1
|
Chen KY, Wang JD, Xiang RQ, Yang XD, Yun QZ, Huang Y, Sun H, Chen JH. Backbone phylogeny of Salix based on genome skimming data. PLANT DIVERSITY 2025; 47:178-188. [PMID: 40182486 PMCID: PMC11963080 DOI: 10.1016/j.pld.2024.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 04/05/2025]
Abstract
The genus Salix is a common component of the Northern Hemisphere dendroflora with important ecological and economic value. However, taxonomy and systematics of Salix is extremely difficult and relationships between main lineages, especially deep phylogenies, remain largely unresolved. In this study, we used genome-skimming, plastome assembly, and single-copy orthologs (SCOs) from 66 Salix accessions, along with publicly available plastome and sequence read archive (SRA) datasets to obtain a robust backbone phylogeny of Salix, clarify relationships between its main lineages, and gain a more precise understanding of the origin and diversification of this species-rich genus. The plastome and SCO datasets resolved Salix into two robust clades, with plastome-based phylogenies lacking inner resolution and SCO offering fully resolved phylogenies. Our results support the classification of Salix into five subgenera: Salix, Urbaniana, Triandrae, Longifoliae and Vetrix. We observed a significant acceleration in the diversification rate within the Chamaetia-Vetrix clade, while Salix exhibited increased rates of diversification spanning from the early Oligocene to the late Miocene. These changes coincided with contemporaneous tectonic and climate change events. Our results provide a foundation for future systematic and evolutionary studies of Salix. Additionally, we showed that genome skimming data is an efficient, rapid, and reliable approach for obtaining extensive genomic data for phylogenomic studies, enabling the comprehensive elucidation of Salix relationships.
Collapse
Affiliation(s)
- Kai-Yun Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Jin-Dan Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui-Qi Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xue-Dan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Quan-Zheng Yun
- Beijing Ori-Gene Science and Technology Co Ltd, Beijing 102206, PR China
| | - Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650092, Yunnan, PR China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Jia-Hui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| |
Collapse
|
2
|
Walczak K, Piwczyński M, Pape T, Johnston NP, Wallman JF, Szpila K, Grzywacz A. Unravelling phylogenetic relationships within the genus Lispe (Diptera: Muscidae) through genome-assisted and de novo analyses of RAD-seq data. Mol Phylogenet Evol 2025; 204:108291. [PMID: 39875066 DOI: 10.1016/j.ympev.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Lispe represents a species-rich genus within the family Muscidae. The current subdivision of Lispe species into species groups is based mainly on adult morphology and ecology, with the only available phylogenetic study based on three molecular markers. Nonetheless, certain species groups remain unclear and the relationships and composition of these groups are still unresolved. This study employs restriction-site associated DNA sequencing (RAD-seq) with both reference-based and de novo reads assembly approaches to investigate relationships within Lispe. To apply a reference-based approach we utilised Oxford Nanopore Technologies (ONT) long read sequencing to assemble a draft genome of L. tentaculata. We evaluated various assemblers for ONT reads of L. tentaculata in order to demonstrate the highest effectiveness in terms of completeness and assembly quality. The resulting phylogenetic trees topologies are well supported and present a consistent division into three main clades: 1) the palposa-, rigida- and caesia-groups, 2) the nicobarensis-, nivalis-, scalaris- and tentaculata-groups and 3) the longicollis-, desjardinsii-, uliginosa- and kowarzi-groups. The primary discrepancy between topologies obtained under our various analytical approaches is the relationship between the leucospila-group and all other ingroup taxa, being a sister taxon either to all remaining Lispe or to a clade consisting of the longicollis-, desjardinsii-, uliginosa- and kowarzi-groups. Lispe polonaise, included for the first time in a molecular phylogenetic analysis, is nested within the caesia-group. Similarly, L. capensis and the hitherto unassigned L. mirabilis belong to the tentaculata-group. Our study confirms the validity of the 14 species groups currently recognised in the genus Lispe.
Collapse
Affiliation(s)
- Kinga Walczak
- Department of Ecology and Biogeography Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Toruń Toruń Poland.
| | - Marcin Piwczyński
- Department of Ecology and Biogeography Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Toruń Toruń Poland
| | - Thomas Pape
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Nikolas P Johnston
- Molecular Horizons, School of Science, University of Wollongong Wollongong New South Wales Australia; Faculty of Science, University of Technology Sydney Ultimo New South Wales Australia
| | - James F Wallman
- Faculty of Science, University of Technology Sydney Ultimo New South Wales Australia; School of Earth, Atmospheric and Life Sciences, University of Wollongong Wollongong New South Wales Australia
| | - Krzysztof Szpila
- Department of Ecology and Biogeography Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Toruń Toruń Poland
| | - Andrzej Grzywacz
- Department of Ecology and Biogeography Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Toruń Toruń Poland.
| |
Collapse
|
3
|
Abbo T, Stickrod MA, Krohn A, Parker VT, Vasey MC, Waycott W, Litt A. Investigating a hybrid mixed population leads to recognizing a new species of Arctostaphylos (Ericaceae). PHYTOKEYS 2025; 251:119-142. [PMID: 39867480 PMCID: PMC11758095 DOI: 10.3897/phytokeys.251.139172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025]
Abstract
While investigating the potential for Arctostaphylos species to hybridize in the mixed populations of Point Sal and Burton Mesa in Santa Barbara County, California, we discovered that Arctostaphylos from the Nipomo Mesa (San Luis Obispo County), formerly considered a northern population of A.rudis, are genetically and morphologically distinct. We name this new taxon A.nipumu after the ytt (Northern Chumash language) word for the Nipomo Mesa region. For morphological and molecular analyses, we sampled 54 plants, focusing on A.purissima, A.rudis, and A.crustacea from multiple species and comparative single species populations. Parametric and nonparametric clustering analyses (STRUCTURE and PCA) of ddRADseq data show that Arctostaphylos from the Nipomo Mesa segregate from all other samples in the dataset. In mixed populations A.purissima and A.crustacea samples cluster with samples from other unmixed populations of the same species but A.rudis samples form two distinct clusters. One is composed of the mixed populations in Santa Barbara County, and the other consists of the Nipomo Mesa population. Additionally, the Santa Barbara County A.rudis samples are admixed in STRUCTURE analysis unlike the samples from the Nipomo Mesa. A principal component analysis of eight morphological characters shows that A.rudis individuals from Santa Barbara County tend to be phenotypically variable, occurring in a wide morphological cluster that overlaps with the tight clusters formed by A.purissima, A.crustacea, and Arctostaphylos from the Nipomo Mesa. Based on this evidence we describe the Nipomo Mesapopulation as a new species of Arctostaphylos. Given its limited and fragmented distribution we believe that A.nipumu is of critical conservation concern.
Collapse
Affiliation(s)
- Tito Abbo
- University of California, Riverside, USAUniversity of CaliforniaRiversideUnited States of America
| | - Morgan A. Stickrod
- San Francisco State University, San Francisco, USASan Francisco State UniversitySan FranciscoUnited States of America
| | - Alexander Krohn
- Tangled Bank Conservation, Asheville, USATangled Bank ConservationAshevilleUnited States of America
| | - V. Thomas Parker
- San Francisco State University, San Francisco, USASan Francisco State UniversitySan FranciscoUnited States of America
| | - Michael C. Vasey
- San Francisco State University, San Francisco, USASan Francisco State UniversitySan FranciscoUnited States of America
| | - William Waycott
- Nipomo Native Seed, Nipomo, USANipomo Native SeedNipomoUnited States of America
| | - Amy Litt
- University of California, Riverside, USAUniversity of CaliforniaRiversideUnited States of America
| |
Collapse
|
4
|
Ogutcen E, de Lima Ferreira P, Wagner ND, Marinček P, Vir Leong J, Aubona G, Cavender-Bares J, Michálek J, Schroeder L, Sedio BE, Vašut RJ, Volf M. Phylogenetic insights into the Salicaceae: The evolution of willows and beyond. Mol Phylogenet Evol 2024; 199:108161. [PMID: 39079595 DOI: 10.1016/j.ympev.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
The Salicaceae includes approximately 54 genera and over 1,400 species with a cosmopolitan distribution. Members of the family are well-known for their diverse secondary plant metabolites, and they play crucial roles in tropical and temperate forest ecosystems. Phylogenetic reconstruction of the Salicaceae has been historically challenging due to the limitations of molecular markers and the extensive history of hybridization and polyploidy within the family. Our study employs whole-genome sequencing of 74 species to generate an extensive phylogeny of the Salicaceae. We generated two RAD-Seq enriched whole-genome sequence datasets and extracted two additional gene sets corresponding to the universal Angiosperms353 and Salicaceae-specific targeted-capture arrays. We reconstructed maximum likelihood-based molecular phylogenies using supermatrix and coalescent-based supertree approaches. Our fossil-calibrated phylogeny estimates that the Salicaceae originated around 128 million years ago and unravels the complex taxonomic relationships within the family. Our findings confirm the non-monophyly of the subgenus Salix s.l. and further support the merging of subgenera Chamaetia and Vetrix, both of which exhibit intricate patterns within and among different sections. Overall, our study not only enhances our understanding of the evolution of the Salicaceae, but also provides valuable insights into the complex relationships within the family.
Collapse
Affiliation(s)
- Ezgi Ogutcen
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria.
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Biology, Aarhus University, Aarhus, Denmark
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Jing Vir Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Gibson Aubona
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Jan Michálek
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Trebon, Czech Republic
| | - Lucy Schroeder
- College of Biological Sciences, University of Minnesota, St. Paul, MN, United States
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States; Smithsonian Tropical Research Institute, Apartado, 0843-03092 Balboa, Ancón, Republic of Panama
| | - Radim J Vašut
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic; Department of Biology, Faculty of Education, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Karbstein K, Kösters L, Hodač L, Hofmann M, Hörandl E, Tomasello S, Wagner ND, Emerson BC, Albach DC, Scheu S, Bradler S, de Vries J, Irisarri I, Li H, Soltis P, Mäder P, Wäldchen J. Species delimitation 4.0: integrative taxonomy meets artificial intelligence. Trends Ecol Evol 2024; 39:771-784. [PMID: 38849221 DOI: 10.1016/j.tree.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 06/09/2024]
Abstract
Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.
Collapse
Affiliation(s)
- Kevin Karbstein
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany.
| | - Lara Kösters
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Ladislav Hodač
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany
| | - Martin Hofmann
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany
| | - Elvira Hörandl
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Salvatore Tomasello
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Natascha D Wagner
- University of Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), 37073 Göttingen, Germany
| | - Brent C Emerson
- Institute of Natural Products and Agrobiology (IPNA-CSIC), Island Ecology and Evolution Research Group, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Dirk C Albach
- Carl von Ossietzky-Universität Oldenburg, Institute of Biology and Environmental Science, 26129 Oldenburg, Germany
| | - Stefan Scheu
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany; University of Göttingen, Centre of Biodiversity and Sustainable Land Use (CBL), 37073 Göttingen, Germany
| | - Sven Bradler
- University of Göttingen, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, 37073 Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, 37077 Göttingen, Germany; University of Göttingen, Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany; University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, 37077 Göttingen, Germany
| | - Iker Irisarri
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Centre for Molecular Biodiversity Research, Phylogenomics Section, Museum of Nature, 20146 Hamburg, Germany
| | - He Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Chenshan Botanical Garden, 201602 Shanghai, China
| | - Pamela Soltis
- University of Florida, Florida Museum of Natural History, 32611 Gainesville, USA
| | - Patrick Mäder
- Technical University of Ilmenau, Institute for Computer and Systems Engineering, 98693 Ilmenau, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Ecology and Evolution, Philosophenweg 16, 07743 Jena, Germany
| | - Jana Wäldchen
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Marinček P, Léveillé-Bourret É, Heiduk F, Leong J, Bailleul SM, Volf M, Wagner ND. Challenge accepted: Evolutionary lineages versus taxonomic classification of North American shrub willows (Salix). AMERICAN JOURNAL OF BOTANY 2024; 111:e16361. [PMID: 38924532 DOI: 10.1002/ajb2.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024]
Abstract
PREMISE The huge diversity of Salix subgenus Chamaetia/Vetrix clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools. METHODS In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite). RESULTS The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently. CONCLUSIONS The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Étienne Léveillé-Bourret
- Institut de recherche en biologie végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Ferris Heiduk
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Jing Leong
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Stéphane M Bailleul
- Division recherche et développement scientifique, Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| |
Collapse
|
7
|
Vašut RJ, Pospíšková M, Lukavský J, Weger J. Detection of Hybrids in Willows ( Salix, Salicaceae) Using Genome-Wide DArTseq Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:639. [PMID: 38475486 DOI: 10.3390/plants13050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
The genus Salix, comprising some 400-500 species, is important in various alluvial or wet habitats of the northern hemisphere. It is a promising crop for applications such as biomass production, biofuels, or environmental projects. Clear species delimitation is crucial in ecology, biotechnology, and horticulture. DArTseq markers, a genome-wide technique, were tested for species and hybrid identification. A total of 179 willow samples were analysed, including six species of Salix subgen. Salix and four species of Salix subgen. Vetrix, including those used in biomass crop production, representing important European taxa. Identification of species-specific markers, clustering analyses (principal coordinate analysis, neighbor-joining) and Bayesian methods (Structure) unambiguously identified putative hybrids. In addition to demonstrating the high efficiency of DArT-seq markers in identifying willow hybrids, we also opened-up new questions about hybridisation processes and systematics. We detected unidirectional hybridisation between S. alba and S. fragilis, forming backcross hybrids, and we rejected the hypothesis that S. fragilis does not occur naturally in Europe. Further, the isolated position of Salix triandra within the genus was confirmed.
Collapse
Affiliation(s)
- Radim J Vašut
- Department of Biology, Faculty of Education, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
- Department of Botany, Faculty of Science, Palacky University Olomouc, 783 71 Olomouc, Czech Republic
| | - Markéta Pospíšková
- Department of Phytoenergy, Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Public Research Institute, 252 43 Průhonice, Czech Republic
| | - Jan Lukavský
- Department of Botany, Faculty of Science, Palacky University Olomouc, 783 71 Olomouc, Czech Republic
- The Nature Conservation Agency of the Czech Republic, Moravian-Silesian Regional Branch, 756 61 Rožnov pod Radhoštěm, Czech Republic
| | - Jan Weger
- Department of Phytoenergy, Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Public Research Institute, 252 43 Průhonice, Czech Republic
| |
Collapse
|
8
|
Sanderson BJ, Gambhir D, Feng G, Hu N, Cronk QC, Percy DM, Freaner FM, Johnson MG, Smart LB, Keefover-Ring K, Yin T, Ma T, DiFazio SP, Liu J, Olson MS. Phylogenomics reveals patterns of ancient hybridization and differential diversification that contribute to phylogenetic conflict in willows, poplars, and close relatives. Syst Biol 2023; 72:1220-1232. [PMID: 37449764 DOI: 10.1093/sysbio/syad042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a "spectacular failure" due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix-Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera.
Collapse
Affiliation(s)
- Brian J Sanderson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
- Department of Biology, West Virginia University, Morgantown, WV 26506,USA
| | - Diksha Gambhir
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Guanqiao Feng
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Nan Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Quentin C Cronk
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York 14456, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506,USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
9
|
Yoichi W, Matsuzawa S, Tamaki I, Nagano AJ, Oh SH. Genetic differentiation and evolution of broad-leaved evergreen shrub and tree varieties of Daphniphyllum macropodum (Daphniphyllaceae). Heredity (Edinb) 2023; 131:211-220. [PMID: 37460735 PMCID: PMC10462706 DOI: 10.1038/s41437-023-00637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 08/31/2023] Open
Abstract
Tree form evolution is an important ecological specialization for woody species, but its evolutionary process with adaptation is poorly understood, especially on the microevolutionary scale. Daphniphyllum macropodum comprises two varieties: a tree variety growing in a warm temperate climate with light snowfall and a shrub variety growing in a cool temperate climate with heavy snowfall in Japan. Chloroplast DNA variations and genome-wide single-nucleotide polymorphisms across D. macropodum populations and D. teijsmannii as an outgroup were used to reveal the evolutionary process of the shrub variety. Population genetic analysis indicated that the two varieties diverged but were weakly differentiated. Approximate Bayesian computation analysis supported a scenario that assumed migration between the tree variety and the southern populations of the shrub variety. We found migration between the two varieties where the distributions of the two varieties are in contact, and it is concordant with higher tree height in the southern populations of the shrub variety than the northern populations. The genetic divergence between the two varieties was associated with snowfall. The heavy snowfall climate is considered to have developed since the middle Quaternary in this region. The estimated divergence time between the two varieties suggests that the evolution of the two varieties may be concordant with such paleoclimatic change.
Collapse
Affiliation(s)
- Watanabe Yoichi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
| | - Sae Matsuzawa
- Faculty of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Sang-Hun Oh
- Department of Biology, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, South Korea
| |
Collapse
|
10
|
Wagner ND, Marinček P, Pittet L, Hörandl E. Insights into the Taxonomically Challenging Hexaploid Alpine Shrub Willows of Salix Sections Phylicifoliae and Nigricantes (Salicaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:1144. [PMID: 36904002 PMCID: PMC10005704 DOI: 10.3390/plants12051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The complex genomic composition of allopolyploid plants leads to morphologically diverse species. The traditional taxonomical treatment of the medium-sized, hexaploid shrub willows distributed in the Alps is difficult based on their variable morphological characters. In this study, RAD sequencing data, infrared-spectroscopy, and morphometric data are used to analyze the phylogenetic relationships of the hexaploid species of the sections Nigricantes and Phylicifoliae in a phylogenetic framework of 45 Eurasian Salix species. Both sections comprise local endemics as well as widespread species. Based on the molecular data, the described morphological species appeared as monophyletic lineages (except for S. phylicifolia s.str. and S. bicolor, which are intermingled). Both sections Phylicifoliae and Nigricantes are polyphyletic. Infrared-spectroscopy mostly confirmed the differentiation of hexaploid alpine species. The morphometric data confirmed the molecular results and supported the inclusion of S. bicolor into S. phylicifolia s.l., whereas the alpine endemic S. hegetschweileri is distinct and closely related to species of the section Nigricantes. The genomic structure and co-ancestry analyses of the hexaploid species revealed a geographical pattern for widespread S. myrsinifolia, separating the Scandinavian from the alpine populations. The newly described S. kaptarae is tetraploid and is grouped within S. cinerea. Our data reveal that both sections Phylicifoliae and Nigricantes need to be redefined.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
11
|
Michell CT, Wagner N, Mutanen M, Lee KM, Nyman T. Genomic evidence for contrasting patterns of host-associated genetic differentiation across shared host-plant species in leaf- and bud-galling sawflies. Mol Ecol 2023; 32:1791-1809. [PMID: 36626108 DOI: 10.1111/mec.16844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Resource specialization and ecological speciation arising through host-associated genetic differentiation (HAD) are frequently invoked as an explanation for the high diversity of plant-feeding insects and other organisms with a parasitic lifestyle. While genetic studies have demonstrated numerous examples of HAD in insect herbivores, the rarity of comparative studies means that we still lack an understanding of how deterministic HAD is, and whether patterns of host shifts can be predicted over evolutionary timescales. We applied genome-wide single nucleotide polymorphism and mitochondrial DNA sequence data obtained through genome resequencing to define species limits and to compare host-plant use in population samples of leaf- and bud-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae) collected from seven shared willow (Salicaceae: Salix) host species. To infer the repeatability of long-term cophylogenetic patterns, we also contrasted the phylogenies of the two galler groups with each other as well as with the phylogeny of their Salix hosts estimated based on RADseq data. We found clear evidence for host specialization and HAD in both of the focal galler groups, but also that leaf gallers are more specialized to single host species compared with most bud gallers. In contrast to bud gallers, leaf gallers also exhibited statistically significant cophylogenetic signal with their Salix hosts. The observed discordant patterns of resource specialization and host shifts in two related galler groups that have radiated in parallel across a shared resource base indicate a lack of evolutionary repeatability in the focal system, and suggest that short- and long-term host use and ecological diversification in plant-feeding insects are dominated by stochasticity and/or lineage-specific effects.
Collapse
Affiliation(s)
- Craig T Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Natascha Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Kyung Min Lee
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
12
|
Marinček P, Pittet L, Wagner ND, Hörandl E. Evolution of a hybrid zone of two willow species ( Salix L.) in the European Alps analyzed by RAD-seq and morphometrics. Ecol Evol 2023; 13:e9700. [PMID: 36620405 PMCID: PMC9811612 DOI: 10.1002/ece3.9700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Natural hybridization of plants can result in many outcomes with several evolutionary consequences, such as hybrid speciation and introgression. Natural hybrid zones can arise in mountain systems as a result of fluctuating climate during the exchange of glacial and interglacial periods, where species retract and expand their territories, resulting in secondary contacts. Willows are a large genus of woody plants with an immense capability of interspecific crossing. In this study, the sympatric area of two diploid sister species, S. foetida and S. waldsteiniana in the eastern European Alps, was investigated to study the genomic structure of populations within and outside their contact zone and to analyze congruence of morphological phenotypes with genetic data. Eleven populations of the two species were sampled across the Alps and examined using phylogenetic network and population genetic structure analyses of RAD Seq data and morphometric analyses of leaves. The results showed that a homoploid hybrid zone between the two species was established within their sympatric area. Patterns of genetic admixture in homoploid hybrids indicated introgression with asymmetric backcrossing to not only one of the parental species but also one hybrid population forming a separate lineage. The lack of F1 hybrids indicated a long-term persistence of the hybrid populations. Insignificant isolation by distance suggests that gene flow can act over large geographical scales. Morphometric characteristics of hybrids supported the molecular data and clearly separated populations of the parental species, but showed intermediacy in the hybrid zone populations with a bias toward S. waldsteiniana. The homoploid hybrid zone might have been established via secondary contact hybridization, and its establishment was fostered by the low genetic divergence of parental species and a lack of strong intrinsic crossing barriers. Incomplete ecological separation and the ability of long-distance dispersal of willows could have contributed to the spatial expansion of the hybrid zone.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium)University of GöttingenGöttingenGermany
| | - Loïc Pittet
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium)University of GöttingenGöttingenGermany
| | - Natascha D. Wagner
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium)University of GöttingenGöttingenGermany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium)University of GöttingenGöttingenGermany
| |
Collapse
|
13
|
Wright JJ, Bruce SA, Sinopoli DA, Palumbo JR, Stewart DJ. Phylogenomic analysis of the bowfin (Amia calva) reveals unrecognized species diversity in a living fossil lineage. Sci Rep 2022; 12:16514. [PMID: 36192509 PMCID: PMC9529906 DOI: 10.1038/s41598-022-20875-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
The Bowfin (Amia calva), as currently recognized, represents the sole living member of the family Amiidae, which dates back to approximately 150 Ma. Prior to 1896, 13 species of extant Bowfins had been described, but these were all placed into a single species with no rationale or analysis given. This situation has persisted until the present day, with little attention given to re-evaluation of those previously described nominal forms. Here, we present a phylogenomic analysis based on over 21,000 single nucleotide polymorphisms (SNPs) from 94 individuals that unambiguously demonstrates the presence of at least two independent evolutionary lineages within extant Amia populations that merit species-level standing, as well as the possibility of two more. These findings not only expand the recognizable species diversity in an iconic, ancient lineage, but also demonstrate the utility of such methods in addressing previously intractable questions of molecular systematics and phylogeography in slowly evolving groups of ancient fishes.
Collapse
Affiliation(s)
- Jeremy J Wright
- Research & Collections, New York State Museum, 3140 Cultural Education Center, Albany, NY, USA.
| | - Spencer A Bruce
- Department of Information Technology Services, University at Albany-State University of New York, Albany, NY, USA
| | - Daniel A Sinopoli
- Department of Biological Sciences, Museum of Natural Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jay R Palumbo
- Department of Environmental Science & Ecology, State University of New York at Brockport, Brockport, NY, USA
| | - Donald J Stewart
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA.
| |
Collapse
|
14
|
Marinček P, Wagner ND, Tomasello S. Ancient DNA extraction methods for herbarium specimens: When is it worth the effort? APPLICATIONS IN PLANT SCIENCES 2022; 10:e11477. [PMID: 35774991 PMCID: PMC9215277 DOI: 10.1002/aps3.11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 06/15/2023]
Abstract
Premise Herbaria harbor a tremendous number of plant specimens that are rarely used for molecular systematic studies, largely due to the difficulty in extracting sufficient amounts of high-quality DNA from the preserved plant material. Methods We compared the standard Qiagen DNeasy Plant Mini Kit and a specific protocol for extracting ancient DNA (aDNA) (the N-phenacylthiazolium bromide and dithiothreitol [PTB-DTT] extraction method) from two different plant genera (Xanthium and Salix). The included herbarium materials covered about two centuries of plant collections. To analyze the success of DNA extraction using each method, a subset of samples was subjected to a standard library preparation as well as target-enrichment approaches. Results The PTB-DTT method produced a higher DNA yield of better quality than the Qiagen kit; however, extracts from the Qiagen kit over a certain DNA yield and quality threshold produced comparable sequencing results. The sequencing resulted in high proportions of endogenous reads. We were able to successfully sequence 200-year-old samples. Discussion This method comparison revealed that, for younger specimens, DNA extraction using a standard kit might be sufficient. For old and precious herbarium specimens, aDNA extraction methods are better suited to meet the requirements for next-generation sequencing.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| | - Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)University of Göttingen, Untere Karspüle 237073GöttingenGermany
| |
Collapse
|
15
|
Gulyaev S, Cai XJ, Guo FY, Kikuchi S, Applequist WL, Zhang ZX, Hörandl E, He L. The phylogeny of Salix revealed by whole genome re-sequencing suggests different sex-determination systems in major groups of the genus. ANNALS OF BOTANY 2022; 129:485-498. [PMID: 35134824 PMCID: PMC8944726 DOI: 10.1093/aob/mcac012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The largest genus of Salicaceae sensu lato, Salix, has been shown to consist of two main clades: clade Salix, in which species have XY sex-determination systems (SDSs) on chromosome 7, and clade Vetrix including species with ZW SDSs on chromosome 15. Here, we test the utility of whole genome re-sequencing (WGR) for phylogenomic reconstructions of willows to infer changes between different SDSs. METHODS We used more than 1 TB of WGR data from 70 Salix taxa to ascertain single nucleotide polymorphisms on the autosomes, the sex-linked regions (SLRs) and the chloroplast genomes, for phylogenetic and species tree analyses. To avoid bias, we chose reference genomes from both groups, Salix dunnii from clade Salix and S. purpurea from clade Vetrix. KEY RESULTS Two main largely congruent groups were recovered: the paraphyletic Salix grade and the Vetrix clade. The autosome dataset trees resolved four subclades (C1-C4) in Vetrix. C1 and C2 comprise species from the Hengduan Mountains and adjacent areas and from Eurasia, respectively. Section Longifoliae (C3) grouped within the Vetrix clade but fell into the Salix clade in trees based on the chloroplast dataset analysis. Salix triandra from Eurasia (C4) was revealed as sister to the remaining species of clade Vetrix. In Salix, the polyploid group C5 is paraphyletic to clade Vetrix and subclade C6 is consistent with Argus's subgenus Protitea. Chloroplast datasets separated both Vetrix and Salix as monophyletic, and yielded C5 embedded within Salix. Using only diploid species, both the SLR and autosomal datasets yielded trees with Vetrix and Salix as well-supported clades. CONCLUSION WGR data are useful for phylogenomic analyses of willows. The different SDSs may contribute to the isolation of the two major groups, but the reproductive barrier between them needs to be studied.
Collapse
Affiliation(s)
- Sergey Gulyaev
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin-Jie Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei-Yi Guo
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Satoshi Kikuchi
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization. Hitsujigaoka 7, Toyohira, Sapporo City, Hokkaido, 062-8516, Japan
| | - Wendy L Applequist
- William L. Brown Center, Missouri Botanical Garden, St. Louis, MO 63110, USA
| | - Zhi-Xiang Zhang
- College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, 37073, Germany
| | - Li He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
16
|
How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassulaceae). Mol Phylogenet Evol 2021; 167:107342. [PMID: 34785384 DOI: 10.1016/j.ympev.2021.107342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Analysing multiple genomic regions while incorporating detection and qualification of discordance among regions has become standard for understanding phylogenetic relationships. In plants, which usually have comparatively large genomes, this is feasible by the combination of reduced-representation library (RRL) methods and high-throughput sequencing enabling the cost effective acquisition of genomic data for thousands of loci from hundreds of samples. One popular RRL method is RADseq. A major disadvantage of established RADseq approaches is the rather short fragment and sequencing range, leading to loci of little individual phylogenetic information. This issue hampers the application of coalescent-based species tree inference. The modified RADseq protocol presented here targets ca. 5,000 loci of 300-600nt length, sequenced with the latest short-read-sequencing (SRS) technology, has the potential to overcome this drawback. To illustrate the advantages of this approach we use the study group Aichryson Webb & Berthelott (Crassulaceae), a plant genus that diversified on the Canary Islands. The data analysis approach used here aims at a careful quality control of the long loci dataset. It involves an informed selection of thresholds for accurate clustering, a thorough exploration of locus properties, such as locus length, coverage and variability, to identify potential biased data and a comparative phylogenetic inference of filtered datasets, accompanied by an evaluation of resulting BS support, gene and site concordance factor values, to improve overall resolution of the resulting phylogenetic trees. The final dataset contains variable loci with an average length of 373nt and facilitates species tree estimation using a coalescent-based summary approach. Additional improvements brought by the approach are critically discussed.
Collapse
|
17
|
Urbaniak J, Kwiatkowski P, Pawlikowski P. Genetic diversity of Salixlapponum populations in Central Europe. PHYTOKEYS 2021; 184:83-101. [PMID: 34785973 PMCID: PMC8589822 DOI: 10.3897/phytokeys.184.71641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Salixlapponum is a cold-tolerant relict species in Europe that occurs in several sites, probably reflecting previous migration routes of S.lapponum during the Pleistocene. However, only a few data are available on the genetic structures of populations of S.lapponum. In this study, we use PCR-ISSR markers to investigate genetic variation in 19 European populations of S.lapponum L. AMOVA analysis shows that most of the variation (55.8%) occurs within populations; variability among groups accounts for 19.7%. An AMOVA analysis based on four groups determined by STRUCTURE analysis shows similar results: variability of 54.1% within the population and variability of 18.9% between the four population groups, based on geographic regions. Within individual geographic groups, which are characterised by the studied populations, the lowest variability (as well as the highest homogeneity) was found in populations located in Belarus. The obtained results are consistent with our expectations that the European Lowland could be a significant geographic barrier for gene flow over large geographic distances for S.lapponum. Both the Scandinavian and Belarusian populations, as well as those coming from NE Poland, are characterised by significant genetic distinctiveness. However, some populations from NE Poland and the Sudetes show similarities with populations from other geographic regions, indicating existing genetic relationships between them. Moreover, the results suggest a fairly clear division of the population into 4 emerging geographic regions, although separated by a geographical barrier: the Polish lowland, which forms part of the larger geographic unit known as the European Lowland.
Collapse
Affiliation(s)
- Jacek Urbaniak
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, PolandWrocław University of Environmental and Life SciencesWroclawPoland
| | - Paweł Kwiatkowski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, PolandUniversity of Silesia in KatowiceKatowicePoland
| | - Paweł Pawlikowski
- Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, PolandUniversity of WarsawWarszawaPoland
| |
Collapse
|
18
|
Baiakhmetov E, Ryzhakova D, Gudkova PD, Nobis M. Evidence for extensive hybridisation and past introgression events in feather grasses using genome-wide SNP genotyping. BMC PLANT BIOLOGY 2021; 21:505. [PMID: 34724894 PMCID: PMC8559405 DOI: 10.1186/s12870-021-03287-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/20/2021] [Indexed: 06/03/2023]
Abstract
BACKGROUND The proper identification of feather grasses in nature is often limited due to phenotypic variability and high morphological similarity between many species. Among plausible factors influencing this issue are hybridisation and introgression recently detected in the genus. Nonetheless, to date, only a bounded set of taxa have been investigated using integrative taxonomy combining morphological and molecular data. Here, we report the first large-scale study on five feather grass species across several hybrid zones in Russia and Central Asia. In total, 302 specimens were sampled in the field and classified based on the current descriptions of these taxa. They were then genotyped with high density genome-wide markers and measured based on a set of morphological characters to delimitate species and assess levels of hybridisation and introgression. Moreover, we tested species for past introgression and estimated divergence times between them. RESULTS Our findings demonstrated that 250 specimens represent five distinct species: S. baicalensis, S. capillata, S. glareosa, S. grandis and S. krylovii. The remaining 52 individuals provided evidence for extensive hybridisation between S. capillata and S. baicalensis, S. capillata and S. krylovii, S. baicalensis and S. krylovii, as well as to a lesser extent between S. grandis and S. krylovii, S. grandis and S. baicalensis. We detected past reticulation events between S. baicalensis, S. krylovii, S. grandis and inferred that diversification within species S. capillata, S. baicalensis, S. krylovii and S. grandis started ca. 130-96 kya. In addition, the assessment of genetic population structure revealed signs of contemporary gene flow between populations across species from the section Leiostipa, despite significant geographical distances between some of them. Lastly, we concluded that only 5 out of 52 hybrid taxa were properly identified solely based on morphology. CONCLUSIONS Our results support the hypothesis that hybridisation is an important mechanism driving evolution in Stipa. As an outcome, this phenomenon complicates identification of hybrid taxa in the field using morphological characters alone. Thus, integrative taxonomy seems to be the only reliable way to properly resolve the phylogenetic issue of Stipa. Moreover, we believe that feather grasses may be a suitable genus to study hybridisation and introgression events in nature.
Collapse
Affiliation(s)
- Evgenii Baiakhmetov
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia.
| | - Daria Ryzhakova
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia
- Department of Biology, Altai State University, Lenin 61 Ave., 656049, Barnaul, Russia
| | - Polina D Gudkova
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia
- Department of Biology, Altai State University, Lenin 61 Ave., 656049, Barnaul, Russia
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
- Research laboratory 'Herbarium', National Research Tomsk State University, Lenin 36 Ave., 634050, Tomsk, Russia.
| |
Collapse
|
19
|
Wagner ND, Volf M, Hörandl E. Highly Diverse Shrub Willows ( Salix L.) Share Highly Similar Plastomes. FRONTIERS IN PLANT SCIENCE 2021; 12:662715. [PMID: 34539686 PMCID: PMC8448165 DOI: 10.3389/fpls.2021.662715] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 05/23/2023]
Abstract
Plastome phylogenomics is used in a broad range of studies where single markers do not bear enough information. Phylogenetic reconstruction in the genus Salix is difficult due to the lack of informative characters and reticulate evolution. Here, we use a genome skimming approach to reconstruct 41 complete plastomes of 32 Eurasian and North American Salix species representing different lineages, different ploidy levels, and separate geographic regions. We combined our plastomes with published data from Genbank to build a comprehensive phylogeny of 61 samples (50 species) using RAxML (Randomized Axelerated Maximum Likelihood). Additionally, haplotype networks for two observed subclades were calculated, and 72 genes were tested to be under selection. The results revealed a highly conserved structure of the observed plastomes. Within the genus, we observed a variation of 1.68%, most of which separated subg. Salix from the subgeneric Chamaetia/Vetrix clade. Our data generally confirm previous plastid phylogenies, however, within Chamaetia/Vetrix phylogenetic results represented neither taxonomical classifications nor geographical regions. Non-coding DNA regions were responsible for most of the observed variation within subclades and 5.6% of the analyzed genes showed signals of diversifying selection. A comparison of nuclear restriction site associated DNA (RAD) sequencing and plastome data on a subset of 10 species showed discrepancies in topology and resolution. We assume that a combination of (i) a very low mutation rate due to efficient mechanisms preventing mutagenesis, (ii) reticulate evolution, including ancient and ongoing hybridization, and (iii) homoplasy has shaped plastome evolution in willows.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Goettingen, Göttingen, Germany
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Goettingen, Göttingen, Germany
| |
Collapse
|
20
|
The Evolutionary History, Diversity, and Ecology of Willows (Salix L.) in the European Alps. DIVERSITY-BASEL 2021. [DOI: 10.3390/d13040146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Salix (willows), with 33 species, represents the most diverse genus of woody plants in the European Alps. Many species dominate subalpine and alpine types of vegetation. Despite a long history of research on willows, the evolutionary and ecological factors for this species richness are poorly known. Here we will review recent progress in research on phylogenetic relationships, evolution, ecology, and speciation in alpine willows. Phylogenomic reconstructions suggest multiple colonization of the Alps, probably from the late Miocene onward, and reject hypotheses of a single radiation. Relatives occur in the Arctic and in temperate Eurasia. Most species are widespread in the European mountain systems or in the European lowlands. Within the Alps, species differ ecologically according to different elevational zones and habitat preferences. Homoploid hybridization is a frequent process in willows and happens mostly after climatic fluctuations and secondary contact. Breakdown of the ecological crossing barriers of species is followed by introgressive hybridization. Polyploidy is an important speciation mechanism, as 40% of species are polyploid, including the four endemic species of the Alps. Phylogenomic data suggest an allopolyploid origin for all taxa analyzed so far. Further studies are needed to specifically analyze biogeographical history, character evolution, and genome evolution of polyploids.
Collapse
|
21
|
Maciejewska-Rutkowska I, Bocianowski J, Wrońska-Pilarek D. Pollen morphology and variability of Polish native species from genus Salix L. PLoS One 2021; 16:e0243993. [PMID: 33600499 PMCID: PMC7891718 DOI: 10.1371/journal.pone.0243993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/01/2020] [Indexed: 12/03/2022] Open
Abstract
The pollen morphology was studied of 24 Salix species native to Poland, which represented two subgenera, 17 sections and five subsections occurring in Poland. The aim of this study was to discover the taxonomical usefulness of the pollen features under analysis, and to investigate the ranges of their interspecific variability. In total, 720 pollen grains were studied. They were analysed with respect to seven quantitative features (length of the polar axis - P, equatorial diameter - E, length of the ectoaperture - Le, exine thickness - Ex, and P/E, Ex/P and Le/P ratios) and the following qualitative ones: pollen outline and exine ornamentation. The most important features were exine ornamentation (muri, lumina and margo) characters. The pollen features should be treated as auxiliary because they allowed to distinguish eight individual Salix species, and five groups of species. Statistical analysis of the studied traits indicated a high variability among the tested species. The most variable biometric features were P, E and Le, while lower variability occurred in P/E, Le/P and d/E.
Collapse
Affiliation(s)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
22
|
Conservation in the face of hybridisation: genome-wide study to evaluate taxonomic delimitation and conservation status of a threatened orchid species. CONSERV GENET 2021. [DOI: 10.1007/s10592-020-01325-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Butterfield BJ, Palmquist EC, Hultine KR. Regional coordination between riparian dependence and atmospheric demand in willows (
Salix
L.) of western North America. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bradley J. Butterfield
- Center for Ecosystem Science and Society (ECOSS) Northern Arizona University Flagstaff AZ USA
| | - Emily C. Palmquist
- Center for Ecosystem Science and Society (ECOSS) Northern Arizona University Flagstaff AZ USA
- U.S. Geological Survey Southwest Biological Science Center Grand Canyon Monitoring and Research Center Flagstaff AZ USA
| | - Kevin R. Hultine
- Department of Research, Conservation, and Collections Desert Botanical Garden Phoenix AZ USA
| |
Collapse
|
24
|
Sanderson BJ, DiFazio SP, Cronk QCB, Ma T, Olson MS. A targeted sequence capture array for phylogenetics and population genomics in the Salicaceae. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11394. [PMID: 33163293 PMCID: PMC7598885 DOI: 10.1002/aps3.11394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/12/2020] [Indexed: 05/03/2023]
Abstract
PREMISE The family Salicaceae has proved taxonomically challenging, especially in the genus Salix, which is speciose and features frequent hybridization and polyploidy. Past efforts to reconstruct the phylogeny with molecular barcodes have failed to resolve the species relationships of many sections of the genus. METHODS We used the wealth of sequence data in the family to design sequence capture probes to target regions of 300-1200 bp of exonic regions of 972 genes. RESULTS We recovered sequence data for nearly all of the targeted genes in three species of Populus and three species of Salix. We present a species tree, discuss concordance among gene trees, and present population genomic summary statistics for these loci. CONCLUSIONS Our sequence capture array has extremely high capture efficiency within the genera Populus and Salix, resulting in abundant phylogenetic information. Additionally, these loci show promise for population genomic studies.
Collapse
Affiliation(s)
- Brian J. Sanderson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409‐3131USA
- Department of BiologyWest Virginia UniversityMorgantownWest Virginia26506USA
| | - Stephen P. DiFazio
- Department of BiologyWest Virginia UniversityMorgantownWest Virginia26506USA
| | - Quentin C. B. Cronk
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Tao Ma
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengdu610065People’s Republic of China
| | - Matthew S. Olson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409‐3131USA
| |
Collapse
|
25
|
Wagner ND, He L, Hörandl E. Phylogenomic Relationships and Evolution of Polyploid Salix Species Revealed by RAD Sequencing Data. FRONTIERS IN PLANT SCIENCE 2020; 11:1077. [PMID: 32765560 PMCID: PMC7379873 DOI: 10.3389/fpls.2020.01077] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 05/19/2023]
Abstract
Polyploidy is common in the genus Salix. However, little is known about the origin, parentage and genomic composition of polyploid species because of a lack of suitable molecular markers and analysis tools. We established a phylogenomic framework including species of all described sections of Eurasian shrub willows. We analyzed the genomic composition of seven polyploid willow species in comparison to putative diploid parental species to draw conclusions on their origin and the effects of backcrossing and post-origin evolution. We applied recently developed programs like SNAPP, HyDe, and SNiPloid to establish a bioinformatic pipeline for unravelling the complexity of polyploid genomes. RAD sequencing revealed 23,393 loci and 320,010 high quality SNPs for the analysis of relationships of 35 species of Eurasian shrub willows (Salix subg. Chamaetia/Vetrix). Polyploid willow species appear to be predominantly of allopolyploid origin. More ancient allopolyploidization events were observed for two hexaploid and one octoploid species, while our data suggested a more recent allopolyploid origin for the included tetraploids and identified putative parental taxa. SNiPloid analyses disentangled the different genomic signatures resulting from hybrid origin, backcrossing, and secondary post-origin evolution in the polyploid species. Our RAD sequencing data demonstrate that willow genomes are shaped by ancient and recent reticulate evolution, polyploidization, and post-origin divergence of species.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Li He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| |
Collapse
|
26
|
Taming the Red Bastards: Hybridisation and species delimitation in the Rhodanthemum arundanum-group (Compositae, Anthemideae). Mol Phylogenet Evol 2019; 144:106702. [PMID: 31812569 DOI: 10.1016/j.ympev.2019.106702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023]
Abstract
Delineating species boundaries in a group of recently diverged lineages is challenging due to minor morphological differences, low genetic differentiation and the occurrence of gene flow among taxa. Here, we employ traditional Sanger sequencing and restriction-site associated DNA (RAD) sequencing, to investigate species delimitation in the close-knit Moroccan daisy group around Rhodanthemum arundanum B.H.Wilcox & al. that diverged recently during the Quaternary. After evaluation of genotyping errors and parameter optimisation in the course of de-novo assembly of RADseq reads in Ipyrad, we assess hybridisation patterns in the study group based on different data assemblies and methods (Neighbor-Net networks, FastStructure and ABBA-BABA tests). RADseq data and Sanger sequences are subsequently used for delimitation of species, using both, multi-species coalescent methods (Stacey and Snapp) and a novel approach based on consensus k-means clustering. In addition to the unveiling of two novel subspecies in the R. arundanum-group, our study provides insights into the performance of different species delimitation methods in the presence of hybridisation and varying quantities of data.
Collapse
|
27
|
Grewe F, Lagostina E, Wu H, Printzen C, H. Thorsten Lumbsch. Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species Usneaantarctica and Usneaaurantiacoatra. MycoKeys 2018; 43:91-113. [PMID: 30588165 PMCID: PMC6300515 DOI: 10.3897/mycokeys.43.29093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropogonoid species in the lichen-forming fungal genus Usnea exhibit great morphological variation that can be misleading for delimitation of species. We specifically focused on the species delimitation of two closely-related, predominantly Antarctic species differing in the reproductive mode and representing a so-called species pair: the asexual U.antarctica and the sexual U.aurantiacoatra. Previous studies have revealed contradicting results. While multi-locus studies based on DNA sequence data provided evidence that these two taxa might be conspecific, microsatellite data suggested they represent distinct lineages. By using RADseq, we generated thousands of homologous markers to build a robust phylogeny of the two species. Furthermore, we successfully implemented these data in fine-scale population genomic analyses such as DAPC and fineRADstructure. Both Usnea species are readily delimited in phylogenetic inferences and, therefore, the hypothesis that both species are conspecific was rejected. Population genomic analyses also strongly confirmed separated genomes and, additionally, showed different levels of co-ancestry and substructure within each species. Lower co-ancestry in the asexual U.antarctica than in the sexual U.aurantiacoatra may be derived from a wider distributional range of the former species. Our results demonstrate the utility of this RADseq method in tracing population dynamics of lichens in future analyses.
Collapse
Affiliation(s)
- Felix Grewe
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Elisa Lagostina
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - Huini Wu
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S First Avenue, Maywood, IL 60153, USA
| | - Christian Printzen
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - H. Thorsten Lumbsch
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
28
|
Gramlich S, Wagner ND, Hörandl E. RAD-seq reveals genetic structure of the F 2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC PLANT BIOLOGY 2018; 18:317. [PMID: 30509159 PMCID: PMC6276181 DOI: 10.1186/s12870-018-1552-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Hybridization of species with porous genomes can eventually lead to introgression via repeated backcrossing. The potential for introgression between species is reflected by the extent of segregation distortion in later generation hybrids. Here we studied a population of hybrids between Salix purpurea and S. helvetica that has emerged within the last 30 years on a glacier forefield in the European Alps due to secondary contact of the parental species. We used 5758 biallelic SNPs produced by RAD sequencing with the aim to ascertain the predominance of backcrosses (F1 hybrid x parent) or F2 hybrids (F1 hybrid x F1 hybrid) among hybrid offspring. Further, the SNPs were used to study segregation distortion in the second hybrid generation. RESULTS The analyses in STRUCTURE and NewHybrids revealed that the population consisted of parents and F1 hybrids, whereas hybrid offspring consisted mainly of backcrosses to either parental species, but also some F2 hybrids. Although there was a clear genetic differentiation between S. purpurea and S. helvetica (FST = 0.24), there was no significant segregation distortion in the backcrosses or the F2 hybrids. Plant height of the backcrosses resembled the respective parental species, whereas F2 hybrids were more similar to the subalpine S. helvetica. CONCLUSIONS The co-occurrence of the parental species and the hybrids on the glacier forefield, the high frequency of backcrossing, and the low resistance to gene flow via backcrossing make a scenario of introgression in this young hybrid population highly likely, potentially leading to the transfer of adaptive traits. We further suggest that this willow hybrid population may serve as a model for the evolutionary processes initiated by recent global warming.
Collapse
Affiliation(s)
- Susanne Gramlich
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Natascha Dorothea Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| |
Collapse
|