysis of wild Assamese macaque MHC-DRB from fecal samples. Am J Primatol 2013; 76:230-8. [PMID: 24151109 DOI: 10.1002/ajp.22225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/04/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in the immune response and may thus crucially affect an individual's fitness, relevant also for studies on evolutionary ecology and wildlife conservation. Detailed knowledge on the genomic organization, polymorphism and diversity of the MHC has a narrow taxonomic focus though and among macaques is only available for rhesus and long-tailed macaques-the species most commonly kept for biomedical research. The lack of data on wild populations is largely due to the difficulty of obtaining blood or tissue samples necessary for genotyping approaches. Here, we aimed at analyzing MHC-DRB from non-invasively collected fecal samples in wild Assamese macaques (Macaca assamensis), utilizing the MHC-DRB-STR (D6S2878) microsatellite marker. Due to the fecal DNA source incomplete genotypes occurred, which may be improved in the future by method refinement. We detected 28 distinct DRB-STR lengths in 43 individuals with individual genotypes containing 1-9 MHC-DRB-STRs and defined four haplotypes segregating between families in Mendelian fashion. Our results indicate that variability and diversity of MHC-DRB in Assamese macaques is comparable to that of other macaque species and importantly, that fecal samples can be used for non-invasive analysis of MHC genes after refinement of the applied methods, opening a number of opportunities for MHC research on natural populations.
Collapse
Affiliation(s)
- Nadine Müller
- Social Evolution in Primates Group, Courant Research Center Evolution of Social Behavior, Georg-August University Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
Oomen RA, Gillett RM, Kyle CJ. Comparison of 454 pyrosequencing methods for characterizing the major histocompatibility complex of nonmodel species and the advantages of ultra deep coverage. Mol Ecol Resour 2012; 13:103-16. [PMID: 23095905 DOI: 10.1111/1755-0998.12027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 12/23/2022]
Abstract
Characterization and population genetic analysis of multilocus genes, such as those found in the major histocompatibility complex (MHC) is challenging in nonmodel vertebrates. The traditional method of extensive cloning and Sanger sequencing is costly and time-intensive and indirect methods of assessment often underestimate total variation. Here, we explored the suitability of 454 pyrosequencing for characterizing multilocus genes for use in population genetic studies. We compared two sample tagging protocols and two bioinformatic procedures for 454 sequencing through characterization of a 185-bp fragment of MHC DRB exon 2 in wolverines (Gulo gulo) and further compared the results with those from cloning and Sanger sequencing. We found 10 putative DRB alleles in the 88 individuals screened with between two and four alleles per individual, suggesting amplification of a duplicated DRB gene. In addition to the putative alleles, all individuals possessed an easily identifiable pseudogene. In our system, sequence variants with a frequency below 6% in an individual sample were usually artefacts. However, we found that sample preparation and data processing procedures can greatly affect variant frequencies in addition to the complexity of the multilocus system. Therefore, we recommend determining a per-amplicon-variant frequency threshold for each unique system. The extremely deep coverage obtained in our study (approximately 5000×) coupled with the semi-quantitative nature of pyrosequencing enabled us to assign all putative alleles to the two DRB loci, which is generally not possible using traditional methods. Our method of obtaining locus-specific MHC genotypes will enhance population genetic analyses and studies on disease susceptibility in nonmodel wildlife species.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada.
| | | | | |
Collapse
|
22
|
Ploshnitsa AI, Goltsman ME, Happ GM, Macdonald DW, Kennedy LJ. Historical and modern neutral genetic variability in
M
ednyi
A
rctic foxes passed through a severe bottleneck. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2012.00964.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. I. Ploshnitsa
- Biology Faculty, Department of Vertebrate Zoology Lomonosov Moscow State University Moscow Russia
| | - M. E. Goltsman
- Biology Faculty, Department of Vertebrate Zoology Lomonosov Moscow State University Moscow Russia
| | - G. M. Happ
- Institute of Arctic Biology University of Alaska Fairbanks AK USA
| | - D. W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, The Recananti‐Kaplan Centre, Tubney House University of Oxford Tubney UK
| | - L. J. Kennedy
- Centre for Integrated Genomic Medical Research The University of Manchester Manchester UK
| |
Collapse
|