1
|
Belitz MW, Larsen EA, Hurlbert AH, Di Cecco GJ, Neupane N, Ries L, Tingley MW, Guralnick RP, Youngflesh C. Potential for bird-insect phenological mismatch in a tri-trophic system. J Anim Ecol 2025; 94:717-728. [PMID: 39994832 PMCID: PMC11962238 DOI: 10.1111/1365-2656.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025]
Abstract
Climate change is altering the seasonal timing of biological events across the tree of life. Phenological asynchrony has the potential to hasten population declines and disrupt ecosystem function. However, we lack broad comparisons of the degree of sensitivity to common phenological cues across multiple trophic levels. Overcoming the complexity of integrating data across trophic levels is essential for identifying spatial locations and species for which mismatches are most likely to occur. Here, we synthesized over 15 years of data across three trophic levels to estimate the timing of four interacting phenological events in eastern North America: the green-up of forest canopy trees, emergence of adult Lepidoptera and arrival and subsequent breeding of migratory birds. We next quantified the magnitude of phenological shift per one unit change of springtime temperature accumulation as measured by accumulated growing degree days (GDD). We expected trophic responses to spring temperature accumulation to be related to physiology, thus predicting a weaker response of birds to GDD than that of insects and plants. We found that insect and plant phenology indeed had similarly strong sensitivity to GDD, while bird phenology had lower sensitivity. We also found that vegetation green-up and bird arrival were more sensitive to GDD in higher latitudes, but the timing of bird breeding was less sensitive to GDD in higher latitudes. Migratory bird species with slow migration pace, early arrivals and more northerly wintering grounds shifted their arrival the most. Across Eastern Temperate Forests, the similar responses of vegetation green-up and Lepidoptera emergence to temperature shifts support the use of remotely sensed green-up to track how the timing of bird food resources is shifting in response to climate change. Our results indicate that, across our plant-insect-bird system, the bird-insect phenological link has a greater potential for phenological mismatch than the insect-plant link, with a higher risk of decoupling at higher latitudes.
Collapse
Affiliation(s)
- Michael W. Belitz
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| | - Elise A. Larsen
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Allen H. Hurlbert
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Environment, Ecology and Energy ProgramUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Grace J. Di Cecco
- Department of BiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Naresh Neupane
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Leslie Ries
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Morgan W. Tingley
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Casey Youngflesh
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
2
|
Tavera EA, Lank DB, Douglas DC, Sandercock BK, Lanctot RB, Schmidt NM, Reneerkens J, Ward DH, Bêty J, Kwon E, Lecomte N, Gratto-Trevor C, Smith PA, English WB, Saalfeld ST, Brown SC, Gates HR, Nol E, Liebezeit JR, McGuire RL, McKinnon L, Kendall S, Robards M, Boldenow M, Payer DC, Rausch J, Solovyeva DV, Stalwick JA, Gurney KEB. Why do avian responses to change in Arctic green-up vary? GLOBAL CHANGE BIOLOGY 2024; 30:e17335. [PMID: 38771086 DOI: 10.1111/gcb.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.
Collapse
Affiliation(s)
| | - David B Lank
- Simon Fraser University, Burnaby, British Columbia, Canada
| | - David C Douglas
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA
| | | | | | | | - Jeroen Reneerkens
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - David H Ward
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA
| | - Joël Bêty
- Université du Québec à Rimouski and Centre d'études nordiques, Rimouski, Quebec, Canada
| | - Eunbi Kwon
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | - Cheri Gratto-Trevor
- Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Paul A Smith
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | | | | | | - H River Gates
- Manomet, Shorebird Recovery Program, Plymouth, Massachusetts, USA
- Migratory Bird Management, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA
| | - Erica Nol
- Trent University, Peterborough, Ontario, Canada
| | | | | | | | - Steve Kendall
- U.S. Fish and Wildlife Service, Arctic National Wildlife Refuge, Fairbanks, Alaska, USA
| | | | | | | | - Jennie Rausch
- Canadian Wildlife Service, Environment and Climate Change Canada, Yellowknife, Northwest Territories, Canada
| | - Diana V Solovyeva
- Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences, Magadan, Russia
| | - Jordyn A Stalwick
- Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Kirsty E B Gurney
- Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Whitenack LE, Welklin JF, Branch CL, Sonnenberg BR, Pitera AM, Kozlovsky DY, Benedict LM, Heinen VK, Pravosudov VV. Complex relationships between climate and reproduction in a resident montane bird. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230554. [PMID: 37351489 PMCID: PMC10282579 DOI: 10.1098/rsos.230554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Animals use climate-related environmental cues to fine-tune breeding timing and investment to match peak food availability. In birds, spring temperature is a commonly documented cue used to initiate breeding, but with global climate change, organisms are experiencing both directional changes in ambient temperatures and extreme year-to-year precipitation fluctuations. Montane environments exhibit complex climate patterns where temperatures and precipitation change along elevational gradients, and where exacerbated annual variation in precipitation has resulted in extreme swings between heavy snow and drought. We used 10 years of data to investigate how annual variation in climatic conditions is associated with differences in breeding phenology and reproductive performance in resident mountain chickadees (Poecile gambeli) at two elevations in the northern Sierra Nevada mountains, USA. Variation in spring temperature was not associated with differences in breeding phenology across elevations in our system. Greater snow accumulation was associated with later breeding initiation at high, but not low, elevation. Brood size was reduced under drought, but only at low elevation. Our data suggest complex relationships between climate and avian reproduction and point to autumn climate as important for reproductive performance, likely via its effect on phenology and abundance of invertebrates.
Collapse
Affiliation(s)
- Lauren E. Whitenack
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Joseph F. Welklin
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Carrie L. Branch
- Department of Psychology, University of Western Ontario, London, Canada
| | - Benjamin R. Sonnenberg
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Angela M. Pitera
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Dovid Y. Kozlovsky
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Lauren M. Benedict
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Virginia K. Heinen
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Vladimir V. Pravosudov
- Department of Biology, Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| |
Collapse
|
4
|
Ceresa F, Kranebitter P, S Monrós J, Rizzolli F, Brambilla M. Disentangling direct and indirect effects of local temperature on abundance of mountain birds and implications for understanding global change impacts. PeerJ 2021; 9:e12560. [PMID: 34950536 PMCID: PMC8647716 DOI: 10.7717/peerj.12560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/07/2021] [Indexed: 12/04/2022] Open
Abstract
Unravelling the environmental factors driving species distribution and abundance is crucial in ecology and conservation. Both climatic and land cover factors are often used to describe species distribution/abundance, but their interrelations have been scarcely investigated. Climatic factors may indeed affect species both directly and indirectly, e.g., by influencing vegetation structure and composition. We aimed to disentangle the direct and indirect effects (via vegetation) of local temperature on bird abundance across a wide elevational gradient in the European Alps, ranging from montane forests to high-elevation open areas. In 2018, we surveyed birds by using point counts and collected fine-scale land cover and temperature data from 109 sampling points. We used structural equation modelling to estimate direct and indirect effects of local climate on bird abundance. We obtained a sufficient sample for 15 species, characterized by a broad variety of ecological requirements. For all species we found a significant indirect effect of local temperatures via vegetation on bird abundance. Direct effects of temperature were less common and were observed in seven woodland/shrubland species, including only mountain generalists; in these cases, local temperatures showed a positive effect, suggesting that on average our study area is likely colder than the thermal optimum of those species. The generalized occurrence of indirect temperature effects within our species set demonstrates the importance of considering both climate and land cover changes to obtain more reliable predictions of future species distribution/abundance. In fact, many species may be largely tracking suitable habitat rather than thermal niches, especially among homeotherm organisms like birds.
Collapse
Affiliation(s)
| | | | | | | | - Mattia Brambilla
- Museo delle Scienze, Trento, Italia.,Fondazione Lombardia per l'Ambiente, Milano, Italia.,Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italia
| |
Collapse
|
5
|
Schano C, Niffenegger C, Jonas T, Korner-Nievergelt F. Hatching phenology is lagging behind an advancing snowmelt pattern in a high-alpine bird. Sci Rep 2021; 11:22191. [PMID: 34772973 PMCID: PMC8589975 DOI: 10.1038/s41598-021-01497-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
To track peaks in resource abundance, temperate-zone animals use predictive environmental cues to rear their offspring when conditions are most favourable. However, climate change threatens the reliability of such cues when an animal and its resource respond differently to a changing environment. This is especially problematic in alpine environments, where climate warming exceeds the Holarctic trend and may thus lead to rapid asynchrony between peaks in resource abundance and periods of increased resource requirements such as reproductive period of high-alpine specialists. We therefore investigated interannual variation and long-term trends in the breeding phenology of a high-alpine specialist, the white-winged snowfinch, Montifringilla nivalis, using a 20-year dataset from Switzerland. We found that two thirds of broods hatched during snowmelt. Hatching dates positively correlated with April and May precipitation, but changes in mean hatching dates did not coincide with earlier snowmelt in recent years. Our results offer a potential explanation for recently observed population declines already recognisable at lower elevations. We discuss non-adaptive phenotypic plasticity as a potential cause for the asynchrony between changes in snowmelt and hatching dates of snowfinches, but the underlying causes are subject to further research.
Collapse
Affiliation(s)
- Christian Schano
- Swiss Ornithological Institute, 6204, Sempach, Switzerland.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.
| | | | - Tobias Jonas
- Snow Hydrology, WSL Institute for Snow and Avalanche Research SLF, 7260, Davos Dorf, Switzerland
| | | |
Collapse
|
6
|
Tabachishin VG, Yermokhin MV. Abnormally Early Nesting of Acanthis cannabina (Linnaeus, 1758) (Fringillidae, Aves) in the Latryk River Valley (Saratov Region). BIOL BULL+ 2020. [DOI: 10.1134/s1062359020100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|