1
|
Pinto T, Santos SM, Mira A, Sillero N. Tell me where you go, and I'll tell you where you die: landscape connectivity as a tool to predict amphibian roadkill risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125273. [PMID: 40199223 DOI: 10.1016/j.jenvman.2025.125273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Human overpopulation, development, and consequent activities such as land conversion and linear infrastructure expansion, are currently some of the main threats to biodiversity. Amphibians are especially affected because they depend on both aquatic and terrestrial habitats to complete their life cycles, which can be negatively impacted by roads, due to reduced landscape connectivity. Understanding animal movement across the landscape may improve the prioritisation of sites to implementing mitigation measures. We assessed landscape connectivity using circuit theory, for two amphibian species (the Iberian spadefoot toad and the Iberian ribbed newt) on a Mediterranean landscape in Southern Portugal. We addressed the following question: Can landscape connectivity predict amphibian roadkill risk? Our connectivity models assigned higher current movement corridors to heterogeneous habitats composed of sparse forests combined with low-management agricultural areas and good networks of higher-density water bodies. We found a positive correlation between high-connectivity road segments and roadkill for both species, proving that landscape connectivity can be a valuable tool to predict locations with higher roadkill probability. We acknowledge that maintaining a heterogeneous landscape, with a higher density of short-distance water bodies that connect highly suitable habitats is important for amphibians. The identification of corridors with increased amphibian movement probability provides useful insights for road agencies to implement amphibian-oriented roadkill mitigation measures.
Collapse
Affiliation(s)
- Tiago Pinto
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE, Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554, Évora, Portugal; Conservation Biology Lab (UBC), University of Évora, Mitra, 7002-554, Évora, Portugal.
| | - Sara M Santos
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE, Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554, Évora, Portugal; Conservation Biology Lab (UBC), University of Évora, Mitra, 7002-554, Évora, Portugal
| | - António Mira
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE, Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554, Évora, Portugal; Conservation Biology Lab (UBC), University of Évora, Mitra, 7002-554, Évora, Portugal
| | - Neftalí Sillero
- Research Centre in Geo-Spatial Sciences (CICGE), Faculty of Science, University of Porto, Alameda Do Monte da Virgem, 4430-146, Vila Nova de Gaia, Portugal
| |
Collapse
|
2
|
Talavera A, Palmada-Flores M, Burriel-Carranza B, Valbuena-Ureña E, Mochales-Riaño G, Adams DC, Tejero-Cicuéndez H, Soler-Membrives A, Amat F, Guinart D, Carbonell F, Obon E, Marquès-Bonet T, Carranza S. Genomic insights into the Montseny brook newt ( Calotriton arnoldi), a Critically Endangered glacial relict. iScience 2024; 27:108665. [PMID: 38226169 PMCID: PMC10788218 DOI: 10.1016/j.isci.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
The Montseny brook newt (Calotriton arnoldi), considered the most endangered amphibian in Europe, is a relict salamandrid species endemic to a small massif located in northeastern Spain. Although conservation efforts should always be guided by genomic studies, those are yet scarce among urodeles, hampered by the extreme sizes of their genomes. Here, we present the third available genome assembly for the order Caudata, and the first genomic study of the species and its sister taxon, the Pyrenean brook newt (Calotriton asper), combining whole-genome and ddRADseq data. Our results reveal significant demographic oscillations which accurately mirrored Europe's climatic history. Although severe bottlenecks have led to depauperate genomic diversity and long runs of homozygosity along a gigantic genome, inbreeding might have been avoided by assortative mating strategies. Other life history traits, however, seem to have been less advantageous, and the lack of land dispersal has driven to exceptional levels of population fragmentation.
Collapse
Affiliation(s)
- Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Marc Palmada-Flores
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, Pº Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | | | | | - Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fèlix Amat
- Àrea d’Herpetologia, BiBIO, Museu de Granollers – Ciències Naturals. Palaudàries 102, Granollers, Barcelona, Spain
| | - Daniel Guinart
- Servei de Gestió de Parcs Naturals, Diputació de Barcelona, Spain
| | - Francesc Carbonell
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Elena Obon
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
3
|
Where Land and Water Meet: Making Amphibian Breeding Sites Attractive for Amphibians. DIVERSITY 2022. [DOI: 10.3390/d14100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The protection of wetlands is a cornerstone in the conservation of pond-breeding amphibians. Because protected wetlands are rarely natural areas, but are often man-made, at least in Europe, it is important that they are well managed to fulfill their intended function. Appropriate management requires knowledge of the ecology of the species, particularly habitat requirements. Here, we combine species monitoring data and habitat mapping data in an analysis where our goal was to describe the factors that determine the occupancy of amphibian species in federally protected amphibian breeding sites. As expected, every species had its own habitat requirements, often a combination of both a terrestrial and aquatic habitat (i.e., landscape complementation). In most species, occupancy was strongly positively affected with the amount of aquatic habitat, but predicted occupancy probabilities were low because the amount of aquatic habitat was low in most sites. The area or proportion of ruderal vegetation also had positive effects on multiple species, while other types of terrestrial habitat (e.g., meadows) led to low occupancy probabilities. The total area of the protected breeding sites was never included in a final model and connectivity was important only for one species (Triturus cristatus). The latter finding implies that the quality of the landscape between breeding sizes is more important than distance per se, while the former implies that the area of some specific habitats within breeding sites is crucial for high occupancies. Thus, increasing the amount of aquatic habitats and likewise terrestrial habitats within protected areas would make them more likely to achieve their conservation objectives. Our study is an example of how the joint analysis of monitoring data and habitat data (based on mapping in the field) can lead to evidence-based suggestions on how to improve conservation practice.
Collapse
|
4
|
Murphy M, Boone M. Evaluating the role of body size and habitat type in movement behavior in human-dominated systems: A frog's eye view. Ecol Evol 2022; 12:e9022. [PMID: 35784035 PMCID: PMC9217892 DOI: 10.1002/ece3.9022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Animal movement is a key process that connects and maintains populations on the landscape, yet for most species, we do not understand how intrinsic and extrinsic factors interact to influence individual movement behavior.Land-use/land-cover changes highlight that connectivity among populations will depend upon an individual's ability to traverse habitats, which may vary as a result of habitat permeability, individual condition, or a combination of these factors.We examined the effects of intrinsic (body size) and extrinsic (habitat type) factors on desiccation tolerance, movement, and orientation in three anuran species (American toads, Anaxyrus americanus; northern leopard frogs, Lithobates pipiens; and Blanchard's cricket frogs, Acris blanchardi) using laboratory and field studies to connect the effects of susceptibility to desiccation, size, and movement behavior in single-habitat types and at habitat edges.Smaller anurans were more vulnerable to desiccation, particularly for species that metamorphose at relatively small sizes. Habitat type had the strongest effect on movement, while body size had more situational and species-specific effects on movement. We found that individuals moved the farthest in habitat types that, when given the choice, they oriented away from, suggesting that these habitats are less favorable and could represent barriers to movement.Overall, our work demonstrated that differences in habitat type had strong impacts on individual movement behavior and influenced choices at habitat edges. By integrating intrinsic and extrinsic factors into our study, we provided evidence that population connectivity may be influenced not only by the habitat matrix but also by the condition of the individuals leaving the habitat patch.
Collapse
Affiliation(s)
- Mason Murphy
- Department of BiologyMiami UniversityOxfordOhioUSA
| | | |
Collapse
|
5
|
Laurance WF, Engert J. Sprawling cities are rapidly encroaching on Earth's biodiversity. Proc Natl Acad Sci U S A 2022; 119:e2202244119. [PMID: 35357975 PMCID: PMC9169778 DOI: 10.1073/pnas.2202244119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia
| | - Jayden Engert
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
6
|
A multi-scale, multi-species approach highlights the importance of urban greenspace and pond design for amphibian communities. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Connectivity of Alpine newt populations (Ichthyosaura alpestris) exacerbates the risk of Batrachochytrium salamandrivorans outbreaks in European fire salamanders (Salamandra salamandra). CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe pathogenic chytrid fungus Batrachochytrium salamandrivorans (Bsal) was introduced from Asia to Europe, most likely via the pet trade. It is currently causing a severe local decline in populations of the European fire salamanders (Salamandra salamandra). Laboratory tests confirmed that all infected individuals succumbed to the disease within two weeks. Furthermore, mass mortality events in the wild were observed in Germany, Belgium and the Netherlands. Some newt species, including the Alpine newt (Ichthyosaura alpestris), can also become infected with Bsal. However, they seem to be ‘tolerant’ and can often survive the disease, but maintain an infectious load, which they could spread among connected populations. It is, therefore, hypothesized that this species functions as a vector of the disease and threatens syntopic populations of susceptible species such as the European fire salamander. To assess the risk of Alpine newts as vectors for Bsal, we sampled 233 individuals from 50 sites in 2017 and performed a genetic population connectivity analysis using microsatellites. The results showed that populations of Alpine newts are not spatially structured, suggesting high gene flow across the study area. Tests for Bsal of all Alpine newts and 150 individuals of two other newt species confirmed five infected individuals. Infected newts can thus function as reservoirs and vectors of Bsal and spread it through dispersal. As a result, the risk of European fire salamander declines in this region is further exacerbated by the connectivity of syntopic Alpine newt populations.
Collapse
|
8
|
Ribeiro SE, de Almeida-Rocha JM, Weber MM, Kajin M, Lorini ML, Cerqueira R. Do anthropogenic matrix and life-history traits structure small mammal populations? A meta-analytical approach. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01352-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Yannic G, Helfer V, Sermier R, Schmidt BR, Fumagalli L. Fine scale genetic structure in fire salamanders (Salamandra salamandra) along a rural-to-urban gradient. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Sugai LSM, Silva TSF, Llusia D, Siqueira T. Drivers of assemblage-wide calling activity in tropical anurans and the role of temporal resolution. J Anim Ecol 2020; 90:673-684. [PMID: 33289069 DOI: 10.1111/1365-2656.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 11/27/2022]
Abstract
Temporal scale in animal communities is often associated with seasonality, despite the large variation in species activity during a diel cycle. A gap thus remains in understanding the dynamics of short-term activity in animal communities. Here we assessed calling activity of tropical anurans and addressed how species composition varied during night activity in assemblages along gradients of local and landscape environmental heterogeneity. We investigated 39 anuran assemblages in the Pantanal wetlands (Brazil) with passive acoustic monitoring during the peak of one breeding season, and first determined changes in species composition between night periods (early, mid and late) using two temporal resolutions (1- and 3-hr intervals). Then, we addressed the role of habitat structure (local and landscape heterogeneity variables from field-based and remote sensing metrics) and ecological context (species richness and phylogenetic relatedness) in determining changes in species composition (a) between night periods and (b) across days. Nocturnal calling activity of anuran assemblages varied more within the 1-hr resolution than the 3-hr resolution. Differences in species composition between early- and late-night periods were related to local habitat structure and phylogenetic relatedness, while a low variation in compositional changes across days was associated with low-heterogeneous landscapes. None of these relationships were observed using the coarser temporal resolution (3 hr). Our findings on the variation of calling activity in tropical anuran assemblages suggest potential trade-offs mediated by fine-temporal partitioning. Local and landscape heterogeneity may provide conditions for spatial partitioning, while the relatedness among co-signalling species provides cues on the ecological overlap of species with similar requirements. These relationships suggest a role of niche dimensional complementarity on the structuring of these anuran assemblages over fine-temporal scales. We argue that fine-temporal differences between species in breeding activity can influence the outcome of species interaction and thus, addressing temporal scaling issues can improve our understanding of the dynamics of animal communities.
Collapse
Affiliation(s)
- Larissa S M Sugai
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, Brazil.,Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Biología, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Thiago S F Silva
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, Brazil.,Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Diego Llusia
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Biología, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain.,Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Tadeu Siqueira
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, Brazil
| |
Collapse
|
11
|
Covarrubias S, González C, Gutiérrez‐Rodríguez C. Effects of natural and anthropogenic features on functional connectivity of anurans: a review of landscape genetics studies in temperate, subtropical and tropical species. J Zool (1987) 2020. [DOI: 10.1111/jzo.12851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S. Covarrubias
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán México
| | - C. González
- Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán México
| | | |
Collapse
|
12
|
Van Buskirk J, Jansen van Rensburg A. Relative importance of isolation‐by‐environment and other determinants of gene flow in an alpine amphibian. Evolution 2020; 74:962-978. [DOI: 10.1111/evo.13955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Josh Van Buskirk
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich 8057 Switzerland
| | - Alexandra Jansen van Rensburg
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich 8057 Switzerland
- School of Biological SciencesUniversity of Bristol Bristol BS8 1TQ United Kingdom
| |
Collapse
|
13
|
Cayuela H, Bonnaire É, Astruc G, Besnard A. Transport infrastructure severely impacts amphibian dispersal regardless of life stage. Sci Rep 2019; 9:8214. [PMID: 31160685 PMCID: PMC6546755 DOI: 10.1038/s41598-019-44706-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
Transport infrastructure such as roads has been reported to negatively affect dispersal. Their effects on dispersal are thought to be complex, depending on the characteristics of the structure and the intensity of the traffic using it. In addition, individual factors, such as age, may strongly affect dispersal decisions and success when individuals are confronted with transport infrastructure. Despite the importance of this topic for wildlife conservation, few studies have investigated the effect of transport infrastructure on individuals’ dispersal decisions before and after sexual maturity. We examined the effects on two kinds of infrastructure, gravel tracks and paved roads, on the dispersal of an endangered amphibian, the yellow-bellied toad (Bombina variegata). We used capture–recapture data collected during a five-year period on a large, spatially structured population of B. variegata. Our study revealed that emigration rates increased with an individual’s age, while dispersal distance decreased. It also showed that both tracks and roads had negative effects on immigration. The negative effect of roads was stronger than that of tracks. We additionally found that the effect of tracks on dispersal slightly decreased with a toad’s age. In contrast, the negative effect of roads was severe and relatively similar across age classes.
Collapse
Affiliation(s)
- Hugo Cayuela
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec, QC, G1V 0A6, Canada.
| | - Éric Bonnaire
- Office National des Forêts, Agence de Verdun, Avenue de Metz, 55100, Verdun, France
| | - Guillelme Astruc
- CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293, Montpellier, France
| | - Aurélien Besnard
- CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293, Montpellier, France
| |
Collapse
|
14
|
Joly P. Behavior in a Changing Landscape: Using Movement Ecology to Inform the Conservation of Pond-Breeding Amphibians. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Nakano Y, Senzaki M, Ishiyama N, Yamanaka S, Miura K, Nakamura F. Noise pollution alters matrix permeability for dispersing anurans: Differential effects among land covers. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Miles LS, Johnson JC, Dyer RJ, Verrelli BC. Urbanization as a facilitator of gene flow in a human health pest. Mol Ecol 2018; 27:3219-3230. [PMID: 29972610 DOI: 10.1111/mec.14783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 01/04/2023]
Abstract
Urban fragmentation can reduce gene flow that isolates populations, reduces genetic diversity and increases population differentiation, all of which have negative conservation implications. Alternatively, gene flow may actually be increased among urban areas consistent with an urban facilitation model. In fact, urban adapter pests are able to thrive in the urban environment and may be experiencing human-mediated transport. Here, we used social network theory with a population genetic approach to investigate the impact of urbanization on genetic connectivity in the Western black widow spider, as an urban pest model of human health concern. We collected genomewide single nucleotide polymorphism variation from mitochondrial and nuclear double-digest RAD (ddRAD) sequence data sets from 210 individuals sampled from 11 urban and 10 nonurban locales across its distribution of the Western United States. From urban and nonurban contrasts of population, phylogenetic, and network analyses, urban locales have higher within-population genetic diversity, lower between-population genetic differentiation and higher estimates of genetic connectivity. Social network analyses show that urban locales not only have more connections, but can act as hubs that drive connectivity among nonurban locales, which show signatures of historical isolation. These results are consistent with an urban facilitation model of gene flow and demonstrate the importance of sampling multiple cities and markers to identify the role that urbanization has had on larger spatial scales. As the urban landscape continues to grow, this approach will help determine what factors influence the spread and adaptation of pests, like the venomous black widow spider, in building policies for human and biodiversity health.
Collapse
Affiliation(s)
- Lindsay S Miles
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia
| | - J Chadwick Johnson
- Division of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Abstract
Our planet is an increasingly urbanized landscape, with over half of the human population residing in cities. Despite advances in urban ecology, we do not adequately understand how urbanization affects the evolution of organisms, nor how this evolution may affect ecosystems and human health. Here, we review evidence for the effects of urbanization on the evolution of microbes, plants, and animals that inhabit cities. Urbanization affects adaptive and nonadaptive evolutionary processes that shape the genetic diversity within and between populations. Rapid adaptation has facilitated the success of some native species in urban areas, but it has also allowed human pests and disease to spread more rapidly. The nascent field of urban evolution brings together efforts to understand evolution in response to environmental change while developing new hypotheses concerning adaptation to urban infrastructure and human socioeconomic activity. The next generation of research on urban evolution will provide critical insight into the importance of evolution for sustainable interactions between humans and our city environments.
Collapse
Affiliation(s)
- Marc T J Johnson
- Department of Biology and Center for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Jason Munshi-South
- Department of Biological Sciences and Louis Calder Center, Fordham University, Armonk, NY, USA.
| |
Collapse
|
18
|
No distinct barrier effects of highways and a wide river on the genetic structure of the Alpine newt (Ichthyosaura alpestris) in densely settled landscapes. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1046-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Sadoti G, Gray ME, Farnsworth ML, Dickson BG. Discriminating patterns and drivers of multiscale movement in herpetofauna: The dynamic and changing environment of the Mojave desert tortoise. Ecol Evol 2017; 7:7010-7022. [PMID: 28904779 PMCID: PMC5587480 DOI: 10.1002/ece3.3235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 11/07/2022] Open
Abstract
Changes to animal movement in response to human‐induced changes to the environment are of growing concern in conservation. Most research on this problem has focused on terrestrial endotherms, but changes to herpetofaunal movement are also of concern given their limited dispersal abilities and specialized thermophysiological requirements. Animals in the desert region of the southwestern United States are faced with environmental alterations driven by development (e.g., solar energy facilities) and climate change. Here, we study the movement ecology of a desert species of conservation concern, the Mojave desert tortoise (Gopherus agassizii). We collected weekly encounter locations of marked desert tortoises during the active (nonhibernation) seasons in 2013–2015, and used those data to discriminate movements among activity centers from those within them. We then modeled the probability of movement among activity centers using a suite of covariates describing characteristics of tortoises, natural and anthropogenic landscape features, vegetation, and weather. Multimodel inference indicated greatest support for a model that included individual tortoise characteristics, landscape features, and weather. After controlling for season, date, age, and sex, we found that desert tortoises were more likely to move among activity centers when they were further from minor roads and in the vicinity of barrier fencing; we also found that movement between activity centers was more common during periods of greater rainfall and during periods where cooler temperatures coincided with lower rainfall. Our findings indicate that landscape alterations and climate change both have the potential to impact movements by desert tortoises during the active season. This study provides an important baseline against which we can detect future changes in tortoise movement behavior.
Collapse
Affiliation(s)
- Giancarlo Sadoti
- Conservation Science Partners Truckee CA USA.,Department of Geography University of Nevada Reno NV USA
| | | | | | - Brett G Dickson
- Conservation Science Partners Truckee CA USA.,Landscape Conservation Initiative Northern Arizona University Flagstaff AZ USA
| |
Collapse
|
20
|
Lenhardt PP, Brühl CA, Leeb C, Theissinger K. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog ( Rana temporaria)? PeerJ 2017; 5:e3520. [PMID: 28713651 PMCID: PMC5508807 DOI: 10.7717/peerj.3520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/08/2017] [Indexed: 01/22/2023] Open
Abstract
Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity) on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog (Rana temporaria) populations in Southern Palatinate (Germany). We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise FST = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance) than between viniculture populations (median pairwise FST = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance). Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat, inhibiting genetic exchange and causing genetic differentiation of pond populations in agricultural areas. In viniculture, pesticides could be a driving factor for the observed genetic impoverishment, since pesticides are more frequently applied than any other management measure and can be highly toxic for terrestrial life stages of amphibians.
Collapse
Affiliation(s)
- Patrick P Lenhardt
- Institute for Environmental Science, Universität Koblenz-Landau, Germany
| | - Carsten A Brühl
- Institute for Environmental Science, Universität Koblenz-Landau, Germany
| | - Christoph Leeb
- Institute for Environmental Science, Universität Koblenz-Landau, Germany
| | | |
Collapse
|
21
|
Van Buskirk J. Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae. Evolution 2017; 71:1670-1685. [DOI: 10.1111/evo.13236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/14/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
22
|
Holzer KA, Bayers RP, Nguyen TT, Lawler SP. Habitat value of cities and rice paddies for amphibians in rapidly urbanizing Vietnam. JOURNAL OF URBAN ECOLOGY 2017. [DOI: 10.1093/jue/juw007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Isselin-Nondedeu F, Trochet A, Joubin T, Picard D, Etienne R, Chevalier HL, Legrand D, Ribéron A. Spatial genetic structure of Lissotriton helveticus L. following the restoration of a forest ponds network. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0932-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Vuorio V, Reunanen P, Tikkanen OP. Spatial Context of Breeding Ponds and Forest Management Affect the Distribution and Population Dynamics of the Great Crested Newt. ANN ZOOL FENN 2016. [DOI: 10.5735/086.053.0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
McIntyre NE, Drake JC, Griffis-Kyle KL. A connectivity and wildlife management conflict in isolated desert waters. J Wildl Manage 2016. [DOI: 10.1002/jwmg.1059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nancy E. McIntyre
- Department of Biological Sciences; Texas Tech University; Lubbock TX 79409-313 USA
| | - Joseph C. Drake
- Department of Natural Resources Management; Texas Tech University; Lubbock TX 79409-2125 USA
| | - Kerry L. Griffis-Kyle
- Department of Natural Resources Management; Texas Tech University; Lubbock TX 79409-2125 USA
| |
Collapse
|
26
|
Cline BB, Hunter ML. Movement in the matrix: substrates and distance‐to‐forest edge affect postmetamorphic movements of a forest amphibian. Ecosphere 2016. [DOI: 10.1002/ecs2.1202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Brittany B. Cline
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine 5755 Nutting Hall Orono Maine 04469 USA
| | - Malcolm L. Hunter
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine 5755 Nutting Hall Orono Maine 04469 USA
| |
Collapse
|
27
|
Increasing Pond Density to Maintain a Patchy Habitat Network of the European Treefrog (Hyla arborea). J HERPETOL 2015. [DOI: 10.1670/13-056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Keller D, Holderegger R, van Strien MJ, Bolliger J. How to make landscape genetics beneficial for conservation management? CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0684-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Peterman WE, Anderson TL, Ousterhout BH, Drake DL, Semlitsch RD, Eggert LS. Differential dispersal shapes population structure and patterns of genetic differentiation in two sympatric pond breeding salamanders. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0640-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sinsch U. Movement ecology of amphibians: from individual migratory behaviour to spatially structured populations in heterogeneous landscapes,. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0028] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both genetic cohesion among local populations of animals and range expansion depend on the frequency of dispersers moving at an interpatch scale. Animal movement has an individual component that reflects behaviour and an ecological component that reflects the spatial organization of populations. The total movement capacity of an individual describes maximum movement distance theoretically achievable during a lifetime, whereas its variation among the members of a local population determines the magnitude of interpatch movements and thus of gene flow between neighbouring patches within metapopulation or patchy population systems. Here, I review information on dispersal and migration as components of the movement capacity of juvenile and adult pond-breeding amphibians and discuss how these components inform the spatial structure of populations. Amphibians disperse as juveniles and adults, but movement distances detected in tracking or capture–mark–recapture studies are usually far below the corresponding estimates based on molecular gene-flow data. This discrepancy reflects the constraints of available tracking methods for free-ranging individuals leading to inappropriate surrogates of annual movement capacity, but can be resolved using probabilistic approaches based on dispersal functions. There is remarkable capacity for and plasticity in movements in amphibians. Annual within-patch movements (migrations) of individuals can be large and likely represent an underestimated capacity for movement at the interpatch scale. Landscape resistance may influence the paths of dispersing amphibians, but rarely impedes interpatch movements. Juveniles emigrating unpredictably far from the natal pond and adults switching from within-patch migrations to dispersal to another patch demonstrate the plasticity of individual movement behaviour. Three basic conclusions can be drawn with respect to the linkage of individual movement behaviour and spatial or genetic structure of local amphibian populations embedded in a heterogeneous landscape: (1) individual movements or consecutive short-term series of movements are misleading surrogate measures of total movement capacity; (2) probabilistic modelling of movement capacity is the best available behavioural predictor of interpatch gene flow; (3) connectivity of local populations in heterogeneous landscapes is less affected by landscape resistance than previously expected.
Collapse
Affiliation(s)
- Ulrich Sinsch
- Institute of Integrated Sciences, Department of Biology, University of Koblenz-Landau, Universitätsstraße 1, D-56070 Koblenz, Germany
| |
Collapse
|
31
|
Fowler's Toad (Anaxyrus fowleri) Activity Patterns on a Roadway at Cape Cod National Seashore. J HERPETOL 2014. [DOI: 10.1670/12-202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Van Buskirk J. Incipient habitat race formation in an amphibian. J Evol Biol 2014; 27:585-92. [DOI: 10.1111/jeb.12327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/17/2013] [Accepted: 12/26/2013] [Indexed: 12/01/2022]
Affiliation(s)
- J. Van Buskirk
- Institute of Evolutionary Biology & Environmental Studies; University of Zürich; Zürich Switzerland
| |
Collapse
|
33
|
Cline BB, Hunter ML. Different open-canopy vegetation types affect matrix permeability for a dispersing forest amphibian. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Brittany B. Cline
- Department of Wildlife Ecology; University of Maine; 5755 Nutting Hall Orono ME 04469 USA
| | - Malcolm L. Hunter
- Department of Wildlife Ecology; University of Maine; 5755 Nutting Hall Orono ME 04469 USA
| |
Collapse
|
34
|
Prunier JG, Kaufmann B, Léna JP, Fenet S, Pompanon F, Joly P. A 40-year-old divided highway does not prevent gene flow in the alpine newt Ichthyosaura alpestris. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0553-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|