1
|
Field EK, Hartzheim A, Terry J, Dawson G, Haydt N, Neuman-Lee LA. Reptilian Innate Immunology and Ecoimmunology: What Do We Know and Where Are We Going? Integr Comp Biol 2022; 62:1557-1571. [PMID: 35833292 DOI: 10.1093/icb/icac116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/05/2023] Open
Abstract
Reptiles, the only ectothermic amniotes, employ a wide variety of physiological adaptations to adjust to their environments but remain vastly understudied in the field of immunology and ecoimmunology in comparison to other vertebrate taxa. To address this knowledge gap, we assessed the current state of research on reptilian innate immunology by conducting an extensive literature search of peer-reviewed articles published across the four orders of Reptilia (Crocodilia, Testudines, Squamata, and Rhynchocephalia). Using our compiled dataset, we investigated common techniques, characterization of immune components, differences in findings and type of research among the four orders, and immune responses to ecological and life-history variables. We found that there are differences in the types of questions asked and approaches used for each of these reptilian orders. The different conceptual frameworks applied to each group has led to a lack of unified understanding of reptilian immunological strategies, which, in turn, have resulted in large conceptual gaps in the field of ecoimmunology as a whole. To apply ecoimmunological concepts and techniques most effectively to reptiles, we must combine traditional immunological studies with ecoimmunological studies to continue to identify, characterize, and describe the reptilian immune components and responses. This review highlights the advances and gaps that remain to help identify targeted and cohesive approaches for future research in reptilian ecoimmunological studies.
Collapse
Affiliation(s)
- Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Alyssa Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jennifer Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Grant Dawson
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Natalie Haydt
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
2
|
McKee RK, Buhlmann KA, Moore CT, Allender MC, Stacy NI, Tuberville TD. Island of misfit tortoises: waif gopher tortoise health assessment following translocation. CONSERVATION PHYSIOLOGY 2022; 10:coac051. [PMID: 37501911 PMCID: PMC9328764 DOI: 10.1093/conphys/coac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 07/29/2023]
Abstract
Translocation, the intentional movement of animals from one location to another, is a common management practice for the gopher tortoise (Gopherus polyphemus). Although the inadvertent spread of pathogens is a concern with any translocation effort, waif tortoises-individuals that have been collected illegally, injured and rehabilitated or have unknown origins-are generally excluded from translocation efforts due to heightened concerns of introducing pathogens and subsequent disease to naïve populations. However, repurposing these long-lived animals for species recovery is desirable when feasible, and introducing waif tortoises may bolster small populations facing extirpation. The objective of this study was to assess the health of waif tortoises experimentally released at an isolated preserve in Aiken County, SC, USA. Our assessments included visual examination, screening for 14 pathogens using conventional or quantitative polymerase chain reaction (qPCR) and haematological evaluation. Of the 143 individuals assessed in 2017 and 2018, most individuals (76%; n = 109 of 143) had no overt clinical evidence of disease and, when observed, clinical findings were mild. In both years, we detected two known tortoise pathogens, Mycoplasma agassizii and Mycoplasma testudineum, at a prevalence of 10.2-13.9% and 0.0-0.8%, respectively. Additionally, we found emydid Mycoplasma, a bacterium commonly found in box turtles (Terrapene spp.), in a single tortoise that showed no clinical evidence of infection. The presence of nasal discharge was an important, but imperfect, predictor of Mycoplasma spp. infection in translocated tortoises. Hemogram data were comparable with wild populations. Our study is the first comprehensive effort to assess pathogen prevalence and hemogram data of waif gopher tortoises following translocation. Although caution is warranted and pathogen screening necessary, waif tortoises may be an important resource for establishing or augmenting isolated populations when potential health risks can be managed.
Collapse
Affiliation(s)
- Rebecca K McKee
- Corresponding author: Department of Wildlife Ecology and Conservation, University of Florida, Mailing: P.O. Box 110430, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA. Tel: 828-226-0926.
| | - Kurt A Buhlmann
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Clinton T Moore
- U.S. Geological Survey, Georgia Cooperative Fish and Wildlife Research Unit, 180 E Green Street, Athens, GA, 30602, USA
| | - Matthew C Allender
- Wildlife Epidemiology Lab, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave., Urbana, IL 61802, USA
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, USA
| | - Tracey D Tuberville
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| |
Collapse
|
3
|
Damas-Moreira I, Maia JP, Tomé B, Salvi D, Perera A, Harris DJ. Blood parasites in sympatric lizards: what is their impact on hosts’ immune system? AMPHIBIA-REPTILIA 2022. [DOI: 10.1163/15685381-bja10078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Assessment of parasites and their pathogenicity is essential for studying the ecology of populations and understanding their dynamics. In this study, we investigate the prevalence and intensity of infection of haemogregarines (phylum Apicomplexa) in two sympatric lizard species, Podarcis vaucheri and Scelarcis perspicillata, across three localities in Morocco, and their effect on host immune response. We used the Phytohaemagglutinin (PHA) skin testing technique to relate the level of immune response with parasite infection. Prevalence and intensity levels were estimated with microscopy, and 18S rRNA gene sequences were used to confirm parasite identity. All parasites belong to the haemogregarine lineage found in other North African reptiles. There were differences in prevalence between localities and sexes. Overall, infected lizards were larger than uninfected ones, although we did not detect differences in parasitaemia across species, sex or locality. The swelling response was not related to the presence or number of haemogregarines, or to host body size, body condition, sex or species. We found no evidence of impact for these parasites on the circulating blood cells or the hosts’ immune system, but more data is needed to assess the potential impact of mixed infections, and the possibility of cryptic parasite species.
Collapse
Affiliation(s)
- Isabel Damas-Moreira
- Department of Behavioural Ecology, Bielefeld University, 33615 Bielefeld, Germany
| | - João P. Maia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4, 4169-007 Porto, Portugal
- Institut de Biología Evolutiva (CSIC - Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - Beatriz Tomé
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4, 4169-007 Porto, Portugal
| | - Daniele Salvi
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal
- Department of Health, Life and Environmental Sciences, University of L’Aquila, 67100 Coppito, L’Aquila, Italy
| | - Ana Perera
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - D. James Harris
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal
| |
Collapse
|
4
|
ASSESSMENT OF DISEASE RISK ASSOCIATED WITH POTENTIAL REMOVAL OF ANTHROPOGENIC BARRIERS TO MOJAVE DESERT TORTOISE (GOPHERUS AGASSIZII) POPULATION CONNECTIVITY. J Wildl Dis 2021; 57:579-589. [PMID: 34019673 DOI: 10.7589/jwd-d-20-00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/04/2021] [Indexed: 11/20/2022]
Abstract
The Mojave Desert tortoise (Gopherus agassizii), federally listed as threatened, has suffered habitat loss and fragmentation due to human activities. Upper respiratory tract disease (URTD), a documented health threat to desert tortoises, has been detected at the Large-Scale Translocation Study Site (LSTS) in southwestern Nevada, US, a fenced recipient site for translocated animals. Our study aimed to 1) estimate prevalence of URTD and Mycoplasma infection at LSTS and three nearby unfenced sites; 2) assess whether Mycoplasma infection status was associated with developing clinical signs of URTD; and 3) determine whether such an association differed between LSTS and unfenced areas. We sampled 421 tortoises in 2016 to describe the current status of these populations. We evaluated three clinical signs of URTD (nasal discharge, ocular discharge, nasal erosions) and determined individual infection status for Mycoplasma agassizii and Mycoplasma testudineum by quantitative PCR and enzyme-linked immunosorbent assay. In 2016, LSTS had the highest prevalence of M. agassizii (25.0%; 33/132), M. testudineum (3.0%; 4/132), and URTD clinical signs (18.9%; 25/132). Controlling for other factors, clinical sign(s) were positively associated with M. agassizii infection (odds ratio [OR]=7.7, P=0.001), and this effect was similar among study sites (P>0.99). There was no association with M. testudineum status (P=0.360). Of the 196 tortoises in a longitudinal comparison of 2011-14 with 2016, an estimated 3.2% converted from M. agassizii-negative to positive during the study period, and incidence was greater at LSTS (P=0.002). Conversion to positive M. agassizii status was associated with increased incidence of clinical signs in subsequent years (OR=11.1, P=0.018). While M. agassizii and URTD are present outside the LSTS, there is a possibility that incidence of Mycoplasma infection and URTD would increase outside LSTS if these populations were to reconnect. Population-level significance of this risk appears low, and any risk must be evaluated against the potential long-term benefits to population viability through increased connectivity.
Collapse
|
5
|
Studer K, Di Girolamo N. Respiratory Disorders in Chelonians. Vet Clin North Am Exot Anim Pract 2021; 24:341-367. [PMID: 33892891 DOI: 10.1016/j.cvex.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
"Respiratory tract disease in chelonians can be difficult to treat and as such proper diagnostics are paramount. Infectious agents that can affect the respiratory tract of chelonians include viral, bacterial, fungal, and parasitic organisms. Noninfectious diseases can also develop. Because chelonians lack a proper diaphragm, changes in size of celomic organs can cause compression of the respiratory system. These conditions result in clinical signs that could be attributed to the respiratory system, such as open-mouth breathing. In this article, anatomy, physiology, and current standards for diagnostics and treatments of major diseases of the respiratory tract in chelonians are discussed."
Collapse
Affiliation(s)
- Kelsea Studer
- Oklahoma State University, Center for Veterinary Health Sciences, 2065 West Farm Road, Stillwater, OK 74078, USA
| | - Nicola Di Girolamo
- Oklahoma State University, Center for Veterinary Health Sciences, 2065 West Farm Road, Stillwater, OK 74078, USA.
| |
Collapse
|
6
|
Chang WS, Li CX, Hall J, Eden JS, Hyndman TH, Holmes EC, Rose K. Meta-Transcriptomic Discovery of a Divergent Circovirus and a Chaphamaparvovirus in Captive Reptiles with Proliferative Respiratory Syndrome. Viruses 2020; 12:v12101073. [PMID: 32992674 PMCID: PMC7600432 DOI: 10.3390/v12101073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens are being increasingly described in association with mass morbidity and mortality events in reptiles. However, our knowledge of reptile viruses remains limited. Herein, we describe the meta-transcriptomic investigation of a mass morbidity and mortality event in a colony of central bearded dragons (Pogona vitticeps) in 2014. Severe, extensive proliferation of the respiratory epithelium was consistently found in affected dragons. Similar proliferative lung lesions were identified in bearded dragons from the same colony in 2020 in association with increased intermittent mortality. Total RNA sequencing identified two divergent DNA viruses: a reptile-infecting circovirus, denoted bearded dragon circovirus (BDCV), and the first exogeneous reptilian chaphamaparvovirus—bearded dragon chaphamaparvovirus (BDchPV). Phylogenetic analysis revealed that BDCV was most closely related to bat-associated circoviruses, exhibiting 70% amino acid sequence identity in the Replicase (Rep) protein. In contrast, in the nonstructural (NS) protein, the newly discovered BDchPV showed approximately 31%–35% identity to parvoviruses obtained from tilapia fish and crocodiles in China. Subsequent specific PCR assays revealed BDCV and BDchPV in both diseased and apparently normal captive reptiles, although only BDCV was found in those animals with proliferative pulmonary lesions and respiratory disease. This study expands our understanding of viral diversity in captive reptiles.
Collapse
Affiliation(s)
- Wei-Shan Chang
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
| | - Ci-Xiu Li
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia;
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
- Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Timothy H. Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia;
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (W.-S.C.); (C.-X.L.); (J.-S.E.)
- Correspondence: (E.C.H.); (K.R.)
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia;
- Correspondence: (E.C.H.); (K.R.)
| |
Collapse
|
7
|
Xu C, Dolby GA, Drake KK, Esque TC, Kusumi K. Immune and sex-biased gene expression in the threatened Mojave desert tortoise, Gopherus agassizii. PLoS One 2020; 15:e0238202. [PMID: 32846428 PMCID: PMC7449761 DOI: 10.1371/journal.pone.0238202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
The immune system of ectotherms, particularly non-avian reptiles, remains poorly characterized regarding the genes involved in immune function, and their function in wild populations. We used RNA-Seq to explore the systemic response of Mojave desert tortoise (Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better understand the host response to this bacterial pathogen. We found over an order of magnitude more genes differentially expressed between male and female tortoises (1,037 genes) than differentially expressed among immune groups (40 genes). There were 8 genes differentially expressed among both variables that can be considered sex-biased immune genes in this tortoise. Among experimental immune groups we find enriched GO biological processes for cysteine catabolism, regulation of type 1 interferon production, and regulation of cytokine production involved in immune response. Sex-biased transcription involves iron ion transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched. More detailed work is needed to assess the seasonal response of the candidate genes found here. How seasonal fluctuation of testosterone and corticosterone modulate the immunosuppression of males and their susceptibility to Mycoplasma infection also warrants further investigation, as well as the importance of iron in the immune function and sex-biased differences of this species. Finally, future transcriptional studies should avoid drawing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lymphatic fluid will confound the differential expression of genes.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - K. Kristina Drake
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Todd C. Esque
- Western Ecological Research Center, U.S. Geological Survey, Henderson, Nevada, United States of America
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
8
|
Adamovicz L, Baker SJ, Merchant M, Allender MC. Plasma antibacterial activities in ornate (Terrapene ornata) and eastern box turtles (Terrapene carolina). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:295-305. [PMID: 32037741 DOI: 10.1002/jez.2352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/16/2022]
Abstract
Chelonians are one of the most imperiled vertebrate taxa and many species are increasingly threatened by disease, however, the immune response in this group is understudied. We quantified the innate immune response of eastern (Terrapene carolina; EBT) and ornate (Terrapene ornate; OBT) box turtles using plasma antibacterial activity assays. Plasma from both species abolished or significantly reduced the growth of all eight bacterial species evaluated, including Salmonella typhimurium, Escherichia coli, Enterobacter cloacae, Citrobacter freundi, Bacillus subtilis, Staphylococcus epidermidis, and Staphylococcus aureus. Bactericidal capacity was greater in OBT compared to EBT, and OBT plasma retained high antibacterial activities at a broader temperature range (20-40°C) compared to EBT (30-40°C). Plasma antibacterial activity was abolished following treatment with heat, protease, and ethylenediaminetetraacetic acid, indicating that complement is likely responsible for the observed effects. Further characterization of the box turtle immune response may provide insight into the importance of infectious diseases for species conservation, enabling the development of more efficient and effective population management strategies.
Collapse
Affiliation(s)
- Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois
| | - Sarah J Baker
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois.,Arizona Game and Fish Department, Phoenix, Arizona
| | - Mark Merchant
- Department of Chemistry, College of Science, McNeese State University, Lake Charles, Louisiana
| | - Matthew C Allender
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois
| |
Collapse
|