1
|
Zhang Z, Wang X, Guo S, Li Z, He M, Zhang Y, Li G, Han X, Yang G. Divergent patterns and drivers of leaf functional traits of Robinia pseudoacacia and Pinus tabulaeformis plantations along a precipitation gradient in the Loess plateau, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119318. [PMID: 37857219 DOI: 10.1016/j.jenvman.2023.119318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Changes in precipitation patterns in arid and semi-arid regions can reshape plant functional traits and significantly affect ecosystem functions. However, the synchronous responses of leaf economical, anatomical, photosynthetic, and biochemical traits to precipitation changes and their driving factors have rarely been investigated, which hinders our understanding of plants' ecological adaptation strategies to drought tolerance in arid areas. Therefore, the leaf traits of two typical plantations (Robinia pseudoacacia, RP and Pinus tabulaeformis, PT) along the precipitation gradient in the Loess Plateau, including economical, anatomical, photosynthetic, and biochemical traits, were investigated in this study. The results show that the leaf photosynthetic traits of RP and PT increase along the precipitation gradient, whereas leaf biochemical traits decrease. The anatomical traits of PT decrease with increasing precipitation, whereas no significant variation was observed for RP. Random Forest analysis show that LNC, LDMC, Chl, and PRO are leaf traits that significantly vary with the precipitation gradient in both plantations. Correlation analysis reveals that the traits coordination of RP is better than that of PT. The LMG model was used to determine driving factors. The results suggest that MAP explains the variation of PT leaf traits better (30.38%-36.78%), whereas SCH and SPH contribute more to the variation of RP leaf traits (20.88%-41.76%). In addition, the piecewise Structural Equation Model shows that the climate and soil physical and chemical properties directly affect the selected leaf functional traits of RP, whereas only the soil chemical properties directly affect the selected leaf functional traits of PT. The results of this study contribute to the understanding of the ecological adaptation of plants to environmental gradients and highlight that correlations among leaf traits should be considered when predicting plant adaptation strategies under future global change scenarios.
Collapse
Affiliation(s)
- Zhenjiao Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Xing Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Shujuan Guo
- A School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, PR China.
| | - Zhenxia Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Mengfan He
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Yunlong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Guixing Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China.
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| |
Collapse
|
2
|
Fan R, Liu W, Jiang S, Huang Y, Ji W. Recovering from trampling: The role of dauciform roots to functional traits response of Carex filispica in alpine meadow. Ecol Evol 2023; 13:e10709. [PMID: 37928191 PMCID: PMC10623233 DOI: 10.1002/ece3.10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
In the natural habitats of China, dauciform roots were only described in degraded alpine meadows. It was found that the presence of dauciform roots of Carex filispica was related to the advantage of multiple functional traits after trampling, reflecting short-term resistance. However, the long-term response of dauciform roots to trampling and the recovery of C. filispica with and without dauciform roots to trampling require further studies. In this study, different intensities of trampling (0, 50, 200 and 500 passages) were performed in an alpine meadow. One year later, individuals with and without dauciform roots were separated and their functional traits related to the economic spectrum of leaves and roots were measured as a reflection of recovery from trampling. The results showed that: (1) 1 year after trampling, the number of dauciform roots showed an increase with trampling intensity; (2) 1 year later, there was no significant difference in the response of economic spectrum traits among trampling intensities, or between plants with and without dauciform roots; (3) the number of dauciform roots was positively correlated with the leaf area of both individuals with and without dauciform roots, as well as with the biomass of those without dauciform roots; and (4) plants with more resource-conservative roots showed an advantage after trampling recovery: specifically, plants with dauciform roots showed such an advantage in the control group, which was lost with a leaning towards resource-acquisitive roots and an increased density of dauciform roots once trampled. In contrast, plants without dauciform roots showed a significant advantage of conservative roots only after trampling. In conclusion, the presence of dauciform roots is related to the plants' position on the root economic spectrum, thereby influencing the recovery of C. filispica from trampling. Carex filispica showed strong recovery from trampling after 1 year, which makes it an adequate choice for ecological restoration in alpine meadows. Dauciform roots showed a positive correlation with the aboveground growth of both plants with and without them, however, it requires a lab-controlled study to confirm whether there is indeed a positive effect on the growth of neighbouring plants.
Collapse
Affiliation(s)
- Rong Fan
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingChina
| | - Wanting Liu
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingChina
| | - Songlin Jiang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingChina
| | - Yulin Huang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingChina
| | - Wenli Ji
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingChina
| |
Collapse
|
3
|
Yang Y, Shi Y, Wei X, Han J, Wang J, Mu C, Zhang J. Changes in mass allocation play a more prominent role than morphology in resource acquisition of the rhizomatous Leymus chinensis under drought stress. ANNALS OF BOTANY 2023; 132:121-132. [PMID: 37279964 PMCID: PMC10550271 DOI: 10.1093/aob/mcad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Plants can respond to drought by changing their relative investments in the biomass and morphology of each organ. The aims of this study were to quantify the relative contribution of changes in morphology vs. allocation and determine how they affect each other. These results should help us understand the mechanisms that plants use to respond to drought events. METHODS In a glasshouse experiment, we applied a drought treatment (well-watered vs. drought) at early and late stages of plant growth, leading to four treatment combinations (well-watered in both early and late periods, WW; drought in the early period and well-watered in the late period, DW; well-watered in the early period and drought in the late period, WD; drought in both early and late periods, DD). We used the variance partitioning method to compare the contribution of organ (leaf and root) biomass allocation and morphology to the leaf area ratio, root length ratio and root area ratio, for the rhizomatous grass Leymus chinensis (Trin.) Tzvelev. KEY RESULTS Compared with the continuously well-watered treatment, the leaf area ratio, root length ratio and root area ratio showed increasing trends under various drought treatments. The contribution of leaf mass allocation to leaf area ratio differed among the drought treatments and was 2.1- to 5.3-fold greater than leaf morphology, and the contribution of root mass allocation to root length ratio was ~2-fold greater than that of root morphology. In contrast, root morphology contributed more to the root area ratio than biomass allocation under drought in both the early and late periods. There was a negative correlation between the ratio of leaf mass fraction to root mass fraction and the ratio of specific leaf area to specific root length (or specific root area). CONCLUSIONS This study suggested that organ biomass allocation drove a larger proportion of variation than morphological traits for the absorption of resources in this rhizomatous grass. These findings should help us understand the adaptive mechanisms of plants when they are confronted with drought stress.
Collapse
Affiliation(s)
- Yuheng Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Yujie Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Xiaowei Wei
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jiayu Han
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Junfeng Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Chunsheng Mu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jinwei Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Czortek P, Królak E, Borkowska L, Bielecka A. Effects of surrounding landscape on the performance of Solidago canadensis L. and plant functional diversity on heavily invaded post-agricultural wastelands. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
AbstractHigh invasiveness and well-documented negative impact on biodiversity and ecosystem functioning make Solidago canadensis L. a species of global concern. Despite a good understanding of the driving factors of its invasions, it remains unclear how the surrounding landscape may shape invasion success of this species in human-transformed ecosystems. In our study, we investigated the impacts of different landscape features in the proximity of early successional wastelands on S. canadensis biomass allocation patterns. Further, we examined the relationships between the surrounding landscape, S. canadensis cover, and plant functional diversity, used as a supportive approach for the explanation of mechanisms underlying successful S. canadensis invasion. We found that increasing river net length had positive impacts on S. canadensis rhizome, stem, and total above ground biomass, but negative effects on leaf biomass, indicating that vegetative spread may perform the dominant role in shaping the competitiveness of this invader in riverine landscapes. A higher proportion of arable lands positively influenced S. canadensis above ground and flower biomass; thus promoting S. canadensis invasion in agricultural landscapes with the prominent role of habitat filtering in shaping vegetation structure. Concerning an increasing proportion of settlements, flower biomass was higher and leaf biomass was lower, thereby influencing S. canadensis reproductive potential, maximizing the odds for survival, and indicating high adaptability to exist in an urban landscape. We demonstrated high context-dependency of relationships between functional diversity components and surrounding landscape, strongly influenced by S. canadensis cover, while the effects of surrounding landscape composition per se were of lower importance. Investigating the relationships between the surrounding landscape, invasive species performance, and plant functional diversity, may constitute a powerful tool for the monitoring, controlling, and predicting of invasion progress, as well as the assessment of ecosystem invasibility.
Collapse
|
5
|
Fan R, Hua J, Huang Y, Lin J, Ji W. What role do dauciform roots play? Responses of Carex filispica to trampling in alpine meadows based on functional traits. Ecol Evol 2023; 13:e9875. [PMID: 36911305 PMCID: PMC9994609 DOI: 10.1002/ece3.9875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
In China, dauciform roots were hardly studied and only reported in alpine meadows, where sedges showed a different tendency from other functional groups such as grasses and forbs with degradation. In addition, Carex species were proved to have shifting scaling relationships among LES (leaf economics spectrum) traits under disturbance. So, are these unique performances of sedges related to the presence of dauciform roots, and if so, how? An alpine meadow dominated by Carex filispica in Baima Snow Mountain was selected, and quantitative trampling was performed (0, 50, 200, and 500 passes). The cover and dauciform root properties of Carex filispica were measured, as well as the morphological, chemical traits and biomass of leaves and roots, their correlations and the differences between individuals with and without dauciform roots were analyzed. After the trampling, individuals with dauciform roots showed multiple resource-acquisitive traits: Larger, thicker leaves, more aboveground biomass, higher efficiency of nutrient utilization, and slenderer roots. Additionally, they had a tighter correlation among belowground biomass, morphological and chemical traits, as well as dauciform root properties and morphology of leaves, suggesting that their traits were more related than those without dauciform roots. The presence of dauciform roots in Carex filispica was related to advantages in multiple traits after trampling, which is consistent with and might be responsible for the unique performances of sedges.
Collapse
Affiliation(s)
- Rong Fan
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinguo Hua
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingShaanxiChina
| | - Yulin Huang
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiayi Lin
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingShaanxiChina
| | - Wenli Ji
- College of Landscape Architecture and ArtsNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
6
|
Chu HH, Farrell C. Fast plants have water-use and drought strategies that balance rainfall retention and drought survival on green roofs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02486. [PMID: 34674341 DOI: 10.1002/eap.2486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Green roofs can improve ecosystem services in cities; however, this depends on appropriate plant selection. For stormwater management, plants should have high water use to maximize retention and also survive dry periods. Plants adapted to wetter habitats develop "fast" traits for growth, whereas plants from drier habitats develop "slow" traits to conserve water use and survive drought. Therefore, we hypothesized that (1) plants with fast traits would have greater water use, (2) plants with slow traits would have greater drought tolerance, (3) fast-slow traits would be consistent across the plant, and (4) fast plants with greater water use could avoid drought stress. We evaluated 14 green roof species in a glasshouse experiment under well-watered (WW) and water-deficit (WD) conditions to determine relationships between fast-slow traits, water use, and drought resistance. Traits measured were shoot dry mass, specific leaf area (SLA), root mass fraction (RMF), and specific root length (SRL). Daily evapotranspiration per shoot dry mass was used to describe water use. Drought resistance was represented by (1) days to stomatal closure; (2) cumulative ET before stomatal closure; and (3) degree of iso-anisohydry (difference between midday leaf water potential (ΨMD ) of WW and WD plants; ΔΨMD ). Plants with greater water use had fast aboveground traits (greater shoot biomass and SLA). Plants with slow traits had greater drought tolerance as plants with lower shoot dry mass closed their stomata later under WD, and plants with greater root allocation were more anisohydric. Fast-slow traits were not consistent across the plant. Although SLA and SRL were positively related, SRL was not related to water use or drought resistance. Shoot dry mass was inversely related to SLA and had a stronger influence on stomatal closure. Though plants with greater water use under well-watered conditions closed their stomates earlier to avoid drought stress, they were not more isohydric (smaller ∆ΨMD ) and did not necessarily use more water under WD. Fast aboveground traits can be used to select green roof plants with high water use that avoid drought stress to optimize rainfall retention without jeopardizing drought survival. This will facilitate rapid plant selection using trait information from online databases.
Collapse
Affiliation(s)
- Hsiao-Hsuan Chu
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| | - Claire Farrell
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria, 3121, Australia
| |
Collapse
|
7
|
An N, Lu N, Fu B, Wang M, He N. Distinct Responses of Leaf Traits to Environment and Phylogeny Between Herbaceous and Woody Angiosperm Species in China. FRONTIERS IN PLANT SCIENCE 2021; 12:799401. [PMID: 34950176 PMCID: PMC8688848 DOI: 10.3389/fpls.2021.799401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Leaf traits play key roles in plant resource acquisition and ecosystem processes; however, whether the effects of environment and phylogeny on leaf traits differ between herbaceous and woody species remains unclear. To address this, in this study, we collected data for five key leaf traits from 1,819 angiosperm species across 530 sites in China. The leaf traits included specific leaf area, leaf dry matter content, leaf area, leaf N concentration, and leaf P concentration, all of which are closely related to trade-offs between resource uptake and leaf construction. We quantified the relative contributions of environment variables and phylogeny to leaf trait variation for all species, as well as for herbaceous and woody species separately. We found that environmental factors explained most of the variation (44.4-65.5%) in leaf traits (compared with 3.9-23.3% for phylogeny). Climate variability and seasonality variables, in particular, mean temperature of the warmest and coldest seasons of a year (MTWM/MTWQ and MTCM/MTCQ) and mean precipitation in the wettest and driest seasons of a year (MPWM/MPWQ and MPDM/MPDQ), were more important drivers of leaf trait variation than mean annual temperature (MAT) and mean annual precipitation (MAP). Furthermore, the responses of leaf traits to environment variables and phylogeny differed between herbaceous and woody species. Our study demonstrated the different effects of environment variables and phylogeny on leaf traits among different plant growth forms, which is expected to advance the understanding of plant adaptive strategies and trait evolution under different environmental conditions.
Collapse
Affiliation(s)
- Nannan An
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Garbowski M, Johnston DB, Brown CS. Cultivars of popular restoration grass developed for drought do not have higher drought resistance and do not differ in drought‐related traits from other accessions. Restor Ecol 2021. [DOI: 10.1111/rec.13415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magda Garbowski
- Graduate Degree Program in Ecology Colorado State University, 102 Johnson Hall, Fort Collins, CO, 80523, U.S.A
- Department of Agricultural Biology Colorado State University, 307 University Ave., Fort Collins, CO, 80521, U.S.A
| | - Danielle B. Johnston
- Colorado Division of Parks and Wildlife, 711 Independent Ave., Grand Junction, CO, 81505, U.S.A
| | - Cynthia S. Brown
- Graduate Degree Program in Ecology Colorado State University, 102 Johnson Hall, Fort Collins, CO, 80523, U.S.A
- Department of Agricultural Biology Colorado State University, 307 University Ave., Fort Collins, CO, 80521, U.S.A
| |
Collapse
|
9
|
Multi-generational effects of simulated herbivory and habitat types on the invasive weed Alternanthera philoxeroides: implications for biological control. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Wang S, Wei M, Cheng H, Wu B, Du D, Wang C. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111160. [PMID: 32853864 DOI: 10.1016/j.ecoenv.2020.111160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The functional similarity between indigenous plant species (IPS) and invasive alien species (IAS) governs the invasion process of successful IAS because IPS and coexisting IAS suffer alike or even same ecological selection pressures. The aggravated condition created by heavy metal pollution (HMP) and drought stress may generate a noticeable impact on the invasive competitiveness and invasion process of IAS possibly via the variations in the functional similarity between IPS and IAS. Consequently, it is necessary to illumine the functional similarity between IPS and IAS under HMP and drought stress to clarify the mechanisms underlying the successful invasion of IAS. This study aims to estimate the functional similarity between IPS Amaranthus tricolor L. and IAS A. retroflexus L. under the condition with the alone and combined effects of HMP with different kinds (e.g., Cu and Pb) and drought stress [simulated by polyethylene glycol-6000 (PEG) solution]. HMP notably declines A. tricolor growth but has no remarkable effect on A. retroflexus growth. A. retroflexus displays a strong competitive intensity than A. tricolor under HMP. Further, HMP makes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Therefore, HMP can accelerate A. retroflexus invasion. A. retroflexus displays a poor competitive intensity under drought stress. Thus, drought stress can hinder A. retroflexus invasion. However, drought stress causes a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the continued drought stress may converse the adverse effects of drought stress on A. retroflexus invasion potentially. The two Amaranthus species tend to diverge functionally under the combined HMP and drought stress. Further, A. retroflexus shows a strong competitive intensity than A. tricolor under the combined HMP and drought stress. Moreover, the combined HMP and drought stress induces a greater stress intensity on A. tricolor growth than A. retroflexus growth. Thus, the combined HMP and drought stress can facilitate A. retroflexus invasion. Meanwhile, the competitiveness for sunlight acquisition and leaf photosynthetic capacity may play a key role in the successful invasion of A. retroflexus under the combined HMP and drought stress.
Collapse
Affiliation(s)
- Shu Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mei Wei
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huiyuan Cheng
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bingde Wu
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Daolin Du
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- Institute of Environment and Ecology & School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| |
Collapse
|